Publications by Katherine Blundell

X-ray emission around the z=4.1 radio galaxy TNJ1338-1942 and the potential role of far-infrared photons in AGN Feedback

ArXiv (0)

I Smail, K Blundell

We report the discovery in an 80-ks observation of spatially-extended X-ray emission around the high-redshift radio galaxy TNJ1388-1942 (z=4.11) with the Chandra X-ray Observatory. The X-ray emission extends over a ~30-kpc diameter region and although it is less extended than the GHz-radio lobes, it is roughly aligned with them. We suggest that the X-ray emission arises from Inverse Compton (IC) scattering of photons by relativistic electrons around the radio galaxy. At z=4.11 this is the highest redshift detection of IC emission around a radio galaxy. We investigate the hypothesis that in this compact source, the Cosmic Microwave Background (CMB), which is ~700x more intense than at z~0 is nonetheless not the relevant seed photon field for the bulk of the IC emission. Instead, we find a tentative correlation between the IC emission and far-infrared luminosities of compact, far-infrared luminous high-redshift radio galaxies (those with lobe lengths of <100kpc). Based on these results we suggest that in the earliest phases of the evolution of radio-loud AGN at very high redshift, the far-infrared photons from the co-eval dusty starbursts occuring within these systems may make a significant contribution to their IC X-ray emission and so contribute to the feedback in these massive high-redshift galaxies.

Jet propulsion of wind ejecta from a major flare in the black hole microquasar SS433

ArXiv (0)

K Blundell, P Hirst

We present direct evidence, from Adaptive-Optics near-infra-red imaging, of the jets in the Galactic microquasar SS433 interacting with enhanced wind-outflow off the accretion disc that surrounds the black hole in this system. Radiant quantities of gas are transported significant distances away from the black hole approximately perpendicular to the accretion disc from which the wind emanates. We suggest that the material that comprised the resulting "bow-tie" structure is associated with a major flare that the system exhibited ten months prior to the observations. During this flare, excess matter was expelled by the accretion disc as an enhanced wind, which in turn is "snow-ploughed", or propelled, out by the much faster jets that move at approximately a quarter of the speed of light. Successive instances of such bow-ties may be responsible for the large-scale X-ray cones observed across the W50 nebula by ROSAT.

The inverse-Compton ghost HDF 130 and the giant radio galaxy 6C 0905+3955: matching an analytic model for double radio source evolution

ArXiv (0)

P Mocz, AC Fabian, KM Blundell, PT Goodall, SC Chapman, DJ Saikia

We present new GMRT observations of HDF 130, an inverse-Compton (IC) ghost of a giant radio source that is no longer being powered by jets. We compare the properties of HDF 130 with the new and important constraint of the upper limit of the radio flux density at 240 MHz to an analytic model. We learn what values of physical parameters in the model for the dynamics and evolution of the radio luminosity and X-ray luminosity (due to IC scattering of the cosmic microwave background (CMB)) of a Fanaroff-Riley II (FR II) source are able to describe a source with features (lobe length, axial ratio, X-ray luminosity, photon index and upper limit of radio luminosity) similar to the observations. HDF 130 is found to agree with the interpretation that it is an IC ghost of a powerful double-lobed radio source, and we are observing it at least a few Myr after jet activity (which lasted 5--100 Myr) has ceased. The minimum Lorentz factor of injected particles into the lobes from the hotspot is preferred to be $\gamma\sim10^3$ for the model to describe the observed quantities well, assuming that the magnetic energy density, electron energy density, and lobe pressure at time of injection into the lobe are linked by constant factors according to a minimum energy argument, so that the minimum Lorentz factor is constrained by the lobe pressure. We also apply the model to match the features of 6C 0905+3955, a classical double FR II galaxy thought to have a low-energy cutoff of $\gamma\sim10^4$ in the hotspot due to a lack of hotspot inverse-Compton X-ray emission. The models suggest that the low-energy cutoff in the hotspots of 6C 0905+3955 is $\gamma\gtrsim 10^3$, just slightly above the particles required for X-ray emission.

A doubled double hotspot in J0816+5003 and the logarithmic slope of the lensing potential

ArXiv (0)

K Blundell, P Schechter, N Morgan, M Jarvis, S Rawlings, J Tonry

We present an analysis of observations of the doubly-lensed double hotspot in the giant radio galaxy J0816+5003 from MERLIN, MDM, WIYN, WHT, UKIRT and the VLA. The images of the two hotspot components span a factor of two in radius on one side of the lensing galaxy at impact parameters of less than 500pc. Hence we measure the slope of the lensing potential over a large range in radius, made possible by significant improvement in the accuracy of registration of the radio and optical frame and higher resolution imaging data than previously available. We also infer the lens and source redshifts to be 0.332 and > 1 respectively. Purely on the basis of lens modelling, and independently of stellar velocity dispersion measurements, we find the potential to be very close to isothermal.

Multiwavelength study of Cygnus A III. Evidence for relic lobe plasma

ArXiv (0)

KC Steenbrugge, I Heywood, KM Blundell

We study the particle energy distribution in the cocoon surrounding Cygnus A, using radio images between 151 MHz and 15 GHz and a 200 ks Chandra ACIS-I image. We show that the excess low frequency emission in the the lobe further from Earth cannot be explained by absorption or excess adiabatic expansion of the lobe or a combination of both. We show that this excess emission is consistent with emission from a relic counterlobe and a relic counterjet that are being re-energized by compression from the current lobe. We detect hints of a relic hotspot at the end of the relic X-ray jet in the more distant lobe. We do not detect relic emission in the lobe nearer to Earth as expected from light travel-time effects assuming intrinsic symmetry. We determine that the duration of the previous jet activity phase was slightly less than that of the current jet-active phase. Further, we explain some features observed at 5 and 15 GHz as due to the presence of a relic jet.

The extended X-ray emission around HDF130 at z=1.99: an inverse Compton ghost of a giant radio source in the Chandra Deep Field North

ArXiv (0)

AC Fabian, S Chapman, CM Casey, F Bauer, KM Blundell

One of the six extended X-ray sources found in the Chandra DeepField North is centred on HDF130, which has recently been shown to be a massive galaxy at z=1.99 with a compact radio nucleus. The X-ray source has a roughly double-lobed structure with each lobe about 41 arcsec long, or 345 kpc at the redshift of HDF130. We have analyzed the 2 Ms X-ray image and spectrum of the source and find that it is well fit by a power-law continuum of photon index 2.65 and has a 2--10 keV luminosity of 5.4x10^{43}ergps (if at z=1.99). Any further extended emission within a radius of 60 arcsec has a luminosity less than half this value, which is contrary to what is expected from a cluster of galaxies. The source is best explained as an inverse Compton ghost of a giant radio source, which is no longer being powered, and for which Compton losses have downgraded the energetic electrons, \gamma> 10^4, required for high-frequency radio emission. The lower energy electrons, \gamma~1000, produce X-rays by inverse Compton scattering on the Cosmic Microwave Background. Depending on the magnetic field strength, some low frequency radio emission may remain. Further inverse Compton ghosts may exist in the Chandra deep fields.

The precession of SS433's radio ruff on long timescales

ArXiv (0)

S Doolin, KM Blundell

Roughly perpendicular to SS433's famous precessing jets is an outflowing "ruff" of radio-emitting plasma, revealed by direct imaging on milli-arcsecond scales. Over the last decade, images of the ruff reveal that its orientation changes over time with respect to a fixed sky co-ordinate grid. For example, during two months of daily observations with the VLBA by Mioduszewski et al. (2004), a steady rotation through ~10 degrees is observed whilst the jet angle changes by ~20 degrees. The ruff reorientation is not coupled with the well-known precession of SS433's radio jets, as the ruff orientation varies across a range of 69 degrees whilst the jet angle varies across 40 degrees, and on greatly differing and non-commensurate timescales. It has been proposed that the ruff is fed by SS433's circumbinary disk, discovered by a sequence of optical spectroscopy by Blundell et al. (2008), and so we present the results of 3D numerical simulations of circumbinary orbits. These simulations show precession in the longitude of the ascending node of all inclined circumbinary orbits - an effect which would be manifested as the observed ruff reorientation. Matching the rate of ruff precession is possible if circumbinary components are sufficiently close to the binary system, but only if the binary mass fraction is close to equality and the binary eccentricity is non-zero.

The complex, variable near infrared extinction towards the Nuclear Bulge

ArXiv (0)

AJ Gosling, RM Bandyopadhyay, KM Blundell

Using deep J, H and Ks-band observations, we have studied the near-infrared (nIR) extinction of the Nuclear Bulge (NB) and we find significant, complex variations on small physical scales. We have applied a new variable nIR colour excess method, V-NICE, to measure the extinction; this method allows for variation in both the extinction law parameter alpha and the degree of absolute extinction on very small physical scales. We see significant variation in both these parameters on scales of 5 arcsec. In our observed fields, representing a random sample of sight lines to the NB, we measure alpha to be 2.64 +- 0.52, compared to the canonical "universal" value of 2. Our measured levels of A_Ks are similar to previously measured results (1 < A_Ks < 4.5); however, the steeper extinction law results in higher values for A_J (4.5 < A_J < 10) and A_H (1.5 < A_H < 6.5). Only when the extinction law is allowed to vary on the smallest scales can we recover self-consistent measures of the absolute extinction at each wavelength, allowing accurate reddening corrections for field star photometry in the NB. The steeper extinction law slope also suggests that previous conversions of nIR extinction to A_V may need to be reconsidered. Finally, we find that the measured values of extinction are significantly dependent on the filter transmission functions of the instrument used to obtain the data. This effect must be taken into account when combining or comparing data from different instruments.

On the origin of radio core emission in radio-quiet quasars

ArXiv (0)

K Blundell, Z Kuncic

We present a model for the radio emission from radio-quiet quasar nuclei. We show that a thermal origin for the high brightness temperature, flat spectrum point sources (known as radio ``cores'') is possible provided the emitting region is hot and optically-thin. We hence demonstrate that optically-thin bremsstrahlung from a slow, dense disk wind can make a significant contribution to the observed levels of radio core emission. This is a much more satisfactory explanation, particularly for sources where there is no evidence of a jet, than a sequence of self-absorbed synchrotron components which collectively conspire to give a flat spectrum. Furthermore, such core phenomena are already observed directly via milli-arcsecond radio imaging of the Galactic microquasar SS433 and the active galaxy NGC1068. We contend that radio-emitting disk winds must be operating at some level in radio-loud quasars and radio galaxies as well (although in these cases, observations of the radio cores are frequently contaminated/dominated by synchrotron emission from jet knots). This interpretation of radio core emission mandates mass accretion rates that are substantially higher than Eddington. Moreover, acknowledgment of this mass-loss mechanism as an AGN feedback process has important implications for the input of energy and hot gas into the inter-galactic medium (IGM) since it is considerably less directional than that from jets.

Detection of a relic X-ray jet in Cygnus A

ArXiv (0)

KC Steenbrugge, KM Blundell, P Duffy

We present a 200 ks Chandra ACIS-I image of Cygnus A, and discuss a long linear feature seen in its counterlobe. This feature has a non-thermal spectrum and lies on the line connecting the brighter hotspot on the approaching side and the nucleus. We therefore conclude that this feature is (or was) a jet. However, the outer part of this X-ray jet does not trace the current counterjet observed in radio. No X-ray counterpart is observed on the jet side. Using light-travel time effects we conclude that this X-ray 50 kpc linear feature is a relic jet that contains enough low-energy plasma (gamma ~ 10^3) to inverse-Compton scatter cosmic microwave background photons, producing emission in the X-rays.

Fluctuations and symmetry in the speed and direction of the jets of SS433 on different timescales

ArXiv (0)

K Blundell, M Bowler, L Schmidtobreick

ABRIDGED We present new results on the variations in speed and direction of the jet bolides in the Galactic microquasar SS433, from high resolution spectra, taken with the ESO 3.6-m New Technology Telescope almost nightly over 0.4 of a precession cycle. We find: (i) These data exhibit multiple ejections within most 24-hour periods and, throughout the duration of the observing campaign, the weighted means of the individual bolides, in both the red jet and the blue jet, clearly exhibit the pronounced nodding known in this system. (ii) We present further evidence for a 13-day periodicity in the jet speed, and show this cannot be dominated by Doppler shifts from orbital motion. (iii) We show the phase of this peak jet speed has shifted by a quarter of a cycle in the last quarter-century. (iv) We show that the two jets ejected by SS433 are highly symmetric on timescales measured thus far. (v) We demonstrate that the anti-correlation between variations in direction and in speed is not an artifact of an assumption of symmetry. (vi) We show that a recently proposed mechanism (Begelman et al 2006) for varying the ejection speed and anti-correlating it with polar angle variations is ruled out. (vii) The speed of expansion of the plasma bolides in the jets is approximately 0.0024c. These novel data carry a clear signature of speed variations. They have a simple and natural interpretation in terms of both angular and speed fluctuations which are identical on average in the two jets. They complement archival optical data and recent radio imaging.

Clues from microquasars to the origin of radio-loudness of quasars

ArXiv (0)

C Nipoti, KM Blundell, J Binney

We analysed the long-term variability of four microquasars (GRS 1915+105, Cyg X-1, Cyg X-3, and Sco X-1) in radio and X rays. The results of our analysis indicate the existence of two distinct modes of energy output, which we refer to as the `coupled' mode and the `flaring' mode. The coupled mode is responsible for mildly fluctuating, flat-spectrum radio emission, coupled with the X-ray emission; the flaring mode produces powerful, steep-spectrum radio flares, with no significant counterpart in X rays. We find that the fraction of time spent by a typical microquasar in the flaring mode is similar to the fraction of quasars that are radio-loud. This is consistent with the hypothesis that radio-loudness of quasars is a function of the epoch at which the source is observed.

Jet evolution, flux ratios and light-travel time effects

ArXiv (0)

JCA Miller-Jones, KM Blundell, P Duffy

Studies of the knotty jets in both quasars and microquasars frequently make use of the ratio of the intensities of corresponding knots on opposite sides of the nucleus in order to infer the product of the intrinsic jet speed (beta) and the cosine of the inclination angle of the jet-axis (cos{theta}), via the formalism I_{a}/I_{r} = ((1+beta cos{theta})/(1-beta cos{theta}))^{3+alpha}, where alpha relates the intensity I_{nu} as a function of frequency nu as I_{nu} propto nu^{-alpha}. Where beta cos{theta} is determined independently, the intensity ratio of a given pair of jet to counter-jet knots is over-predicted by the above formalism compared with the intensity ratio actually measured from radio images. As an example in the case of Cygnus X-3 the original formalism predicts an intensity ratio of about 185, whereas the observed intensity ratio at one single epoch is about 3. Mirabel and Rodriguez (1999) have refined the original formalism, and suggested measuring the intensity ratio of knots when they are at equal angular separations from the nucleus. This method is only applicable where there is sufficient time-sampling with sufficient physical resolution to interpolate the intensities of the knots at equal distances from the nucleus, and can therefore be difficult to apply to microquasars and is impossible to apply to quasars. Accounting for both the light-travel time between the knots and the simple evolution of the knots themselves reconciles this over-prediction and renders the original formalism obsolete.

Radio galaxy evolution: what you can learn from a Brief Encounter

ArXiv (0)

K Blundell, S Rawlings, C Willott, N Kassim, R Perley

We describe the pitfalls encountered in deducing from classical double radio source observables (luminosity, spectral index, redshift and linear size) the essential nature of how these objects evolve. We discuss the key role played by hotspots in governing the energy distribution of the lobes they feed, and subsequent spectral evolution. We present images obtained using the new 74 MHz receivers on the VLA and discuss constraints which these enforce on models of the backflow and ages in classical doubles.

A sample of 6C radio sources designed to find objects at redshift > 4: II --- spectrophotometry and emission line properties

ArXiv (0)

MJ Jarvis, S Rawlings, M Lacy, KM Blundell, AJ Bunker, S Eales, R Saunders, H Spinrad, D Stern, CJ Willott

(Abridged) This is the second in a series of three papers which present and interpret basic observational data on the 6C* 151-MHz radio sample: a low-frequency selected sample which exploits filtering criteria based on radio properties (steep spectral index and small angular size) to find radio sources at redshift z > 4 within a 0.133sr patch of sky. We present results of a programme of optical spectroscopy which has yielded redshifts in the range 0.5 < z < 4.4 for the 29 sources in the sample, all but six of which are secure. We find that the fil tering criteria used for 6C* are very effective in excluding the low-redshift, low-luminosity radio sources: the median redshift of 6C* is z~1.9 compared to z~1.1 for a complete sample matched in 151-MHz flux density. By combining the emission-line dataset for the 6C* radio sources with those for the 3CRR, 6CE and 7CRS samples we establish that z > 1.75 radio galaxies follow a rough proportionality between Lyalpha- and 151 MHz-luminosity which, like similar correlations seen in samples of lower-redshift radio sources, are indicative of a primary link between the power in the source of the photoionising photons (most likely a hidden quasar nucleus) and the power carried by the radio jets. We argue that radio sources modify their environments and that the range of emission-line properties seen is determined more by the range of source age than by the range in ambient environment. This is in accord with the idea that all high-redshift, high-luminosity radio sources are triggered in similar environments, presumably recently collapsed massive structures.

The quasar fraction in low-frequency selected complete samples and implications for unified schemes

ArXiv (0)

CJ Willott, S Rawlings, KM Blundell, M Lacy

Low-frequency radio surveys are ideal for selecting orientation-independent samples of extragalactic sources because the sample members are selected by virtue of their isotropic steep-spectrum extended emission. We use the new 7C Redshift Survey along with the brighter 3CRR and 6C samples to investigate the fraction of objects with observed broad emission lines - the `quasar fraction' - as a function of redshift and of radio and narrow emission line luminosity. We find that the quasar fraction is more strongly dependent upon luminosity (both narrow line and radio) than it is on redshift. Above a narrow [OII] emission line luminosity of log L_[OII] > 35 W (or radio luminosity log L_151 > 26.5 W/Hz/sr), the quasar fraction is virtually independent of redshift and luminosity; this is consistent with a simple unified scheme with an obscuring torus with a half-opening angle theta_trans approx 53 degrees. For objects with less luminous narrow lines, the quasar fraction is lower. We show that this is not due to the difficulty of detecting lower-luminosity broad emission lines in a less luminous, but otherwise similar, quasar population. We discuss evidence which supports at least two probable physical causes for the drop in quasar fraction at low luminosity: (i) a gradual decrease in theta_trans and/or a gradual increase in the fraction of lightly-reddened (0 < A(V) < 5) lines-of-sight with decreasing quasar luminosity; and (ii) the emergence of a distinct second population of low luminosity radio sources which, like M87, lack a well-fed quasar nucleus and may well lack a thick obscuring torus.

The emission line - radio correlation for radio sources using the 7C Redshift Survey

ArXiv (0)

CJ Willott, S Rawlings, KM Blundell, M Lacy

We have used narrow emission line data from the new 7C Redshift Survey to investigate correlations between the narrow-line luminosities and the radio properties of radio galaxies and steep-spectrum quasars. The 7C Redshift Survey is a low-frequency (151 MHz) selected sample with a flux-density limit about 25-times fainter than the 3CRR sample. By combining these samples, we can for the first time distinguish whether the correlations present are controlled by 151 MHz radio luminosity L_151 or redshift z. We find unequivocal evidence that the dominant effect is a strong positive correlation between narrow line luminosity L_NLR and L_151, of the form L_NLR proportional to L_151 ^ 0.79 +/- 0.04. Correlations of L_NLR with redshift or radio properties, such as linear size or 151 MHz (rest-frame) spectral index, are either much weaker or absent. We use simple assumptions to estimate the total bulk kinetic power Q of the jets in FRII radio sources, and confirm the underlying proportionality between jet power and narrow line luminosity first discussed by Rawlings & Saunders (1991). We make the assumption that the main energy input to the narrow line region is photoionisation by the quasar accretion disc, and relate Q to the disc luminosity, Q_phot. We find that 0.05 < Q / Q_phot < 1 so that the jet power is within about an order of magnitude of the accretion disc luminosity. The most powerful radio sources are accreting at rates close to the Eddington limit of supermassive black holes (~ 10^9 - 10^10 solar masses), whilst lower power sources are accreting at sub-Eddington rates.

A radio-jet -- galaxy interaction in 3C441

ArXiv (0)

M Lacy, S Rawlings, KM Blundell, SE Ridgway

Multi-wavelength imaging and spectroscopy of the z=0.708 radio galaxy 3C441 and a red aligned optical/infrared component are used to show that the most striking aspect of the radio-optical ``alignment effect'' in this object is due to the interaction of the radio jet with a companion galaxy in the same group or cluster. The stellar population of the red aligned continuum component is predominately old, but with a small post-starburst population superposed, and it is surrounded by a low surface-brightness halo, possibly a face-on spiral disc. The [OIII]500.7/[OII]372.7 emission line ratio changes dramatically from one side of the component to the other, with the low-ionisation material apparently having passed through the bow shock of the radio source and been compressed. A simple model for the interaction is used to explain the velocity shifts in the emission line gas, and to predict that the ISM of the interacting galaxy is likely to escape once the radio source bow shock has passed though. We also discuss another, much fainter, aligned component, and the sub-arcsecond scale alignment of the radio source host galaxy. Finally we comment on the implications of our explanation of 3C441 for theories of the alignment effect.

Evidence for a black hole in a radio-quiet quasar nucleus

ArXiv (0)

KM Blundell, AJ Beasley, M Lacy, S Garrington

We present the first milli-arcsecond resolution radio images of a radio-quiet quasar, detecting a high brightness temperature core with data from the VLBA. On maps made with lower-frequency data from MERLIN and the VLA jets appear to emanate from the core in opposite directions, which correspond to radio-emission on arcsecond scales seen with the VLA at higher frequencies. These provide strong evidence for a black-hole--based jet-producing central engine, rather than a starburst, being responsible for the compact radio emission in this radio-quiet quasar.

Particle acceleration in astrophysical jets


J Matthews, A Bell, K Blundell

In this chapter, we review some features of particle acceleration in astrophysical jets. We begin by describing four observational results relating to the topic, with particular emphasis on jets in active galactic nuclei and parallels between different sources. We then discuss the ways in which particles can be accelerated to high energies in magnetised plasmas, focusing mainly on shock acceleration, second-order Fermi and magnetic reconnection; in the process, we attempt to shed some light on the basic conditions that must be met by any mechanism for the various observational constraints to be satisfied. We describe the limiting factors for the maximum particle energy and briefly discuss multimessenger signals from neutrinos and ultrahigh energy cosmic rays, before describing the journey of jet plasma from jet launch to cocoon with reference to the different acceleration mechanisms. We conclude with some general comments on the future outlook.