Publications by Michele Cappellari


Investigating the merger origin of early-type galaxies using ultra-deep optical images

Proceedings of the International Astronomical Union 6 (2010) 238-241

PA Duc, JC Cuillandre, K Alatalo, L Blitz, M Bois, F Bournaud, M Bureau, M Cappellari, P Côté, RL Davies, TA Davis, PT De Zeeuw, E Emsellem, L Ferrarese, E Ferriere, S Gwyn, S Khochfar, D Krajnovic, H Kuntschner, PY Lablanche, L MacArthur, RM McDermid, L Michel-Dansac, R Morganti, T Naab, T Oosterloo, M Sarzi, N Scott, P Serra, A Weijmans, LM Young

The mass assembly of galaxies leaves various imprints on their surroundings, such as shells, streams and tidal tails. The frequency and properties of these fine structures depend on the mechanism driving the mass assembly: e.g. a monolithic collapse, rapid cold-gas accretion followed by violent disk instabilities, minor mergers or major dry/wet mergers. Therefore, by studying the outskirts of galaxies, one can learn about their main formation mechanism. I present here our on-going work to characterize the outskirts of Early-Type Galaxies (ETGs), which are powerful probes at low redshift of the hierarchical mass assembly of galaxies. This work relies on ultra-deep optical images obtained at CFHT with the wide-field of view MegaCam camera of field and cluster ETGs obtained as part of the ATLAS3D and NGVS projects. State of the art numerical simulations are used to interpret the data. The images reveal a wealth of unknown faint structures at levels as faint as 29 mag arcsec-2 in the g-band. Initial results for two galaxies are presented here. © Copyright International Astronomical Union 2011.


Molecular gas and star formation in local early-type galaxies

Proceedings of the International Astronomical Union 6 (2010) 55-58

M Bureau, TA Davis, K Alatalo, AF Crocker, L Blitz, LM Young, F Combes, M Bois, F Bournaud, M Cappellari, RL Davies, PT De Zeeuw, PA Duc, E Emsellem, S Khochfar, D Krajnović, H Kuntschner, PY Lablanche, RM McDermid, R Morganti, T Naab, T Oosterloo, M Sarzi, N Scott, P Serra, A Weijmans

The molecular gas content of local early-type galaxies is constrained and discussed in relation to their evolution. First, as part of the ATLAS 3D survey, we present the first complete, large (260 objects), volume-limited single-dish survey of CO in normal local early-type galaxies. We find a surprisingly high detection rate of 22%, independent of luminosity and at best weakly dependent on environment. Second, the extent of the molecular gas is constrained with CO synthesis imaging, and a variety of morphologies is revealed. The kinematics of the molecular gas and stars are often misaligned, implying an external gas origin in over a third of the systems, although this behaviour is drastically diffferent between field and cluster environments. Third, many objects appear to be in the process of forming regular kpc-size decoupled disks, and a star formation sequence can be sketched by piecing together multi-wavelength information on the molecular gas, current star formation, and young stars. Last, early-type galaxies do not seem to systematically obey all our usual prejudices regarding star formation, following the standard Schmidt-Kennicutt law but not the far infrared-radio correlation. This may suggest a greater diversity in star formation processes than observed in disk galaxies. Using multiple molecular tracers, we are thus starting to probe the physical conditions of the cold gas in early-types. © Copyright International Astronomical Union 2011.


The ATLAS<sup>3D</sup> project - IX. The merger origin of a fast- and a slow-rotating early-type galaxy revealed with deep optical imaging: First results

Monthly Notices of the Royal Astronomical Society 417 (2011) 863-881

PA Duc, JC Cuillandre, P Serra, L Michel-Dansac, E Ferriere, K Alatalo, L Blitz, M Bois, F Bournaud, M Bureau, M Cappellari, RL Davies, TA Davis, PT de Zeeuw, E Emsellem, S Khochfar, D Krajnović, H Kuntschner, PY Lablanche, RM McDermid, R Morganti, T Naab, T Oosterloo, M Sarzi, N Scott, AM Weijmans, LM Young

The mass assembly of galaxies leaves imprints in their outskirts, such as shells and tidal tails. The frequency and properties of such fine structures depend on the main acting mechanisms - secular evolution, minor or major mergers - and on the age of the last substantial accretion event. We use this to constrain the mass assembly history of two apparently relaxed nearby early-type galaxies (ETGs) selected from the ATLAS3D sample, NGC 680 and 5557. Our ultra-deep optical images obtained with MegaCam on the Canada-France-Hawaii Telescope reach 29 magarcsec-2 in thegband. They reveal very low surface brightness (LSB) filamentary structures around these ellipticals. Among them, a gigantic 160kpc long, narrow, tail east of NGC 5557 hosts three gas-rich star-forming objects, previously detected in Hi with the Westerbork Synthesis Radio Telescope and in UV withGALEX. NGC 680 exhibits two major diffuse plumes apparently connected to extended Hi tails, as well as a series of arcs and shells. Comparing the outer stellar and gaseous morphology of the two ellipticals with that predicted from models of colliding galaxies, we argue that the LSB features are tidal debris and that each of these two ETGs was assembled during a relatively recent, major wet merger, which most likely occurred after the redshiftz≃ 0.5 epoch. Had these mergers been older, the tidal features should have already fallen back or be destroyed by more recent accretion events. However, the absence of molecular gas and of a prominent young stellar population in the core region of the galaxies indicates that the merger is at least 1-2 Gyr old: the memory of any merger-triggered nuclear starburst has indeed been lost. The star-forming objects found towards the collisional debris of NGC 5557 are then likely tidal dwarf galaxies. Such recycled galaxies here appear to be long-lived and continue to form stars while any star formation activity has stopped in their parent galaxy. The inner kinematics of NGC 680 is typical for fast rotators which make the bulk of nearby ETGs in the ATLAS3D sample. On the other hand, NGC 5557 belongs to the poorly populated class of massive, round, slow rotators that are predicted by semi-analytic models and cosmological simulations to be the end-product of a complex mass accretion history, involving ancient major mergers and more recent minor mergers. Our observations suggest that under specific circumstances a single binary merger may dominate the formation history of such objects and thus that at least some massive ETGs may form at relatively low redshift. Whether the two galaxies studied here are representative of their own sub-class of ETGs is still an open question that will be addressed by an on-going deep optical survey of ATLAS3D galaxies. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.


THE FUNDAMENTAL PLANE OF EARLY-TYPE GALAXIES

CRAL-2010: A UNIVERSE OF DWARF GALAXIES 48 (2011) 411-+

J Falcon-Barroso, G van de Ven, R Bacon, M Bureau, M Cappellari, RL Davies, PT de Zeeuw, E Emsellem, D Krajnovic, H Kuntschner, RM McDermid, RF Peletier, M Sarzi, RCE van den Bosch


The ATLAS 3D project - VI. Simulations of binary galaxy mergers and the link with fast rotators, slow rotators and kinematically distinct cores

Monthly Notices of the Royal Astronomical Society 416 (2011) 1654-1679

M Bois, E Emsellem, F Bournaud, K Alatalo, L Blitz, M Bureau, M Cappellari, RL Davies, TA Davis, PT de Zeeuw, P-A Duc, S Khochfar, D Krajnović, H Kuntschner, P-Y Lablanche, RM McDermid, R Morganti, T Naab, T Oosterloo, M Sarzi, N Scott, P Serra, A-M Weijmans, LM Young


The Einstein Cross: Constraint on dark matter from stellar dynamics and gravitational lensing

Astrophysical Journal 719 (2010) 1481-1496

G Van De Ven, J Falcón-Barroso, RM McDermid, M Cappellari, BW Miller, PT De Zeeuw

We present two-dimensional line-of-sight stellar kinematics of the lens galaxy in the Einstein Cross, obtained with the GEMINI 8 m telescope, using the GMOS integral-field spectrograph. The stellar kinematics extend to a radius of 4″ (with 0.″2 spaxels), covering about two-thirds of the effective (or half-light) radius Re - 6″ of this early-type spiral galaxy at redshift zl ≃ 0.04, of which the bulge is lensing a background quasar at redshift zs ≃ 1.7. The velocity map shows regular rotation up to ∼100 km s-1 around the minor axis of the bulge, consistent with axisymmetry. The velocity dispersion map shows a weak gradient increasing toward a central (R < 1″) value of σ0 = 170 ± 9 km s-1. We deproject the observed surface brightness from Hubble Space Telescope imaging to obtain a realistic luminosity density of the lens galaxy, which in turn is used to build axisymmetric dynamical models that fit the observed kinematic maps. We also construct a gravitational lens model that accurately fits the positions and relative fluxes of the four quasar images. We combine these independent constraints from stellar dynamics and gravitational lensing to study the total mass distribution in the inner parts of the lens galaxy. We find that the resulting luminous and total mass distribution are nearly identical around the Einstein radius Re = 0″.89, with a slope that is close to isothermal, but which becomes shallower toward the center if indeed mass follows light. The dynamical model fits to the observed kinematic maps result in a total mass-to-light ratio γdyn = 3.7 ± 0.5 γ⊙,I (in the I band). This is consistent with the Einstein mass Me = 1.54 × 1010 M⊙ divided by the (projected) luminosity within Re, which yields a total mass-to-light ratio of γE = 3.4 γ⊙,I, with an error of at most a few percent. We estimate from stellar population model fits to colors of the lens galaxy a stellar mass-to-light ratio γ* from 2.8 to 4.1 γ⊙,I. Although a constant dark matter fraction of 20% is not excluded, dark matter may play no significant role in the bulge of this ∼L* early-type spiral galaxy. © 2010. The American Astronomical Society.


Formation of slowly rotating early-type galaxies via major mergers: a resolution study

Monthly Notices of the Royal Astronomical Society 406 (2010) 2405-2420

M Bois, F Bournaud, E Emsellem, K Alatalo, L Blitz, M Bureau, M Cappellari, RL Davies, TA Davis, PT de Zeeuw, PA Duc, S Khochfar, D Krajnović, H Kuntschner, PY Lablanche, RM McDermid, R Morganti, T Naab, T Oosterloo, M Sarzi, N Scott, P Serra, A Weijmans, LM Young

We study resolution effects in numerical simulations of gas-rich and gas-poor major mergers, and show that the formation of slowly rotating elliptical galaxies often requires a resolution that is beyond the present-day standards to be properly modelled. Our sample of equal-mass merger models encompasses various masses and spatial resolutions, ranging from about 200 pc and 105 particles per component (stars, gas and dark matter), i.e. a gas mass resolution of ∼105 M⊙, typical of some recently published major merger simulations, to up to 32 pc and ∼103 M⊙ in simulations using 2.4 × 107 collisionless particles and 1.2 × 107 gas particles, among the highest resolutions reached so far for gas-rich major merger of massive disc galaxies. We find that the formation of fast-rotating early-type galaxies, that are flattened by a significant residual rotation, is overall correctly reproduced at all such resolutions. However, the formation of slow-rotating early-type galaxies, which have a low-residual angular momentum and are supported mostly by anisotropic velocity dispersions, is strongly resolution-dependent. The evacuation of angular momentum from the main stellar body is largely missed at standard resolution, and systems that should be slow rotators are then found to be fast rotators. The effect is most important for gas-rich mergers, but is also witnessed in mergers with an absent or modest gas component (0-10 per cent in mass). The effect is robust with respect to our initial conditions and interaction orbits, and originates in the physical treatment of the relaxation process during the coalescence of the galaxies. Our findings show that a high-enough resolution is required to accurately model the global properties of merger remnants and the evolution of their angular momentum. The role of gas-rich mergers of spiral galaxies in the formation of slow-rotating ellipticals may therefore have been underestimated. Moreover, the effect of gas in a galaxy merger is not limited to helping the survival/rebuilding of rotating disc components: at high resolution, gas actively participates in the relaxation process and the formation of slowly rotating stellar systems. © 2010 The Authors. Journal compilation © 2010 RAS.


A z=1.82 ANALOG OF LOCAL ULTRA-MASSIVE ELLIPTICAL GALAXIES

ASTROPHYSICAL JOURNAL LETTERS 715 (2010) L6-L11

M Onodera, E Daddi, R Gobat, M Cappellari, N Arimoto, A Renzini, Y Yamada, HJ McCracken, C Mancini, P Capak, M Carollo, A Cimatti, M Giavalisco, O Ilbert, X Kong, S Lilly, K Motohara, K Ohta, DB Sanders, N Scoville, N Tamura, Y Taniguchi


Testing mass determinations of supermassive black holes via stellar kinematics

AIP Conference Proceedings 1240 (2010) 211-214

M Cappellari, RM McDermid, R Bacon, RL Davies, PT De Zeeuw, E Emsellem, J Falcón-Barroso, D Krajnović, H Kuntschner, RF Peletier, M Sarzi, RCE Van Den Bosch, G Van De Ven

We investigate the accuracy of mass determinations MBH of supermassive black holes in galaxies using dynamical models of the stellar kinematics. We compare 10 of our MBH measurements, using integral-field OASIS kinematics, to published values. For a sample of 25 galaxies we confront our new MBH derived using two modeling methods on the same OASIS data. © 2010 American Institute of Physics.


Measuring the Low Mass End of the M center dot - sigma Relation

HUNTING FOR THE DARK: THE HIDDEN SIDE OF GALAXY FORMATION 1240 (2010) 215-+

D Krajnovic, RM McDermid, M Cappellari, RL Davies


Nuclear star clusters &amp; black holes

AIP Conference Proceedings 1240 (2010) 227-230

A Seth, M Cappellari, N Neumayer, N Caldwell, N Bastian, K Olsen, R Blum, VP Debattista, R McDermid, T Puzia, A Stephens

We summarize the recent results of our survey of the nearest nuclear star clusters. The purpose of the survey is to understand nuclear star cluster formation mechanisms and constrain the presence of black holes using adaptive optics assisted integral field spectroscopy, optical spectroscopy, and HST imaging in 13 galaxies within 5 Mpc. We discuss the formation history of the nuclear star cluster and possible detection of an intermediate mass BH in NGC 404, the nearest S0 galaxy. © 2010 American Institute of Physics.


Structural and kinematical constraints on the formation of stellar nuclear clusters

AIP Conference Proceedings 1240 (2010) 243-244

M Hartmann, VP Debattista, A Seth, M Cappellari, T Quinn

We study the formation of stellar nuclear clusters (NC) with two types of N-body simulations: mergers of star clusters (SC) at the centre of disk galaxies and the accretion of a SC onto a previous NC. The merging of SCs produces systems consistent with observed scaling relations, they have shapes comparable with those observed and rotation consistent with that observed in the NCs of NGC 4244 and M 33. © 2010 American Institute of Physics.


Dark matter and the Tully-Fisher relations of spiral and S0 galaxies

AIP Conference Proceedings 1240 (2010) 431-432

MJ Williams, M Bureau, M Cappellari

We construct mass models of 28 S0-Sb galaxies. The models have an axisymmetric stellar component and a NFW dark halo and are constrained by observed KS-band photometry and stellar kinematics. The median dark halo virial mass is 1012.8 M⊙, and the median dark/total mass fraction is 20% within a sphere of radius r1/2, the intrinsic half-light radius, and 50% within R25. We compare the Tully-Fisher relations of the spirals and S0s in the sample and find that S0s are 0.5 mag fainter than spirals at KS-band and 0.2 dex less massive for a given rotational velocity. We use this result to rule out scenarios in which spirals are transformed into S0s by processes which truncate star formation without affecting galaxy dynamics or structure, and raise the possibility of a break in homology between spirals and S0s. © 2010 American Institute of Physics.


The SAURON project - XVII. Stellar population analysis of the absorption line strength maps of 48 early-type galaxies

Monthly Notices of the Royal Astronomical Society 408 (2010) 97-132

H Kuntschner, E Emsellem, R Bacon, M Cappellari, RL Davies, PT De Zeeuw, J Falcón-Barroso, D Krajnović, RM McDermid, RF Peletier, M Sarzi, KL Shapiro, RCE Van Den Bosch, G Van De Ven

We present a stellar population analysis of the absorption line strength maps for 48 early-type galaxies from the SAURON sample. Using the line strength index maps of Hβ, Fe5015 and Mg b, measured in the Lick/IDS system and spatially binned to a constant signal-to-noise ratio, together with predictions from up-to-date stellar population models, we estimate the simple stellar population-equivalent (SSP-equivalent) age, metallicity and abundance ratio [alpha;/Fe] over a two-dimensional field extending up to approximately one effective radius. A discussion of calibrations and differences between model predictions is given. Maps of SSP-equivalent age, metallicity and abundance ratio [alpha;/Fe] are presented for each galaxy. We find a large range of SSP-equivalent ages in our sample, of which ~40 per cent of the galaxies show signs of a contribution from a young stellar population. The most extreme cases of post-starburst galaxies, with SSP-equivalent ages of ≤3 Gyr observed over the full field-of-view, and sometimes even showing signs of residual star formation, are restricted to low-mass systems (σe≤ 100 km s-1 or ~2 × 1010 M.). Spatially restricted cases of young stellar populations in circumnuclear regions can almost exclusively be linked to the presence of star formation in a thin, dusty disc/ring, also seen in the near-UV or mid-IR on top of an older underlying stellar population.The flattened components with disc-like kinematics previously identified in all fast rotators are shown to be connected to regions of distinct stellar populations. These range from the young, still star-forming circumnuclear discs and rings with increased metallicity preferentially found in intermediate-mass fast rotators, to apparently old structures with extended disc-like kinematics, which are observed to have an increased metallicity and mildly depressed [alpha;/Fe] ratio compared to the main body of the galaxy. The slow rotators, often harbouring kinematically decoupled components (KDC) in their central regions, generally show no stellar population signatures over and above the well-known metallicity gradients in early-type galaxies and are largely consistent with old (≥10 Gyr) stellar populations.Using radially averaged stellar population gradients we find in agreement with Spolaor et al. a mass-metallicity gradient relation where low-mass fast rotators form a sequence of increasing metallicity gradient with increasing mass. For more massive systems (above ~3.5 × 1010 M.) there is an overall downturn such that metallicity gradients become shallower with increased scatter at a given mass leading to the most massive systems being slow rotators with relatively shallow metallicity gradients. The observed shallower metallicity gradients and increased scatter could be a consequence of the competition between different star formation and assembly scenarios following a general trend of diminishing gas fractions and more equal-mass mergers with increasing mass, leading to the most massive systems being devoid of ordered motion and signs of recent star formation. © 2010 The Authors. Journal compilation © 2010 RAS.


Early-type galaxies in different environments: An H-i view

Monthly Notices of the Royal Astronomical Society 409 (2010) 500-514

T Oosterloo, R Morganti, A Crocker, E Jütte, M Cappellari, T De Zeeuw, D Krajnovic, R McDermid, H Kuntschner, M Sarzi, AM Weijmans

We present an analysis of deep Westerbork Synthesis Radio Telescope observations of the neutral hydrogen in 33 nearby early-type galaxies selected from a representative sample studied earlier at optical wavelengths with the SAURON integral-field spectrograph. This is the deepest homogeneous set of H-i imaging data available for this class of objects. The sample covers both field environments and the Virgo cluster. Our analysis shows that gas accretion plays a role in the evolution of field early-type galaxies, but less so for those in clusters.The H-i properties of SAURON early-type galaxies strongly depend on environment. For detection limits of a few times 106- M-, H-i is detected in about 2/3 of the field galaxies, while <10 per cent of the Virgo objects are detected. In about half of the detections, the H-i forms a regularly rotating disc or ring. In many galaxies unsettled tails and clouds are seen. All H-i discs have counterparts of ionized gas, and inner H-i discs are also detected in molecular gas. The cold interstellar medium (ISM) in the central regions is dominated by molecular gas (). Assuming our sample is representative, we conclude that accretion of H-i is very common for field early-type galaxies, but the amount of material involved is usually small and the effects on the host galaxy are, at most, subtle. Cluster galaxies appear not to accrete H-i, or the accreted material gets removed quickly by environmental effects. The relation between H-i and stellar population is complex. The few galaxies with a significant young sub-population all have inner gas discs, but for the remaining galaxies there is no trend between stellar population and H-i properties. A number of early-type galaxies are very gas rich, but only have an old population. The stellar populations of field galaxies are typically younger than those in Virgo. This is likely related to differences in accretion history. There is no obvious overall relation between gas H-i content and global dynamical characteristics except that the fastest rotators all have an H-i disc. This confirms that if fast and slow rotators are the result of different evolution paths, this is not strongly reflected in the current H-i content. In about 50 per cent of the galaxies we detect a central radio continuum source. In many objects this emission is from a low-luminosity active galactic nucleus (AGN), and in some it is consistent with the observed star formation. Galaxies with H-i in the central regions are more likely detected in continuum. This is due to a higher probability for star formation to occur in such galaxies and not to H-i-related AGN fuelling. © 2010 The Authors. Journal compilation © 2010 RAS.


Weighing black holes using open-loop focus corrections for LGS-AO observations of galaxy nuclei at Gemini Observatory

Proceedings of SPIE - The International Society for Optical Engineering 7736 (2010)

RM McDermid, D Krajnovic, M Cappellari, C Trujillo, J Christou, RL Davies

We present observations of early-type galaxies with laser guide star adaptive optics (LGS AO) obtained at Gemini North telescope using the NIFS integral field unit (IFU). We employ an innovative technique where the focus compensation due to the changing distance to the sodium layer is made 'open loop', allowing the extended galaxy nucleus to be used only for tip-tilt correction. The purpose of these observations is to determine high spatial resolution stellar kinematics within the nuclei of these galaxies to determine the masses of the super-massive black holes. The resulting data have spatial resolution of 0.2" FWHM or better. This is sufficient to positively constrain the presence of the central black hole in even low-mass early-type galaxies, suggesting that larger samples of such objects could be observed with this technique in the future. The open-loop focus correction technique is a supported queue-observing mode at Gemini, significantly extending the sky coverage in particular for faint, extended guide sources. We also provide preliminary results from tests combining tip/tilt correction from the Gemini peripheral guider with on-axis LGS. The current test system demonstrates feasibility of this mode, providing about a factor 2-3 improvement over natural seeing. With planned upgrades to the peripheral wave-front sensor, we hope to provide close to 100% sky coverage with low Strehl corrections, or 'improved seeing', significantly increasing flux concentration for deep field and extended object studies. © 2010 SPIE.


The Tully-Fisher relations of early-type spiral and S0 galaxies

Monthly Notices of the Royal Astronomical Society 409 (2010) 1330-1346

MJ Williams, M Bureau, M Cappellari

We demonstrate that the comparison of Tully-Fisher relations (TFRs) derived from global H-i linewidths to TFRs derived from the circular-velocity profiles of dynamical models (or stellar kinematic observations corrected for asymmetric drift) is vulnerable to systematic and uncertain biases introduced by the different measures of rotation used. We therefore argue that to constrain the relative locations of the TFRs of spiral and S0 galaxies, the same tracer and measure must be used for both samples. Using detailed near-infrared imaging and the circular velocities of axisymmetric Jeans models of 14 nearby edge-on Sa-Sb spirals and 14 nearby edge-on S0s drawn from a range of environments, we find that S0s lie on a TFR with the same slope as the spirals, but are on average 0.53 ± 0.15-mag fainter at KS band at a given rotational velocity. This is a significantly smaller offset than that measured in earlier studies of the S0 TFR, which we attribute to our elimination of the bias associated with using different rotation measures and our use of earlier-type spirals as a reference. Since our measurement of the offset avoids systematic biases, it should be preferred to previous estimates. A spiral stellar population in which star formation is truncated would take ≈1-Gyr to fade by 0.53-mag at KS band. If S0s are the products of a simple truncation of star formation in spirals, then this finding is difficult to reconcile with the observed evolution of the spiral/S0 fraction with redshift. Recent star formation could explain the observed lack of fading in S0s, but the offset of the S0 TFR persists as a function of both stellar and dynamical mass. We show that the offset of the S0 TFR could therefore be explained by a systematic difference between the total mass distributions of S0s and spirals, in the sense that S0s need to be smaller or more concentrated than spirals. © 2010 The Authors. Journal compilation © 2010 RAS.


Lenticular vs spiral galaxies: dark matter content and the Tully-Fisher relation

HIGHLIGHTS OF ASTRONOMY, VOL 15 15 (2010) 82-82

M Bureau, MJ Williams, M Cappellari


The SAURON project - XVI. On the sources of ionization for the gas in elliptical and lenticular galaxies

Monthly Notices of the Royal Astronomical Society 402 (2010) 2187-2210

M Sarzi, JC Shields, K Schawinski, H Jeong, K Shapiro, R Bacon, M Bureau, M Cappellari, RL Davies, P Tim de Zeeuw, E Emsellem, J Falcón-Barroso, D Krajnović, H Kuntschner, RM McDermid, RF Peletier, RCE van den Bosch, G van de Ven, SK Yi

Following our study on the incidence, morphology and kinematics of the ionized gas in early-type galaxies, we now address the question of what is powering the observed nebular emission. To constrain the likely sources of gas excitation, we resort to a variety of ancillary data we draw from complementary information on the gas kinematics, stellar populations and galactic potential from the sauron data, and use the sauron-specific diagnostic diagram juxtaposing the [O iii]λ5007/Hβ and [N i]λλ5197, 5200/Hβ line ratios. We find a tight correlation between the stellar surface brightness and the flux of the Hβ recombination line across our sample, which points to a diffuse and old stellar source as the main contributor of ionizing photons in early-type galaxies, with post-asymptotic giant branch (pAGB) stars being still the best candidate based on ionizing balance arguments. The role of AGN photoionization is confined to the central 2-3 arcsec of an handful of objects with radio or X-ray cores. OB-stars are the dominant source of photoionization in 10 per cent of the sauron sample, whereas for another 10 per cent the intense and highly ionized emission is powered by the pAGB population associated to a recently formed stellar subcomponent. Fast shocks are not an important source of ionization for the diffuse nebular emission of early-type galaxies since the required shock velocities can hardly be attained in the potential of our sample galaxies. Finally, in the most massive and slowly or non-rotating galaxies in our sample, which can retain a massive X-ray halo, the finding of a spatial correlation between the hot and warm phases of the interstellar medium (ISM) suggests that the interaction with the hot ISM provides an additional source of ionization besides old ultraviolet-bright stars. This is also supported by a distinct pattern towards lower values of the [O iii]/Hβ ratio. These results lead us to investigate the relative role of stellar and AGN photoionization in explaining the ionized gas emission observed in early-type galaxies by the Sloan Digital Sky Survey (SDSS). By simulating how our sample galaxies would appear if placed at further distance and targeted by the SDSS, we conclude that only in very few, if any, of the SDSS galaxies which display modest values for the equivalent width of the [O iii] line (less than ∼2.4 Å) and low-ionization nuclear emission-line region like [O iii]/Hβ values the nebular emission is truly powered by an AGN. © 2010 The Authors. Journal compilation © 2010 RAS.


Measuring the low mass end of the M• - σ relation

AIP Conference Proceedings 1240 (2010) 215-218

D Krajnović, RM McDermid, M Cappellari, RL Davies

We show that high quality laser guide star (LGS) adaptive optics (AO) observations of nearby early-type galaxies are possible when the tip-tilt correction is done by guiding on nuclei while the focus compensation due to the changing distance to the sodium layer is made 'open loop'. We achieve corrections such that 40% of flux comes from R<0.2 arcsec. To measure a black hole mass (M•) one needs integral field observations of both high spatial resolution and large field of view. With these data it is possible to determine the lower limit to M• even if the spatial resolution of the observations are up to a few times larger than the sphere of influence of the black hole. © 2010 American Institute of Physics.

Pages