Publications by Katherine Blundell

The X-ray luminous cluster underlying the z = 1.04 quasar PKS1229-021

ArXiv (0)

HR Russell, AC Fabian, GB Taylor, JS Sanders, KM Blundell, CS Crawford, RM Johnstone, E Belsole

We present a 100 ks Chandra observation studying the extended X-ray emission around the powerful z=1.04 quasar PKS1229-021. The diffuse cluster X-ray emission can be traced out to ~15 arcsec (~120 kpc) radius and there is a drop in the calculated hardness ratio inside the central 5 arcsec consistent with the presence of a cool core. Radio observations of the quasar show a strong core and a bright, one-sided jet leading to the SW hot spot and a second hot spot visible on the counter-jet side. Although the wings of the quasar PSF provided a significant contribution to the total X-ray flux at all radii where the extended cluster emission was detected, we were able to accurately subtract off the PSF emission using ChaRT and marx simulations. The resulting steep cluster surface brightness profile for PKS1229-021 appears similar to the profile for the FRII radio galaxy 3C444, which has a similarly rapid surface brightness drop caused by a powerful shock surrounding the radio lobes (Croston et al.). Using a model surface brightness profile based on 3C444, we estimated the total cluster luminosity for PKS1229-021 to be L_X ~ 2 x 10^{44} erg/s. We discuss the difficulty of detecting cool core clusters, which host bright X-ray sources, in high redshift surveys.

When Microquasar Jets and Supernova Collide: Hydrodynamically Simulating the SS433-W50 Interaction

ArXiv (0)

PT Goodall, F Alouani-Bibi, KM Blundell

We present investigations of the interaction between the relativistic, precessing jets of the microquasar SS433 with the surrounding, expanding Supernova Remnant (SNR) shell W50, and the consequent evolution in the inhomogeneous Interstellar Medium (ISM). We model their evolution using the hydrodynamic FLASH code, which uses adaptive mesh refinement. We show that the peculiar morphology of the entire nebula can be reproduced to a good approximation, due to the combined effects of: (i) the evolution of the SNR shell from the free-expansion phase through the Sedov blast wave in an exponential density profile from the Milky Way disc, and (ii) the subsequent interaction of the relativistic, precessing jets of SS 433. Our simulations reveal: (1) Independent measurement of the Galaxy scale-height and density local to SS433 (as n_0 = 0.2 cm^{-3}, Z_d = 40 pc), with this scale-height being in excellent agreement with the work of Dehnen & Binney. (2) A new mechanism for hydrodynamic refocusing of conical jets. (3) The current jet precession characteristics do not simply extrapolate back to produce the lobes of W50 but a history of episodic jet activity having at least 3 different outbursts with different precession characteristics would be sufficient to produce the W50 nebula. A history of intermittent episodes of jet activity from SS433 is also suggested in a kinematic study of W50 detailed in a companion paper (Goodall et al, MNRAS submitted). (4) An estimate of the age of W50, and equivalently the age of SS433's black hole created during the supernova explosion, in the range of 17,000 - 21,000 years.

A novel method for measuring the extragalactic background light: Fermi application to the lobes of Fornax A

ArXiv (0)

M Georganopoulos, RM Sambruna, D Kazanas, AN Cillis, CC Cheung, ES Perlman, KM Blundell, DS Davis

We describe a new method for measuring the extragalactic background light (EBL) through the detection of $\gamma$-ray inverse Compton (IC) emission due to scattering of the EBL photons off relativistic electrons in the lobes of radio galaxies. Our method has no free physical parameters and is a powerful tool when the lobes are characterized by a high energy sharp break or cutoff in their electron energy distribution (EED). We show that such a feature will produce a high energy IC `imprint' of the EBL spectrum in which the radio lobes are embedded, and show how this imprint can be used to derive the EBL. We apply our method to the bright nearby radio galaxy Fornax A, for which we demonstrate, using WMAP and EGRET observations, that the EED of its lobes is characterized by a conveniently located cutoff, bringing the IC EBL emission into the {\sl Fermi} energy range. We show that {\sl Fermi} will set upper limits to the optical EBL and measure the more elusive infrared EBL.

On the redshift cut-off for steep-spectrum radio sources

ArXiv (0)

MJ Jarvis, S Rawlings, CJ Willott, KM Blundell, S Eales, M Lacy

We use three samples (3CRR, 6CE and 6C*) selected at low radio frequency to constrain the cosmic evolution in the radio luminosity function (RLF) for the `most luminous' steep-spectrum radio sources. Although intrinsically rare, such sources give the largest possible baseline in redshift for the complete flux-density-limited samples currently available. Using parametric models to describe the RLF which incorporate distributions in radio spectral shape and linear size as well as the usual luminosity and redshift, we find that the data are consistent with a constant comoving space density between z~2.5 and z~4.5. We find this model is favoured over a model with similar evolutionary behaviour to that of optically-selected quasars (i.e. a roughly Gaussian distribution in redshift) with a probability ratio of ~25:1 and ~100:1 for spatially-flat cosmologies with Omega_Lambda = 0 and Omega_Lambda = 0.7 respectively. Within the uncertainties, this evolutionary behaviour may be reconciled with the shallow decline preferred for the comoving space density of flat-spectrum sources by Dunlop & Peacock (1990) and Jarvis & Rawlings (2000), in line with the expectations of Unified Schemes.

The emission line - radio correlation for radio sources using the 7C Redshift Survey

ArXiv (0)

CJ Willott, S Rawlings, KM Blundell, M Lacy

We have used narrow emission line data from the new 7C Redshift Survey to investigate correlations between the narrow-line luminosities and the radio properties of radio galaxies and steep-spectrum quasars. The 7C Redshift Survey is a low-frequency (151 MHz) selected sample with a flux-density limit about 25-times fainter than the 3CRR sample. By combining these samples, we can for the first time distinguish whether the correlations present are controlled by 151 MHz radio luminosity L_151 or redshift z. We find unequivocal evidence that the dominant effect is a strong positive correlation between narrow line luminosity L_NLR and L_151, of the form L_NLR proportional to L_151 ^ 0.79 +/- 0.04. Correlations of L_NLR with redshift or radio properties, such as linear size or 151 MHz (rest-frame) spectral index, are either much weaker or absent. We use simple assumptions to estimate the total bulk kinetic power Q of the jets in FRII radio sources, and confirm the underlying proportionality between jet power and narrow line luminosity first discussed by Rawlings & Saunders (1991). We make the assumption that the main energy input to the narrow line region is photoionisation by the quasar accretion disc, and relate Q to the disc luminosity, Q_phot. We find that 0.05 < Q / Q_phot < 1 so that the jet power is within about an order of magnitude of the accretion disc luminosity. The most powerful radio sources are accreting at rates close to the Eddington limit of supermassive black holes (~ 10^9 - 10^10 solar masses), whilst lower power sources are accreting at sub-Eddington rates.

A radio-jet -- galaxy interaction in 3C441

ArXiv (0)

M Lacy, S Rawlings, KM Blundell, SE Ridgway

Multi-wavelength imaging and spectroscopy of the z=0.708 radio galaxy 3C441 and a red aligned optical/infrared component are used to show that the most striking aspect of the radio-optical ``alignment effect'' in this object is due to the interaction of the radio jet with a companion galaxy in the same group or cluster. The stellar population of the red aligned continuum component is predominately old, but with a small post-starburst population superposed, and it is surrounded by a low surface-brightness halo, possibly a face-on spiral disc. The [OIII]500.7/[OII]372.7 emission line ratio changes dramatically from one side of the component to the other, with the low-ionisation material apparently having passed through the bow shock of the radio source and been compressed. A simple model for the interaction is used to explain the velocity shifts in the emission line gas, and to predict that the ISM of the interacting galaxy is likely to escape once the radio source bow shock has passed though. We also discuss another, much fainter, aligned component, and the sub-arcsecond scale alignment of the radio source host galaxy. Finally we comment on the implications of our explanation of 3C441 for theories of the alignment effect.