Publications by Katherine Blundell

Detecting edges in the X-ray surface brightness of galaxy clusters

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP): Policy P - Oxford Open Option A (0)

JS Sanders, AC Fabian, HR Russell, SA Walker, KM Blundell

The effects of many physical processes in the intracluster medium of galaxy clusters imprint themselves in X-ray surface brightness images. It is therefore important to choose optimal methods for extracting information from and enhancing the interpretability of such images. We describe in detail a gradient filtering edge detection method that we previously applied to images of the Centaurus cluster of galaxies. The Gaussian gradient filter measures the gradient in the surface brightness distribution on particular spatial scales. We apply this filter on different scales to Chandra X-ray observatory images of two clusters with AGN feedback, the Perseus cluster and M87, and a merging system, A3667. By combining filtered images on different scales using radial filters spectacular images of the edges in a cluster are produced. We describe how to assess the significance of features in filtered images. We find the gradient filtering technique to have significant advantages for detecting many kinds of features compared to other analysis techniques, such as unsharp-masking. Filtering cluster images in this way in a hard energy band allows shocks to be detected.

Inverse Compton X-ray halos around high-z radio galaxies: A feedback mechanism powered by far-infrared starbursts or the CMB?

ArXiv (0)

I Smail, KM Blundell, BD Lehmer, DM Alexander

We report the detection of extended X-ray emission around two powerful high-z radio galaxies (HzRGs) at z~3.6 (4C03.24 & 4C19.71) and use these to investigate the origin of extended, Inverse Compton (IC) powered X-ray halos at high z. The halos have X-ray luminosities of Lx~3e44 erg/s and sizes of ~60kpc. Their morphologies are broadly similar to the ~60-kpc long radio lobes around these galaxies suggesting they are formed from IC scattering by relativistic electrons in the radio lobes, of either CMB or FIR photons from the dust-obscured starbursts in these galaxies. These observations double the number of z>3 HzRGs with X-ray detected IC halos. We compare the IC X-ray to radio luminosity ratios for these new detections to the two previously detected z~3.8 HzRGs. Given the similar redshifts, we would expect comparable X-ray IC luminosities if CMB mm photons are the seed field for the IC emission. Instead the two z~3.6 HzRGs, which are ~4x fainter in the FIR, also have ~4x fainter X-ray IC emission. Including a further six z>2 radio sources with IC X-ray halos from the literature, we suggest that in the more compact (lobe sizes <100-200kpc), majority of radio sources, the bulk of the IC emission may be driven by scattering of locally produced FIR photons from luminous, dust-obscured starbursts within these galaxies, rather than CMB photons. The resulting X-ray emission can ionise the gas on ~100-200-kpc scales around these systems and thus form their extended Ly-alpha emission line halos. The starburst and AGN activity in these galaxies are thus combining to produce an effective and wide-spread "feedback" process, acting on the long-term gas reservoir for the galaxy. If episodic radio activity and co-eval starbursts are common in massive, high-z galaxies, then this IC-feedback mechanism may affect the star-formation histories of massive galaxies. [Abridged]

The non-thermal emission of extended radio galaxy lobes with curved electron spectra

ArXiv (0)

P Duffy, KM Blundell

The existing theoretical framework for the energies stored in the synchrotron-emitting lobes of radio galaxies and quasars doesn't properly account for the curved spectral shape that many of them exhibit. We characterise these spectra using parameters that are straightforwardly observable in the era of high-resolution, low-frequency radio astronomy: the spectral curvature and the turnover in the frequency spectrum. This characterisation gives the Lorentz factor at the turnover in the energy distribution (we point out that this is distinctly different from the Lorentz factor corresponding to the turnover frequency in a way that depends on the amount of curvature in the spectrum) and readily gives the equipartition magnetic field strength and the total energy of the radiating plasma obviating the need for any assumed values of the cutoff frequencies to calculate these important physical quantities. This framework readily yields the form of the X-ray emission due to inverse-Compton (IC) scattering of Cosmic Microwave Background (CMB) photons by the electrons in the plasma having Lorentz factors of $\sim$1000. We also present the contribution to CMB anisotropies due to relativistic plasmas such as giant radio galaxy lobes, expressed in terms of the extent to which the lobes have their magnetic field and particle energies are in equipartition with one another.

Jet propulsion of wind ejecta from a major flare in the black hole microquasar SS433

ArXiv (0)

K Blundell, P Hirst

We present direct evidence, from Adaptive-Optics near-infra-red imaging, of the jets in the Galactic microquasar SS433 interacting with enhanced wind-outflow off the accretion disc that surrounds the black hole in this system. Radiant quantities of gas are transported significant distances away from the black hole approximately perpendicular to the accretion disc from which the wind emanates. We suggest that the material that comprised the resulting "bow-tie" structure is associated with a major flare that the system exhibited ten months prior to the observations. During this flare, excess matter was expelled by the accretion disc as an enhanced wind, which in turn is "snow-ploughed", or propelled, out by the much faster jets that move at approximately a quarter of the speed of light. Successive instances of such bow-ties may be responsible for the large-scale X-ray cones observed across the W50 nebula by ROSAT.

Probing the history of SS433's jet kinematics via Decade-resolution radio observations of W50

ArXiv (0)

PT Goodall, KM Blundell, SJB Burnell

We present the results of a kinematical study of the W50 nebula using high resolution radio observations from the Very Large Array (VLA) spanning a 12-year period, sampled in 1984, 1993 and 1996. We conduct a careful analysis of the proper motions of the radio filaments across the W50 nebula at each epoch, and detect no significant motion for them during this period. The apparent lack of movement in the radio filaments mandates either (i) a high degree of deceleration of SS433's jet ejecta in the W50 nebula, or (ii) that the lobes of W50 formed a long time ago in SS433's history, during a jet outburst with appreciably different characteristics to the well-known precessing jet state observed in SS433 at the present day. We discuss the possible scenarios which could explain this result, with relevance to the nature of SS433's current jet activity.

SS433's circumbinary ring and accretion disc viewed through its attenuating disc wind

ArXiv (0)

S Perez, KM Blundell

We present optical spectroscopy of the microquasar SS433 covering a significant fraction of a precessional cycle of its jet axis. The components of the prominent stationary H-alpha and H-beta lines are mainly identified as arising from three emitting regions: (i) a super-Eddington accretion disc wind, in the form of a broad component accounting for most of the mass loss from the system, (ii) a circumbinary disc of material that we presume is being excreted through the binary's L2 point, and (iii) the accretion disc itself as two remarkably persistent components. The accretion disc components move with a Keplerian velocity of ~600 km/s in the outer region of the disc. A direct result of this decomposition is the determination of the accretion disc size, whose outer radius attains ~8 R_sun in the case of Keplerian orbits around a black hole mass of 10 M_sun. We determine an upper limit for the accretion disc inner to outer radius ratio in SS433, R_in/R_out ~ 0.2, independent of the mass of the compact object. The Balmer decrements, H-alpha/H-beta, are extracted from the appropriate stationary emission lines for each component of the system. The physical parameters of the gaseous components are derived. The circumbinary ring decrement seems to be quite constant throughout precessional phase, implying a constant electron density of log N_e(cm^-3) ~ 11.5 for the circumbinary disc. The accretion disc wind shows a larger change in its decrements exhibiting a clear dependence on precessional phase, implying a sinusoid variation in its electron density log N_e(cm^-3) along our line-of-sight between 10 and 13. This dependence of density on direction suggests that the accretion disc wind is polloidal in nature.

Inflow and outflow from the accretion disc of the microquasar SS433: UKIRT spectroscopy

ArXiv (0)

S Perez, KM Blundell

A succession of near-IR spectroscopic observations, taken nightly throughout an entire cycle of SS433's orbit, reveal (i) the persistent signature of SS433's accretion disc, having a rotation speed of ~500 km/s, (ii) the presence of the circumbinary disc recently discovered at optical wavelengths by Blundell, Bowler and Schmidtobreick (2008) and (iii) a much faster outflow than has previously been measured for the disc wind. From these, we find a much faster accretion disc wind than has noted before, with a terminal velocity of ~1500 km/s. The increased wind terminal velocity results in a mass-loss rate of ~10e-4 M_sun/yr. These, together with the newly (upwardly) determined masses for the components of the SS433 system, result in an accurate diagnosis of the extent to which SS433 has super-Eddington flows. Our observations imply that the size of the companion star is comparable with the semi-minor axis of the orbit which is given by (1-e^2)^(1/2) 40 R_sun, where e is the eccentricity. Our relatively high spectral resolution at these near-IR wavelengths has enabled us to deconstruct the different components that comprise the Brackett-gamma line in this binary system, and their physical origins. With this line dominated throughout our series of observations by the disc wind, and the accretion disc itself being only a minority (~15 per cent) contribution, we caution against use of the unresolved Brackett-gamma line intensity as an "accretion signature" in X-ray binaries or microquasars in any quantitative way.

Multiwavelength study of Cygnus A II. X-ray inverse-Compton emission from a relic counterjet and implications for jet duty-cycles

ArXiv (0)

KC Steenbrugge, KM Blundell, P Duffy

The duty-cycle of powerful radio galaxies and quasars such as the prototype Cygnus A is poorly understood. X-ray observations of inverse-Compton scattered Cosmic Microwave Background (ICCMB) photons probe lower Lorentz-factor particles than radio observations of synchrotron emission. Comparative studies of the nearer and further lobes, separated by many 10s of kpc and thus 10s of thousands of years in light-travel time, yield additional temporal resolution in studies of the lifecycles. We have co-added all archival Chandra ACIS-I data and present a deep 200 ks image of Cygnus A. This deep image reveals the presence of X-ray emission from a counterjet i.e. a jet receding from Earth and related to a previous episode of jet activity. The non-thermal X-ray emission, we interpret as ICCMB radiation. There is an absence of any discernible X-ray emission associated with a jet flowing towards Earth. We conclude that: (1) The emission from a relic jet, indicates a previous episode of jet activity, that took place earlier than the current jet activity appearing as synchrotron radio emission. (2) The presence of X-ray emission from a relic counterjet of Cygnus A and the absence of X-ray emission associated with any relic approaching jet constrains the timescale between successive episodes of jet activity to ~10^6 years. (3) Transverse expansion of the jet causes expansion losses which shifts the energy distribution to lower energies. (4) Assuming the electrons cooled due to adiabatic expansion, the required magnetic field strength is substantially smaller than the equipartition magnetic field strength. (5) A high minimum Lorentz factor for the distribution of relativistic particles in the current jet, of a few 10^3, is ejected from the central nucleus of this active galaxy. Abridged.

The Distance to SS433/W50 and its Interaction with the ISM

ArXiv (0)

FJ Lockman, KM Blundell, WM Goss

[ABRIDGED] The distance to the relativistic jet source SS433 and the related supernova remnant W50 is re-examined using new observations of HI in absorption from the VLA, HI in emission from the GBT, and 12CO emission from the FCRAO. The new measurements show HI in absorption against SS433 to a velocity of 75 km/s but not to the velocity of the tangent point, which bounds the kinematic distance at 5.5 < d_k < 6.5 kpc. This is entirely consistent with a 5.5 +/- 0.2 kpc distance determined from light travel-time arguments (Blundell & Bowler 2004). The HI emission map shows evidence of interaction of the lobes of W50 with the interstellar medium near the adopted systemic velocity of V_LSR = 75 km/s. The western lobe sits in a cavity in the HI emission near the Galactic plane, while the eastern lobe terminates at an expanding HI shell. The expanding shell has a radius of 40 pc, contains 8 +/- 3 x 10^3 M_sun of HI and has a measured kinetic energy of 3 +/- 1.5 x 10^{49} ergs. There may also be a static HI ring or shell around the main part of W50 itself at an LSR velocity of 75 km/s, with a radius of 70 pc and a mass in HI of 3.5 - 10 x 10^4 M_sun. We do not find convincing evidence for the interaction of the system with any molecular cloud or with HI at other velocities. The HI emission data suggest that SS433 lies in an interstellar environment substantially denser than average for its distance from the Galactic plane. This Population I system, now about 200 pc below the Galactic plane, most likely originated as a runaway O-star binary ejected from a young cluster in the plane. New astrometric data on SS433 show that the system now has a peculiar velocity of a few tens of km/s in the direction of the Galactic plane. From this peculiar velocity and the symmetry of the W50 remnant we derive a time since the SN of < 10^5 yr.

The prevalence of FRI radio quasars

ArXiv (0)

I Heywood, KM Blundell, S Rawlings

We present deep, multi-VLA-configuration radio images for a set of 18 quasars, having redshifts between 0.36 and 2.5, from the 7C quasar survey. Approximately one quarter of these quasars have FRI-type twin-jet structures and the remainder are a broad range of wide angle tail, fat double, classical double, core-jet and hybrid sources. These images demonstrate that FRI quasars are prevalent in the universe, rather than non-existent as had been suggested in the literature prior to the serendipitous discovery of the first FRI quasar a few years ago, the optically powerful "radio quiet" quasar E1821+643. Some of the FRI quasars have radio luminosities exceeding the traditional FRI / FRII break luminosity, however we find no evidence for FRII quasars with luminosities significantly below the break. We consider whether the existence of such high luminosity FRI structures is due to the increasingly inhomogeneous environments in the higher redshift universe.

AGN effect on cooling flow dynamics

ArXiv (0)

FA Bibi, J Binney, K Blundell, H Omma

We analyzed the feedback of AGN jets on cooling flow clusters using three-dimensional AMR hydrodynamic simulations. We studied the interaction of the jet with the intracluster medium and creation of low X-ray emission cavities (Bubbles) in cluster plasma. The distribution of energy input by the jet into the system was quantified in its different forms, i.e. internal, kinetic and potential. We find that the energy associated with the bubbles, (pV + gamma pV/(gamma-1)), accounts for less than 10 percent of the jet energy.

The luminous X-ray hotspot in 4C 74.26: synchrotron or inverse-Compton emission?

ArXiv (0)

MC Erlund, AC Fabian, KM Blundell, C Moss, DR Ballantyne

We report the discovery of an X-ray counterpart to the southern radio hotspot of the largest-known radio quasar 4C 74.26 (whose redshift is z=0.104). Both XMM-Newton and Chandra images reveal the same significant (10arcsec, i.e. 19kpc) offset between the X-ray hotspot and the radio hotspot imaged with MERLIN. The peak of the X-ray emission may be due to synchrotron or inverse-Compton emission. If synchrotron emission, the hotspot represents the site of particle acceleration and the offset arises from either the jet exhibiting Scheuer's `dentist's drill' effect or a fast spine having less momentum than the sheath surrounding it, which creates the radio hotspot. If the emission arises from the inverse-Compton process, it must be inverse-Compton scattering of the CMB in a decelerating relativistic flow, implying that the jet is relativistic (Gamma >= 2) out to a distance of at least 800kpc. Our analysis, including optical data from the Liverpool Telescope, rules out a background AGN for the X-ray emission and confirms its nature as a hotspot, making it the most X-ray luminous hotspot yet detected.

Extended inverse-Compton emission from distant, powerful radio galaxies

ArXiv (0)

MC Erlund, AC Fabian, KM Blundell, A Celotti, CS Crawford

We present Chandra observations of two relatively high redshift FRII radio galaxies, 3C 432 and 3C 191 (z=1.785 and z=1.956 respectively), both of which show extended X-ray emission along the axis of the radio jet or lobe. This X-ray emission is most likely to be due to inverse-Compton scattering of Cosmic Microwave Background (CMB) photons. Under this assumption we estimate the minimum energy contained in the particles responsible. This can be extrapolated to determine a rough estimate of the total energy. We also present new, deep radio observations of 3C 294, which confirm some association between radio and X-ray emission along the NE-SW radio axis and also that radio emission is not detected over the rest of the extent of the diffuse X-ray emission. This, together with the offset between the peaks of the X-ray and radio emissions may indicate that the jet axis in this source is precessing.

Rapid variability of the arcsec-scale X-ray jets of SS 433

ArXiv (0)

S Migliari, RP Fender, KM Blundell, M Mendez, MVD Klis

We present the X-ray images of all the available Chandra observations of the galactic jet source SS 433. We have studied the morphology of the X-ray images and inspected the evolution of the arcsec X-ray jets, recently found to be manifestations of in situ reheating of the relativistic gas downstream in the jets. The Chandra images reveal that the arcsec X-ray jets are not steady long term structures; the structure varies, indicating that the reheating processes have no preference for a particular precession phase or distance from the binary core. Three observations made within about five days in May 2001, and a 60 ks observation made in July 2003 show that the variability of the jets can be very rapid, from timescales of days to (possibly) hours. The three May 2001 images show two resolved knots in the east jet getting brighter one after the other, suggesting that a common phenomenon might be at the origin of the sequential reheatings of the knots. We discuss possible scenarios and propose a model to interpret these brightenings in terms of a propagating shock wave, revealing a second, faster outflow in the jet.

Exploring the Nature of Weak Chandra Sources near the Galactic Centre

ArXiv (0)

RM Bandyopadhyay, JCA Miller-Jones, KM Blundell, FE Bauer, P Podsiadlowski, QD Wang, S Rappaport, E Pfahl

We present results from the first near-IR imaging of the weak X-ray sources discovered in the Chandra/ACIS-I survey (Wang et al. 2002) towards the Galactic Centre (GC). These ~800 discrete sources, which contribute significantly to the GC X-ray emission, represent an important and previously unknown population within the Galaxy. From our VLT observations we will identify likely IR counterparts to a sample of the hardest sources, which are most likely X-ray binaries. With these data we can place constraints on the nature of the discrete weak X-ray source population of the GC.

3C radio sources as they've never been seen before

ArXiv (0)

K Blundell, N Kassim, R Perley

Low-radio-frequency observations played a remarkable role in the early days of radio astronomy; however, in the subsequent three or four decades their usefulness has largely been in terms of the finding-frequency of surveys. Recent technical innovation at the VLA has meant that spatially well-resolved imaging at low frequencies is now possible. Such imaging is essential to understanding the relationship between the hotspot and lobe emission in classical double radio sources, for example. We here present new images of 3C radio sources at 74 MHz and 330 MHz and discuss their implications.

A sample of 6C radio sources designed to find objects at redshift > 4: III --- imaging and the radio galaxy K-z relation

ArXiv (0)

MJ Jarvis, S Rawlings, S Eales, KM Blundell, AJ Bunker, S Croft, RJ McLure, CJ Willott

In this paper, the third and final of a series, we present complete K-band imaging and some complementary I-band imaging of the filtered 6C* sample. We find no systematic differences between the K-z relation of 6C* radio galaxies and those from complete samples, so the near-infrared properties of luminous radio galaxies are not obviously biased by the additional 6C* radio selection criteria (steep spectral index and small angular size). The 6C* K-z data significantly improve delineation of the K-z relation for radio galaxies at high-redshift (z >2). Accounting for non-stellar contamination, and for correlations between radio luminosity and stellar mass, we find little support for previous claims that the underlying scatter in the stellar luminosity of radio galaxies increases significantly at z >2. In a particular spatially-flat universe with a cosmological constant, the most luminous radio sources appear to be associated with galaxies with a luminosity distribution with a high mean (~5 Lstar), and a low dispersion (sigma ~ 0.5 mag) which formed their stars at epochs corresponding to z >~2.5. This result is in line with recent sub-mm studies of high-redshift radio galaxies and the inferred ages of extremely red objects from faint radio samples.

A High Resolution Radio Survey of Class I Protostars

ArXiv (0)

PW Lucas, KM Blundell, PF Roche

We report the results of a survey of low mass Class I protostars in the cm continuum. In the initial survey, seven sources in the Taurus star formation were observed with the VLA at 0``.25 resolution. All seven sources drive CO outflows and display Herbig-Haro flows in the optical or near infrared wavebands. 4/7 sources were detected, two of which are new discoveries in systems of very low luminosity, one being the lowest luminosity system detected to date in the cm continuum. Notably, three sources were not detected to a 3-sigma limit of 0.10 mJy/beam, which indicates that significant cm continuum emission is not a universal feature of Class I systems with outflow activity. Subsequent observations of HH30, a more evolved Class II system, found no emission to a 3-sigma limit of 0.03 mJy/beam. After comparison with near infrared data, we suggest that the discriminating feature of the detected systems is a relatively high ionisation fraction in the stellar wind. Temporal variability of the outflow may also play a role. The one relatively bright source, IRAS 04016+2610 (L1489 IRS), is clearly resolved on a 0``.4 scale at 2 cm and 3.5 cm. Follow-up imaging with MERLIN did not detect this source with a 0``.04 beam, indicating that the radio emission is generated in a region with a radius of about 25 au, which is broadly similar to the radius of the bipolar cavities inferred from models of near infrared data. Interpretation of this system is complicated by the existence of a quadrupolar outflow, which we originally detected through polarimetric imaging. We present a near infrared H2 image in which a bow shock in the secondary outflow is clearly seen. This complicated structure may have been caused by a gravitational interaction between two protostars.

The inevitable youthfulness of known high-redshift radio galaxies

ArXiv (0)

KM Blundell, S Rawlings

Radio galaxies can be seen out to very high redshifts, where in principle they can serve as probes of the early evolution of the Universe. Here we show that for any model of radio-galaxy evolution in which the luminosity decreases with time after an initial rapid increase (that is, essentially all reasonable models), all observable high-redshift radio-galaxies must be seen when the lobes are less than 10^7 years old. This means that high-redshift radio galaxies can be used as a high-time-resolution probe of evolution in the early Universe. Moreover, this result helps to explain many observed trends of radio-galaxy properties with redshift [(i) the `alignment effect' of optical emission along radio-jet axes, (ii) the increased distortion in radio structure, (iii) the decrease in physical sizes, (iv) the increase in radio depolarisation, and (v) the increase in dust emission] without needing to invoke explanations based on cosmology or strong evolution of the surrounding intergalactic medium with cosmic time, thereby avoiding conflict with current theories of structure formation.

The central engines of radio-quiet quasars

ArXiv (0)

KM Blundell, AJ Beasley

Two rival hypotheses have been proposed for the origin of the compact radio flux observed in radio-quiet quasars (RQQs). It has been suggested that the radio emission in these objects, typically some two or three orders of magnitude less powerful than in radio-loud quasars (RLQs), represents either emission from a circumnuclear starburst or is produced by radio jets with bulk kinetic powers 10^3 times lower than those of RLQs with similar luminosity ratios in other wavebands. We describe the results of high resolution (parsec-scale) radio-imaging observations of a sample of 12 RQQs using the Very Long Baseline Array (VLBA). We find strong evidence for jet-producing central engines in 8 members of our sample.