Publications by Joseph Conlon


Searching for a 0.1-1 keV Cosmic Axion Background

ArXiv (0)

JP Conlon, MCD Marsh

Primordial decays of string theory moduli at z \sim 10^{12} naturally generate a dark radiation Cosmic Axion Background (CAB) with 0.1 - 1 keV energies. This CAB can be detected through axion-photon conversion in astrophysical magnetic fields to give quasi-thermal excesses in the extreme ultraviolet and soft X-ray bands. Substantial and observable luminosities may be generated even for axion-photon couplings \ll 10^{-11} GeV^{-1}. We propose that axion-photon conversion may explain the observed excess emission of soft X-rays from galaxy clusters, and may also contribute to the diffuse unresolved cosmic X-ray background. We list a number of correlated predictions of the scenario.


Quantum Gravity Constraints on Inflation

ArXiv (0)

JP Conlon

We study quantum gravity constraints on inflationary model building. Our approach is based on requiring the entropy associated to a given inflationary model to be less than that of the de Sitter entropy. We give two prescriptions for determining the inflationary entropy, based on either `bits per unit area' or entanglement entropy. The existence of transPlanckian flat directions, necessary for large tensor modes in the CMB, correlates with an inflationary entropy greater than that allowed by de Sitter space. Independently these techniques also constrain or exclude de Sitter models with large-rank gauge groups and high UV cutoffs, such as racetrack inflation or the KKLT construction.


Anomaly Mediation in Superstring Theory

ArXiv (0)

JP Conlon, M Goodsell, E Palti

We study anomaly mediated supersymmetry breaking in type IIB string theory and use our results to test the supergravity formula for anomaly mediated gaugino masses. We compute 1-loop gaugino masses for models of D3-branes on orbifold singularities with 3-form fluxes by calculating the annulus correlator of 3-form flux and two gauginos in the zero momentum limit. Consistent with supergravity expectations we find both anomalous and running contributions to 1-loop gaugino masses. For background Neveu-Schwarz H-flux we find an exact match with the supergravity formula. For Ramond-Ramond flux there is an off-shell ambiguity that precludes a full matching. The anomaly mediated gaugino masses, while determined by the infrared spectrum, arise from an explicit sum over UV open string winding modes. We also calculate brane-to-brane tree-level gravity mediated gaugino masses and show that there are two contributions coming from the dilaton and from the twisted modes, which are suppressed by the full T^6 volume and the untwisted T^2 volume respectively.


Aspects of Flavour and Supersymmetry in F-theory GUTs

ArXiv (0)

JP Conlon, E Palti

We study the constraints of supersymmetry on flavour in recently proposed models of F-theory GUTs. We relate the topologically twisted theory to the canonical presentation of eight-dimensional super Yang-Mills and provide a dictionary between the two. We describe the constraints on Yukawa couplings implied by holomorphy of the superpotential in the effective 4-dimensional supergravity theory, including the scaling with \alpha_{GUT}. Taking D-terms into account we solve explicitly to second order for wavefunctions and Yukawas due to metric and flux perturbations and find a rank-one Yukawa matrix with no subleading corrections.


One-loop Yukawa Couplings in Local Models

ArXiv (0)

JP Conlon, M Goodsell, E Palti

We calculate the one-loop Yukawa couplings and threshold corrections for supersymmetric local models of branes at singularities in type IIB string theory. We compute the corrections coming both from wavefunction and vertex renormalisation. The former comes in the IR from conventional field theory running and in the UV from threshold corrections that cause it to run from the winding scale associated to the full Calabi-Yau volume. The vertex correction is naively absent as it appears to correspond to superpotential renormalisation. However, we find that while the Wilsonian superpotential is not renormalised there is a physical vertex correction in the 1PI action associated to light particle loops.


Towards Realistic String Vacua From Branes At Singularities

ArXiv (0)

JP Conlon, A Maharana, F Quevedo

We report on progress towards constructing string models incorporating both realistic D-brane matter content and moduli stabilisation with dynamical low-scale supersymmetry breaking. The general framework is that of local D-brane models embedded into the LARGE volume approach to moduli stabilisation. We review quiver theories on del Pezzo $n$ ($dP_n$) singularities including both D3 and D7 branes. We provide supersymmetric examples with three quark/lepton families and the gauge symmetries of the Standard, Left-Right Symmetric, Pati-Salam and Trinification models, without unwanted chiral exotics. We describe how the singularity structure leads to family symmetries governing the Yukawa couplings which may give mass hierarchies among the different generations. We outline how these models can be embedded into compact Calabi-Yau compactifications with LARGE volume moduli stabilisation, and state the minimal conditions for this to be possible. We study the general structure of soft supersymmetry breaking. At the singularity all leading order contributions to the soft terms (both gravity- and anomaly-mediation) vanish. We enumerate subleading contributions and estimate their magnitude. We also describe model-independent physical implications of this scenario. These include the masses of anomalous and non-anomalous U(1)'s and the generic existence of a new hyperweak force under which leptons and/or quarks could be charged. We propose that such a gauge boson could be responsible for the ghost muon anomaly recently found at the Tevatron's CDF detector.


Wave Functions and Yukawa Couplings in Local String Compactifications

ArXiv (0)

JP Conlon, A Maharana, F Quevedo

We consider local models of magnetised D7 branes in IIB string compactifications, focussing on cases where an explicit metric can be written for the local 4-cycle. The presence of an explicit metric allows analytic expressions for the gauge bundle and for the chiral matter wavefunctions through solving the Dirac and Laplace equations. The triple overlap of the normalised matter wavefunctions generates the physical Yukawa couplings. Our main examples are the cases of D7 branes on P1xP1 and P2. We consider both supersymmetric and non-supersymmetric gauge backgrounds and both Abelian and non-Abelian gauge bundles. We briefly outline potential phenomenological applications of our results.


Mirror Mediation

ArXiv (0)

JP Conlon

I show that the effective action of string compactifications has a structure that can naturally solve the supersymmetric flavour and CP problems. At leading order in the g_s and \alpha' expansions, the hidden sector factorises. The moduli space splits into two mirror parts that depend on Kahler and complex structure moduli. Holomorphy implies the flavour structure of the Yukawa couplings arises in only one part. In type IIA string theory flavour arises through the Kahler moduli sector and in type IIB flavour arises through the complex structure moduli sector. This factorisation gives a simple solution to the supersymmetric flavour and CP problems: flavour physics is generated in one sector while supersymmetry is broken in the mirror sector. This mechanism does not require the presence of gauge, gaugino or anomaly mediation and is explicitly realised by phenomenological models of IIB flux compactifications.


Sparticle Spectra and LHC Signatures for Large Volume String Compactifications

ArXiv (0)

JP Conlon, CH Kom, K Suruliz, BC Allanach, F Quevedo

We study the supersymmetric particle spectra and LHC collider observables for the large-volume string models with a fundamental scale of 10^{11} GeV that arise in moduli-fixed string compactifications with branes and fluxes. The presence of magnetic fluxes on the brane world volume, required for chirality, perturb the soft terms away from those previously computed in the dilute-flux limit. We use the difference in high-scale gauge couplings to estimate the magnitude of this perturbation and study the potential effects of the magnetic fluxes by generating many random spectra with the soft terms perturbed around the dilute flux limit. Even with a 40% variation in the high-scale soft terms the low-energy spectra take a clear and predictive form. The resulting spectra are broadly similar to those arising on the SPS1a slope, but more degenerate. In their minimal version the models predict the ratios of gaugino masses to be M_1 : M_2 : M_3=(1.5 - 2) : 2 : 6, different to both mSUGRA and mirage mediation. Among the scalars, the squarks tend to be lighter and the sleptons heavier than for comparable mSUGRA models. We generate 10 fb^{-1} of sample LHC data for the random spectra in order to study the range of collider phenomenology that can occur. We perform a detailed mass reconstruction on one example large-volume string model spectrum. 100 fb^{-1} of integrated luminosity is sufficient to discriminate the model from mSUGRA and aspects of the sparticle spectrum can be accurately reconstructed.


Astrophysical and Cosmological Implications of Large Volume String Compactifications

ArXiv (0)

JP Conlon, F Quevedo

We study the spectrum, couplings and cosmological and astrophysical implications of the moduli fields for the class of Calabi-Yau IIB string compactifications for which moduli stabilisation leads to an exponentially large volume V ~ 10^{15} l_s^6 and an intermediate string scale m_s ~ 10^{11}GeV, with TeV-scale observable supersymmetry breaking. All K\"ahler moduli except for the overall volume are heavier than the susy breaking scale, with m ~ ln(M_P/m_{3/2}) m_{3/2} ~ (\ln(M_P/m_{3/2}))^2 m_{susy} ~ 500 TeV and, contrary to standard expectations, have matter couplings suppressed only by the string scale rather than the Planck scale. These decay to matter early in the history of the universe, with a reheat temperature T ~ 10^7 GeV, and are free from the cosmological moduli problem (CMP). The heavy moduli have a branching ratio to gravitino pairs of 10^{-30} and do not suffer from the gravitino overproduction problem. The overall volume modulus is a distinctive feature of these models and is an M_{planck}-coupled scalar of mass m ~ 1 MeV and subject to the CMP. A period of thermal inflation can help relax this problem. This field has a lifetime ~ 10^{24}s and can contribute to dark matter. It may be detected through its decays to 2\gamma or e^+e^-. If accessible the e^+e^- decay mode dominates, with Br(\chi \to 2 \gamma) suppressed by a factor (ln(M_P/m_{3/2}))^2. We consider the potential for detection of this field through different astrophysical sources and find that the observed gamma-ray background constrains \Omega_{\chi} <~ 10^{-4}. The decays of this field may generate the 511 keV emission line from the galactic centre observed by INTEGRAL/SPI.


Scanning the Landscape of Flux Compactifications: Vacuum Structure and Soft Supersymmetry Breaking

ArXiv (0)

SS AbdusSalam, JP Conlon, F Quevedo, K Suruliz

We scan the landscape of flux compactifications for the Calabi-Yau manifold $\mathbb{P}^4_{[1,1,1,6,9]}$ with two K\" ahler moduli by varying the value of the flux superpotential $W_0$ over a large range of values. We do not include uplift terms. We find a rich phase structure of AdS and dS vacua. Starting with $W_0\sim 1$ we reproduce the exponentially large volume scenario, but as $W_0$ is reduced new classes of minima appear. One of them corresponds to the supersymmetric KKLT vacuum while the other is a new, deeper non-supersymmetric minimum. We study how the bare cosmological constant and the soft supersymmetry breaking parameters for matter on D7 branes depend on $W_0$, for these classes of minima. We discuss potential applications of our results.


The string theory landscape: a tale of two hydras

Contemporary Physics 47 (2006) 119-129

JP Conlon


Kahler Moduli Inflation

ArXiv (0)

JP Conlon, F Quevedo

We show that under general conditions there is at least one natural inflationary direction for the Kahler moduli of type IIB flux compactifications. This requires a Calabi-Yau which has h^{2,1}>h^{1,1}>2 and for which the structure of the scalar potential is as in the recently found exponentially large volume compactifications. We also need - although these conditions may be relaxed - at least one Kahler modulus whose only non-vanishing triple-intersection is with itself and which appears by itself in the non-perturbative superpotential. Slow-roll inflation then occurs without a fine tuning of parameters, evading the eta problem of F-term inflation. In order to obtain COBE-normalised density perturbations, the stabilised volume of the Calabi-Yau must be O(10^5-10^7) in string units, and the inflationary scale M_{infl} ~ 10^{13} GeV. We find a robust model independent prediction for the spectral index of 1 - 2/N_e = 0.960 - 0.967, depending on the number of efoldings.


The QCD Axion and Moduli Stabilisation

ArXiv (0)

JP Conlon

We investigate the conditions for a QCD axion to coexist with stabilised moduli in string compactifications. We show how the simplest approaches to moduli stabilisation give unacceptably large masses to the axions. We observe that solving the F-term equations is insufficient for realistic moduli stabilisation and give a no-go theorem on supersymmetric moduli stabilisation with unfixed axions applicable to all string compactifications and relevant to much current work. We demonstrate how nonsupersymmetric moduli stabilisation with unfixed axions can be realised. We finally outline how to stabilise the moduli such that f_a is within the allowed window 10^9 GeV < f_a < 10^{12} GeV, with f_a ~ \sqrt{M_{SUSY} M_P}.


Gaugino and Scalar Masses in the Landscape

ArXiv (0)

JP Conlon, F Quevedo

In this letter we demonstrate the genericity of suppressed gaugino masses M_a \sim m_{3/2}/ln(M_P/m_{3/2}) in the IIB string landscape, by showing that this relation holds for D7-brane gauginos whenever the associated modulus is stabilised by nonperturbative effects. Although m_{3/2} and M_a take many different values across the landscape, the above small mass hierarchy is maintained. We show that it is valid for models with an arbitrary number of moduli and applies to both the KKLT and exponentially large volume approaches to Kahler moduli stabilisation. In the latter case we explicitly calculate gaugino and moduli masses for compactifications on the two-modulus Calabi-Yau P^4_[1,1,1,6,9]. In the large-volume scenario we also show that soft scalar masses are approximately universal with m_i^2 \sim m_{3/2}^2 (1 + \epsilon_i), with the non-universality parametrised by \epsilon_i \sim 1/ln (M_P/m_{3/2})^2 \sim 1/1000. We briefly discuss possible phenomenological implications of our results.


Systematics of Moduli Stabilisation in Calabi-Yau Flux Compactifications

ArXiv (0)

V Balasubramanian, P Berglund, JP Conlon, F Quevedo

We study the large volume limit of the scalar potential in Calabi-Yau flux compactifications of type IIB string theory. Under general circumstances there exists a limit in which the potential approaches zero from below, with an associated non-supersymmetric AdS minimum at exponentially large volume. Both this and its de Sitter uplift are tachyon-free, thereby fixing all Kahler and complex structure moduli, which has been difficult to achieve in the KKLT scenario. Also, for the class of vacua described in this paper, the gravitino mass is independent of the flux discretuum, whereas the ratio of the string scale to the 4d Planck scale is hierarchically small but flux dependent. The inclusion of alpha' corrections plays a crucial role in the structure of the potential. We illustrate these ideas through explicit computations for a particular Calabi-Yau manifold.


Large-Volume Flux Compactifications: Moduli Spectrum and D3/D7 Soft Supersymmetry Breaking

ArXiv (0)

JP Conlon, F Quevedo, K Suruliz

We present an explicit calculation of the spectrum of a general class of string models, corresponding to Calabi-Yau flux compactifications with h_{1,2}>h_{1,1}>1 with leading perturbative and non-perturbative corrections, in which all geometric moduli are stabilised as in hep-th/0502058. The volume is exponentially large, leading to a range of string scales from the Planck mass to the TeV scale, realising for the first time the large extra dimensions scenario in string theory. We provide a general analysis of the relevance of perturbative and non-perturbative effects and the regime of validity of the effective field theory. We compute the spectrum in the moduli sector finding a hierarchy of masses depending on inverse powers of the volume. We also compute soft supersymmetry breaking terms for particles living on D3 and D7 branes. We find a hierarchy of soft terms corresponding to `volume dominated' F-term supersymmetry breaking. F-terms for Kahler moduli dominate both those for dilaton and complex structure moduli and D-terms or other de Sitter lifting terms. This is the first class of string models in which soft supersymmetry breaking terms are computed after fixing all geometric moduli. We outline several possible applications of our results, both for cosmology and phenomenology and point out the differences with the less generic KKLT vacua.


Type IIA Orientifolds on General Supersymmetric Z_N Orbifolds

ArXiv (0)

R Blumenhagen, JP Conlon, K Suruliz

We construct Type IIA orientifolds for general supersymmetric Z_N orbifolds. In particular, we provide the methods to deal with the non-factorisable six-dimensional tori for the cases Z7, Z8, Z8', Z12 and Z12'. As an application of these methods we explicitly construct many new orientifold models.


On the Explicit Construction and Statistics of Calabi-Yau Flux Vacua

ArXiv (0)

JP Conlon, F Quevedo

We explicitly construct and study the statistics of flux vacua for type IIB string theory on an orientifold of the Calabi-Yau hypersurface $P^4_{[1,1,2,2,6]}$, parametrised by two relevant complex structure moduli. We solve for these moduli and the dilaton field in terms of the set of integers defining the 3-form fluxes and examine the distribution of vacua. We compare our numerical results with the predictions of the Ashok-Douglas density $\det (-R - \omega)$, finding good overall agreement in different regions of moduli space. The number of vacua are found to scale with the distance in flux space. Vacua cluster in the region close to the conifold singularity. Large supersymmetry breaking is more generic but supersymmetric and hierarchical supersymmetry breaking vacua can also be obtained. In particular, the small superpotentials and large dilaton VEVs needed to obtain de Sitter space in a controllable approximation are possible but not generic. We argue that in a general flux compactification, the rank of the gauge group coming from D3 branes could be statistically preferred to be very small.


Field Identifications for Interacting Bosonic Models in N=2 Superconformal Field Theory

ArXiv (0)

J Conlon, D Gepner

We study a family of interacting bosonic representations of the N=2 superconformal algebra. These models can be tensored with a conjugate theory to give the free theory. We explain how to use free fields to study interacting fields and their dimensions, and how we may identify different free fields as representing the same interacting field. We show how a lattice of identifying fields may be built up and how every free field may be reduced to a standard form, thus permitting the resolution of the spectrum. We explain how to build the extended algebra and show that there are a finite number of primary fields for this algebra for any of the models. We illustrate this by studying an example.

Pages