Publications by Michele Cappellari

The KLEVER Survey: spatially resolved metallicity maps and gradients in a sample of 1.2 < z < 2.5 lensed galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 492 (2019) 821-842

M Curti, R Maiolino, M Cirasuolo, F Mannucci, RJ Williams, M Auger, A Mercurio, C Hayden-Pawson, G Cresci, A Marconi, F Belfiore, M Cappellari, C Cicone, F Cullen, M Meneghetti, K Ota, Y Peng, M Pettini, M Swinbank, P Troncoso

We present near-infrared observations of 42 gravitationally lensed galaxies obtained in the framework of the KMOS Lensed Emission Lines and VElocity Review (KLEVER) Survey, a programme aimed at investigating the spatially resolved properties of the ionized gas in 1.2 < z < 2.5 galaxies by means of a full coverage of the YJ, H, and K near-infrared bands. Detailed metallicity maps and gradients are derived for a subsample of 28 galaxies from reconstructed source-plane emission-line maps, exploiting the variety of different emission-line diagnostics provided by the broad wavelength coverage of the survey. About 85per cent of these galaxies are characterized by metallicity gradients shallower than 0.05 dexkpc−1 and 89 per cent are consistent with a flat slope within 3σ (⁠67 per cent within 1σ), suggesting a mild evolution with cosmic time. In the context of cosmological simulations and chemical evolution models, the presence of efficient feedback mechanisms and/or extended star formation profiles on top of the classical ‘inside-out’ scenario of mass assembly is generally required to reproduce the observed flatness of the metallicity gradients beyond z ∼ 1. Three galaxies with significantly (>3σ) ‘inverted’ gradients are also found, showing an anticorrelation between metallicity and star formation rate density on local scales, possibly suggesting recent episodes of pristine gas accretion or strong radial flows in place. Nevertheless, the individual metallicity maps are characterized by a variety of different morphologies, with flat radial gradients sometimes hiding non-axisymmetric variations on kpc scales, which are washed out by azimuthal averages, especially in interacting systems or in those undergoing local episodes of recent star formation.

K-CLASH: Strangulation and ram pressure stripping in galaxy cluster members at 0.3 &lt; z &lt; 0.6

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 496 (2020) 3841-3861

SP Vaughan, AL Tiley, RL Davies, LJ Prichard, SM Croom, M Bureau, JP Stott, A Bunker, M Cappellari, B Ansarinejad, MJ Jarvis

<jats:title>ABSTRACT</jats:title> <jats:p>Galaxy clusters have long been theorized to quench the star formation of their members. This study uses integral-field unit observations from the K-band MultiObject Spectrograph (KMOS) – Cluster Lensing And Supernova survey with Hubble (CLASH) survey (K-CLASH) to search for evidence of quenching in massive galaxy clusters at redshifts 0.3 &amp;lt; z &amp;lt; 0.6. We first construct mass-matched samples of exclusively star-forming cluster and field galaxies, then investigate the spatial extent of their H α emission and study their interstellar medium conditions using emission line ratios. The average ratio of H α half-light radius to optical half-light radius ($r_{\mathrm{e}, {\rm {H}\,\alpha }}/r_{\mathrm{e}, R_{\mathrm{c} } }$) for all galaxies is 1.14 ± 0.06, showing that star formation is taking place throughout stellar discs at these redshifts. However, on average, cluster galaxies have a smaller $r_{\mathrm{e}, {\rm {H}\alpha }}/r_{\mathrm{e}, R_{\mathrm{c} } }$ ratio than field galaxies: 〈$r_{\mathrm{e}, {\rm {H}\alpha }}/r_{\mathrm{e}, R_{\mathrm{c} } }$〉 = 0.96 ± 0.09 compared to 1.22 ± 0.08 (smaller at a 98 per cent credibility level). These values are uncorrected for the wavelength difference between H α emission and Rc-band stellar light but implementing such a correction only reinforces our results. We also show that whilst the cluster and field samples follow indistinguishable mass–metallicity (MZ) relations, the residuals around the MZ relation of cluster members correlate with cluster-centric distance; galaxies residing closer to the cluster centre tend to have enhanced metallicities (significant at the 2.6σ level). Finally, in contrast to previous studies, we find no significant differences in electron number density between the cluster and field galaxies. We use simple chemical evolution models to conclude that the effects of disc strangulation and ram-pressure stripping can quantitatively explain our observations.</jats:p>

K-CLASH: spatially-resolving star-forming galaxies in field and cluster environments at z ≈ 0.2-0.6

Monthly Notices of the Royal Astronomical Society Oxford University Press (2020)

AL Tiley, JP Stott, R Davies, LJ Prichard, A Bunker, M Bureau, M Cappellari, M Jarvis, A Robotham, L Cortese, S Bellstedt, B Ansarinejad

We present the KMOS-CLASH (K-CLASH) survey, a K-band Multi-Object Spectrograph (KMOS) survey of the spatially-resolved gas properties and kinematics of 191 (predominantly blue) Hα-detected galaxies at 0.2 ≲ z ≲ 0.6 in field and cluster environments. K-CLASH targets galaxies in four Cluster Lensing And Supernova survey with Hubble (CLASH) fields in the KMOS IZ-band, over 7′ radius (≈2–3 Mpc) fields-of-view. K-CLASH aims to study the transition of star-forming galaxies from turbulent, highly star-forming disc-like and peculiar systems at z ≈ 1–3, to the comparatively quiescent, ordered late-type galaxies at z ≈ 0, and to examine the role of clusters in the build-up of the red sequence since z ≈ 1. In this paper, we describe the K-CLASH survey, present the sample, and provide an overview of the K-CLASH galaxy properties. We demonstrate that our sample comprises star-forming galaxies typical of their stellar masses and epochs, residing both in field and cluster environments. We conclude K-CLASH provides an ideal sample to bridge the gap between existing large integral-field spectroscopy surveys at higher and lower redshifts. We find that star-forming K-CLASH cluster galaxies at intermediate redshifts have systematically lower stellar masses than their star-forming counterparts in the field, hinting at possible “downsizing” scenarios of galaxy growth in clusters at these epochs. We measure no difference between the star-formation rates of Hα-detected, star-forming galaxies in either environment after accounting for stellar mass, suggesting that cluster quenching occurs very rapidly during the epochs probed by K-CLASH, or that star-forming K-CLASH galaxies in clusters have only recently arrived there, with insufficient time elapsed for quenching to have occured.

SDSS-IV MaNGA: The kinematic-morphology of galaxies on the mass versus star-formation relation in different environments


B Wang, M Cappellari, Y Peng, M Graham

Efficient solution of the anisotropic spherically-aligned axisymmetric Jeans equations of stellar hydrodynamics for galactic dynamics

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2020)

M Cappellari

&lt;jats:title&gt;Abstract&lt;/jats:title&gt; &lt;jats:p&gt;I present a flexible solution for the axisymmetric Jeans equations of stellar hydrodynamics under the assumption of an anisotropic (three-integral) velocity ellipsoid aligned with the spherical polar coordinate system. I describe and test a robust and efficient algorithm for its numerical computation. I outline the evaluation of the intrinsic velocity moments and the projection of all first and second velocity moments, including both the line-of-sight velocities and the proper motions. This spherically-aligned Jeans Anisotropic Modelling (JAMsph) method can describe in detail the photometry and kinematics of real galaxies. It allows for a spatially-varying anisotropy, or stellar mass-to-light ratios gradients, as well as for the inclusion of general dark matter distributions and supermassive black holes. The JAMsph method complements my previously derived cylindrically-aligned JAMcyl and spherical Jeans solutions, which I also summarize in this paper. Comparisons between results obtained with either JAMsph or JAMcyl can be used to asses the robustness of inferred dynamical quantities. As an illustration, I modelled the ATLAS3D sample of 260 early-type galaxies with high-quality integral-field spectroscopy, using both methods. I found that they provide statistically indistinguishable total-density logarithmic slopes. This may explain the previously-reported success of the JAM method in recovering density profiles of real or simulated galaxies. A reference software implementation of JAMsph is included in the publicly-available JAM software package.&lt;/jats:p&gt;

The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra

Astrophysical Journal, Supplement Series 249 (2020)

R Ahumada, CA Prieto, A Almeida, F Anders, SF Anderson, BH Andrews, B Anguiano, R Arcodia, E Armengaud, M Aubert, S Avila, V Avila-Reese, C Badenes, C Balland, K Barger, JK Barrera-Ballesteros, S Basu, J Bautista, RL Beaton, TC Beers, BIT Benavides, CF Bender, M Bernardi, M Bershady, F Beutler, CM Bidin, J Bird, D Bizyaev, GA Blanc, MR Blanton, M Boquien, J Borissova, J Bovy, WN Brandt, J Brinkmann, JR Brownstein, K Bundy, M Bureau, A Burgasser, E Burtin, M Cano-Díaz, R Capasso, M Cappellari, R Carrera, S Chabanier, W Chaplin, M Chapman, B Cherinka, C Chiappini, P Doohyun Choi, SD Chojnowski, H Chung, N Clerc, D Coffey, JM Comerford, J Comparat, L Da Costa, MC Cousinou, K Covey, JD Crane, K Cunha, GDS Ilha, YS Dai, SB Damsted, J Darling, JW Davidson, R Davies, K Dawson, N De, A De La Macorra, N De Lee, ABDA Queiroz, A Deconto Machado, S De La Torre, F Dell'Agli, H Du Mas Des Bourboux, AM Diamond-Stanic, S Dillon, J Donor, N Drory, C Duckworth, T Dwelly, G Ebelke, S Eftekharzadeh, A Davis Eigenbrot, YP Elsworth, M Eracleous, G Erfanianfar, S Escoffier, X Fan, E Farr, JG Fernández-Trincado, D Feuillet, A Finoguenov, P Fofie, A Fraser-Mckelvie, PM Frinchaboy, S Fromenteau, H Fu, L Galbany

© 2020. The Author(s). Published by the American Astronomical Society.. This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17).

Formation channels of slowly rotating early-type galaxies

Astronomy and Astrophysics EDP Sciences 635 (2020) A129

D Krajnovic, U Ural, H Kuntschner, P Goudfrooij, M Wolfe, M Cappellari, R Davies, TP de Zeeuw, P-A Duc, E Emsellem, A Karick, RM McDermid, S Mei, T Naab

We study the evidence for a diversity of formation processes in early-type galaxies by presenting the first complete volume-limited sample of slow rotators with both integral-field kinematics from the ATLAS3D Project and high spatial resolution photometry from the Hubble Space Telescope. Analysing the nuclear surface brightness profiles of 12 newly imaged slow rotators, we classify their light profiles as core-less, and place an upper limit to the core size of about 10 pc. Considering the full magnitude and volume-limited ATLAS3D sample, we correlate the presence or lack of cores with stellar kinematics, including the proxy for the stellar angular momentum (λRe) and the velocity dispersion within one half-light radius (σe), stellar mass, stellar age, α-element abundance, and age and metallicity gradients. More than half of the slow rotators have core-less light profiles, and they are all less massive than 1011 M⊙. Core-less slow rotators show evidence for counter-rotating flattened structures, have steeper metallicity gradients, and a larger dispersion of gradient values (Δ[Z/H]¯ = −0.42 ± 0.18) than core slow rotators (Δ[Z/H]¯ = −0.23 ± 0.07). Our results suggest that core and core-less slow rotators have different assembly processes, where the former, as previously discussed, are the relics of massive dissipation-less merging in the presence of central supermassive black holes. Formation processes of core-less slow rotators are consistent with accretion of counter-rotating gas or gas-rich mergers of special orbital configurations, which lower the final net angular momentum of stars, but support star formation. We also highlight core fast rotators as galaxies that share properties of core slow rotators (i.e. cores, ages, σe, and population gradients) and core-less slow rotators (i.e. kinematics, λRe, mass, and larger spread in population gradients). Formation processes similar to those for core-less slow rotators can be invoked to explain the assembly of core fast rotators, with the distinction that these processes form or preserve cores.

SDSS-IV MaNGA: stellar population correlates with stellar root-mean-square velocity V-rms gradients or total-density-profile slopes at fixed effective velocity dispersion sigma(e)


S Lu, M Cappellari, S Mao, J Ge, R Li

The fifteenth data release of the Sloan Digital Sky Surveys: First release of MaNGA-derived quantities, data visualization tools, and Stellar Library

Astrophysical Journal Supplement Institute of Physics 240 (2019)

DS Aguado, R Ahumada, A Almeida, M Cappellari, R Davies, C Lintott

Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release data taken by the fourth phase of SDSS (SDSS-IV) across its first three years of operation (2014 July–2017 July). This is the third data release for SDSS-IV, and the 15th from SDSS (Data Release Fifteen; DR15). New data come from MaNGA—we release 4824 data cubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis products (e.g., stellar and gas kinematics, emission-line and other maps) from the MaNGA Data Analysis Pipeline, and a new data visualization and access tool we call "Marvin." The next data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper, we describe the location and format of the data and tools and cite technical references describing how it was obtained and processed. The SDSS website ( has also been updated, providing links to data downloads, tutorials, and examples of data use. Although SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V (2020–2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for many years beyond the collection of data.

Improved dynamical constraints on the masses of the central black holes in nearby low-mass early-type galactic nuclei and the first black hole determination for NGC 205

Astrophysical Journal American Astronomical Society 872 (2019) 104

DD Nguyen, AC Seth, N Neumayer, M Cappellari, E al.

We improve the dynamical black hole (BH) mass estimates in three nearby low-mass early-type galaxies: NGC 205, NGC 5102, and NGC 5206. We use new Hubble Space Telescope (HST)/STIS spectroscopy to fit the star formation histories of the nuclei in these galaxies, and use these measurements to create local color–mass-to-light ratio (M/L) relations. We then create new mass models from HST imaging and combined with adaptive optics kinematics, we use Jeans dynamical models to constrain their BH masses. The masses of the central BHs in NGC 5102 and NGC 5206 are both below one million solar masses and are consistent with our previous estimates, ${9.12}_{-1.53}^{+1.84}\times {10}^{5}$ M ⊙ and ${6.31}_{-2.74}^{+1.06}\times {10}^{5}$ M ⊙ (3σ errors), respectively. However, for NGC 205, the improved models suggest the presence of a BH for the first time, with a best-fit mass of ${6.8}_{-6.7}^{+95.6}\times {10}^{3}$ M ⊙ (3σ errors). This is the least massive central BH mass in a galaxy detected using any method. We discuss the possible systematic errors of this measurement in detail. Using this BH mass, the existing upper limits of both X-ray, and radio emissions in the nucleus of NGC 205 suggest an accretion rate lesssim10−5 of the Eddington rate. We also discuss the color–M/L eff relations in our nuclei and find that the slopes of these vary significantly between nuclei. Nuclei with significant young stellar populations have steeper color–M/L eff relations than some previously published galaxy color–M/L eff relations.

Recovering stellar population parameters via different population models and stellar libraries

Monthly Notices of the Royal Astronomical Society Oxford University Press 485 (2019) 1675-1693

J Ge, S Mao, Y Lu, M Cappellari, R Yan

Three basic ingredients are required to generate a simple stellar population (SSP) library, i.e. an initial mass function (IMF), a stellar evolution model/isochrones, and an empirical/theoretical stellar spectral library. However, there are still some uncertainties to the determination and understanding of these ingredients. We perform the spectral fitting to test the relative parameter offsets between these uncertainties using two different stellar population models, two different empirical stellar libraries, two different isochrones, and the Salpeter and Chabrier IMFs. Based on these setups, we select five SSP libraries generated with the Galaxev/STELIB and Vazdekis/MILES models, and apply them to the pPXF full-spectrum fitting of both MaNGA and mock spectra. We find that: (1) Compared to the Galaxev/STELIB model, spectral fitting qualities with the Vazdekis/MILES model have significant improvements for those metal-rich (especially oversolar) spectra, which cause better reduced χ 2 distributions and more precisely fitted absorption lines. This might due to the lack of metal-rich stars in the empirical STELIB library, or code improvement of the Vazdekis model. (2) When applying the Vazdekis/MILES model for spectral fitting, the IMF variation will lead to not only a systematic offset in M ∗ /L r , but also offsets in age and metallicity, and these offsets increase with increasing stellar population ages. However, the IMF variation caused metallicity offsets disappear in the case of Galaxev/STELIB based libraries. (3) The Padova2000 model provides a better match to the MaNGA galaxy spectra at [M/H] L &lt; −1.0, while the BaSTI model match the local galaxy spectra better at [M/H] L &gt; −1.0. Current tests suggest that spectral fitting with the Vazdekis/MILES + BaSTI combination would be a better choice for local galaxies.

WISDOM project – IV. A molecular gas dynamical measurement of the supermassive black hole mass in NGC 524

Monthly Notices of the Royal Astronomical Society Oxford University Press 485 (2019) 4359–4374-

MD Smith, M Bureau, TA Davis, M Cappellari, L Liu, EV North, K Onishi, S Iguchi, M Sarzi

We present high angular resolution (0.3 arcsec or 37 pc) Atacama Large Millimeter/submillimeter Array observations of the CO(2–1) line emission from a central disc in the early-type galaxy NGC 524. This disc is shown to be dynamically relaxed, exhibiting ordered rotation about a compact 1.3 mm continuum source, which we identify as emission from an active supermassive black hole (SMBH). There is a hole at the centre of the disc slightly larger than the SMBH sphere of influence. An azimuthal distortion of the observed velocity field is found to be due to either a position angle warp or radial gas flow over the inner 2. 5. By forward-modelling the observations, we obtain an estimate of the SMBH mass of 4.0+3.5 −2.0 × 108 M, where the uncertainties are at the 3σ level. The uncertainties are dominated by the poorly constrained inclination and the stellar mass-to-light ratio of this galaxy, and our measurement is consistent with the established correlation between SMBH mass and stellar velocity dispersion. Our result is roughly half that of the previous stellar dynamical measurement, but is consistent within the uncertainties of both. We also present and apply a new tool for modelling complex molecular gas distributions.

The data analysis pipeline for the SDSS-IV MaNGA IFU galaxy survey: Emission-line modeling

Astronomical Journal American Astronomical Society 158 (2019) 160

F Belfiore, KB Westfall, A Schaefer, M Cappellari, E al.

SDSS-IV MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) is the largest integral-field unit (IFU) spectroscopy survey to date, aiming to observe a statistically representative sample of 10,000 low-redshift galaxies. In this paper, we study the reliability of the emission-line fluxes and kinematic properties derived by the MaNGA Data Analysis Pipeline (DAP). We describe the algorithmic choices made in the DAP with regards to measuring emission-line properties, and the effect of our adopted strategy of simultaneously fitting the continuum and line emission. The effects of random errors are quantified by studying various fit-quality metrics, idealized recovery simulations, and repeat observations. This analysis demonstrates that the emission lines are well fit in the vast majority of the MaNGA data set and the derived fluxes and errors are statistically robust. The systematic uncertainty on emission-line properties introduced by the choice of continuum templates is also discussed. In particular, we test the effect of using different stellar libraries and simple stellar-population models on the derived emission-line fluxes and the effect of introducing different tying prescriptions for the emission-line kinematics. We show that these effects can generate large (&gt;0.2 dex) discrepancies at low signal-to-noise ratio and for lines with low equivalent width (EW); however, the combined effect is noticeable even for Hα EW &gt; 6 Å. We provide suggestions for optimal use of the data provided by SDSS data release 15 and propose refinements on the DAP for future MaNGA data releases.

The Structure of Nuclear Star Clusters in Nearby Late-type Spiral Galaxies from Hubble Space Telescope Wide Field Camera 3 Imaging (vol 149, 170, 2019)

ASTRONOMICAL JOURNAL American Astronomical Society 158 (2019) ARTN 260

DJ Carson, AJ Barth, AC Seth, M den Brok, M Cappellari, JE Greene, LC Ho, N Neumayer

WISDOM project – V. Resolving molecular gas in Keplerian rotation around the supermassive black hole in NGC 0383

Monthly Notices of the Royal Astronomical Society Oxford University Press 490 (2019) 319-330

EV North, TA Davis, M Bureau, M Cappellari, S Iguchi, L Liu, K Onishi, M Sarzi, Smith, TG Williams

As part of the mm-Wave Interferometric Survey of Dark Object Masses (WISDOM), we present a measurement of the mass of the supermassive black hole (SMBH) in the nearby early-type galaxy NGC 0383 (radio source 3C 031). This measurement is based on Atacama Large Millimeter/sub-millimeter Array (ALMA) cycle 4 and 5 observations of the 12CO(2–1) emission line with a spatial resolution of 58 × 32 pc2 (0.18 arcsec × 0.1 arcsec). This resolution, combined with a channel width of 10 km s−1, allows us to well resolve the radius of the black hole sphere of influence (measured as RSOI = 316 pc  =  0.98 arcsec), where we detect a clear Keplerian increase of the rotation velocities. NGC 0383 has a kinematically relaxed, smooth nuclear molecular gas disc with weak ring/spiral features. We forward model the ALMA data cube with the Kinematic Molecular Simulation (KinMS) tool and a Bayesian Markov Chain Monte Carlo method to measure an SMBH mass of (4.2 ± 0.7) × 109 M⊙, a F160W-band stellar mass-to-light ratio that varies from 2.8 ± 0.6 M⊙/L$_{\odot ,\, \mathrm{F160W}}$ in the centre to 2.4 ± 0.3 M⊙$/\rm L_{\odot ,\, \mathrm{F160W}}$ at the outer edge of the disc and a molecular gas velocity dispersion of 8.3 ± 2.1 km s−1(all 3σ uncertainties). We also detect unresolved continuum emission across the full bandwidth, consistent with synchrotron emission from an active galactic nucleus. This work demonstrates that low-J CO emission can resolve gas very close to the SMBH ($\approx 140\, 000$ Schwarzschild radii) and hence that the molecular gas method is highly complimentary to megamaser observations, as it can probe the same emitting material.

Rejuvenated galaxies with very old bulges at the origin of the bending of the main sequence and of the ‘green valley’

Monthly Notices of the Royal Astronomical Society Oxford University Press 489 (2019) 1265-1290

C Mancini, E Daddi, S Juneau, A Renzini, G Rodighiero, M Cappellari, L Rodríguez-Muñoz, D Liu, M Pannella, I Baronchelli, A Franceschini, P Bergamini, C D’Eugenio, A Puglisi

We investigate the nature of star-forming galaxies with reduced specific star formation rate (sSFR) and high stellar masses, those ‘green valley’ objects that seemingly cause a reported bending, or flattening, of the star-forming main sequence. The fact that such objects host large bulges recently led some to suggest that the internal formation of bulges was a late event that induced the sSFRs of massive galaxies to drop in a slow downfall, and thus the main sequence to bend. We have studied in detail a sample of 10 galaxies at 0.45 &lt; z &lt; 1 with secure SFR from Herschel, deep Keck optical spectroscopy, and HST imaging from CANDELS allowing us to perform multiwavelength bulge to disc decomposition, and to derive star formation histories for the separated bulge and disc components. We find that the bulges hosted in these systems below main sequence are virtually all maximally old, with ages approaching the age of the Universe at the time of observation, while discs are young (〈 T50〉 ∼ 1.5 Gyr). We conclude that, at least based on our sample, the bending of the main sequence is, for a major part, due to rejuvenation, and we disfavour mechanisms that postulate the internal formation of bulges at late times. The very old stellar ages of our bulges suggest a number density of early-type galaxies at z = 1–3 higher than actually observed. If confirmed, this might represent one of the first direct validations of hierarchical assembly of bulges at high redshifts.

The impact of AGN on stellar kinematics and orbits in simulated massive galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 489 (2019) 2702-2722

M Frigo, T Naab, M Hirschmann, E Choi, RS Somerville, D Krajnovic, R Davé, M Cappellari

We present a series of 10 × 2 cosmological zoom simulations of the formation of massive galaxies with and without a model for active galactic nucleus (AGN) feedback. Differences in stellar population and kinematic properties are evaluated by constructing mock integral field unit maps. The impact of the AGN is weak at high redshift when all systems are mostly fast rotating and disc-like. After z ∼ 1 the AGN simulations result in lower mass, older, less metal rich, and slower rotating systems with less discy isophotes – in general agreement with observations. 2D kinematic maps of in situ and accreted stars show that these differences result from reduced in-situ star formation due to AGN feedback. A full analysis of stellar orbits indicates that galaxies simulated with AGN are typically more triaxial and have higher fractions of x-tubes and box orbits and lower fractions of z-tubes. This trend can also be explained by reduced late in-situ star formation. We introduce a global parameter, ξ3, to characterize the anticorrelation between the third-order kinematic moment h3 and the line-of-sight velocity (Vavg/σ), and compare to ATLAS3D observations. The kinematic correlation parameter ξ3 might be a useful diagnostic for large integral field surveys as it is a kinematic indicator for intrinsic shape and orbital content.

The data analysis pipeline for the SDSS-IV MaNGA IFU galaxy survey: Overview

Astronomical Journal American Astronomical Society 158 (2019) 231

KB Westfall, M Cappellari, MA Bershady

Six new supermassive black hole mass determinations from adaptive-optics assisted SINFONI observations

Astronomy and Astrophysics EDP Sciences 625 (2019) A62

S Thater, D Krajnovic, M Cappellari, TA Davis, PT De Zeeuw, RM McDermid, M Sarzi

Detecting radio-AGN signatures in red geysers

Astrophysical Journal Institute of Physics 869 (2018) 117-

N Roy, K Bundy, E Cheung, W Rujopakarn, M Cappellari, F Belfiore, R Yan, T Heckman, M Bershady, J Greene, K Westfall, N Drory, K Rubin, D Law, K Zhang, J Gelfand, D Bizyaev, K Masters, D Thomas, C Li, RA Riffel

A new class of quiescent galaxies harboring possible AGN-driven winds has been discovered using spatially resolved optical spectroscopy from the ongoing SDSS-IV MaNGA survey. These galaxies, termed “red geysers”, constitute 5 - 10% of the local quiescent population and are characterized by narrow bisymmetric patterns in ionized gas emission features. Cheung et al. argued that these galaxies host large-scale AGN-driven winds that may play a role in suppressing star formation at late times. In this work, we test the hypothesis that AGN activity is ultimately responsible for the red geyser phenomenon. We compare the nuclear radio activity of the red geysers to a matched control sample with similar stellar mass, redshift, rest frame NUV -r color, axis ratio and presence of ionized gas. We have used the 1.4 GHz radio continuum data from VLA FIRST survey to stack the radio flux from the red geyser and control samples. In addition to a 3 times higher FIRST detection rate, we find that red geysers have a 5σ higher level of average radio flux than control galaxies. After restricting to rest-frame NUV - r color &gt; 5 and checking mid-IR WISE photometry, we rule out star formation contamination and conclude that red geysers are associated with more active AGN. Red geysers and a possibly-related class with disturbed Hα emission account for 40% of all radio-detected red galaxies with log (M*/M⊙) &lt; 11. Our results support a picture in which episodic AGN activity drives large-scale-relatively weak ionized winds that may provide a feedback mechanism for many early-type galaxies.