Publications by Joseph Conlon

Projected bounds on ALPs from Athena

Monthly Notices of the Royal Astronomical Society Blackwell Publishing Inc. (0)

JP Conlon, F Day, N Jennings, S Krippendorf, F Muia

Galaxy clusters represent excellent laboratories to search for Axion-Like Particles (ALPs). They contain magnetic fields which can induce quasi-sinusoidal oscillations in the X-ray spectra of AGNs situated in or behind them. Due to its excellent energy resolution, the X-ray Integral Field Unit (X-IFU) instrument onboard the Athena X-ray Observatory will be far more sensitive to ALP-induced modulations than current detectors. As a first analysis of the sensitivity of Athena to the ALP-photon coupling $g_{a \gamma \gamma}$, we simulate observations of the Seyfert galaxy NGC1275 in the Perseus cluster using the SIXTE simulation software. We estimate that for a 200ks exposure, a non-observation of spectral modulations will constrain ${g_{a\gamma\gamma}\lesssim1.5\times10^{-13}\rm{GeV}^{-1}}$ for $m_a \lesssim 10^{-12} \rm{eV}$, representing an order of magnitude improvement over constraints derived using the current generation of satellites.

Loop corrections to Delta N_eff in large volume models

ArXiv (0)

S Angus, JP Conlon, U Haisch, AJ Powell

In large volume models reheating is driven by the decays of the volume modulus to the visible sector, while the decays to its axion partners result in dark radiation. In this article we discuss the impact of loop corrections on the only model-independent visible decay channel: the decay into Higgs pairs via a Giudice-Masiero term. Including such radiative effects leads to a more precise determination of the relative fraction of dark radiation, since by contrast all loop corrections to the volume axion decay mode are Planck suppressed. Assuming an MSSM spectrum and that the Giudice-Masiero coupling is fixed at the string scale by a shift symmetry in the Higgs sector, we arrive at a prediction for the effective number of neutrinos. The result turns out to be too large to be consistent with data, highly disfavouring the minimal model.

The Cosmophenomenology of Axionic Dark Radiation

ArXiv (0)

JP Conlon, MCD Marsh

Relativistic axions are good candidates for the dark radiation for which there are mounting observational hints. The primordial decays of heavy fields produce axions which are ultra-energetic compared to thermalised matter and inelastic axion-matter scattering can occur with $E_{CoM} \gg T_{\gamma}$, thus accessing many interesting processes which are otherwise kinematically forbidden in standard cosmology. Axion-photon scattering into quarks and leptons during BBN affects the light element abundances, and bounds on overproduction of $^4$He constrain a combination of the axion decay constant and the reheating temperature. For supersymmetric models, axion scattering into visible sector superpartners can give direct non-thermal production of dark matter at $T_{\gamma} \ll T_{freezeout}$. Most axions --- or any other dark radiation candidate from modulus decay --- still linger today as a Cosmic Axion Background with $E_{axion} \sim \mathcal{O}(100) eV$, and a flux of $\sim 10^6 cm^{-2} s^{-1}$.

Mirror Mediation

ArXiv (0)

JP Conlon

I show that the effective action of string compactifications has a structure that can naturally solve the supersymmetric flavour and CP problems. At leading order in the g_s and \alpha' expansions, the hidden sector factorises. The moduli space splits into two mirror parts that depend on Kahler and complex structure moduli. Holomorphy implies the flavour structure of the Yukawa couplings arises in only one part. In type IIA string theory flavour arises through the Kahler moduli sector and in type IIB flavour arises through the complex structure moduli sector. This factorisation gives a simple solution to the supersymmetric flavour and CP problems: flavour physics is generated in one sector while supersymmetry is broken in the mirror sector. This mechanism does not require the presence of gauge, gaugino or anomaly mediation and is explicitly realised by phenomenological models of IIB flux compactifications.

Measuring Smuon-Selectron Mass Splitting at the LHC and Patterns of Supersymmetry Breaking

ArXiv (0)

BC Allanach, JP Conlon, CG Lester

With sufficient data, Large Hadron Collider (LHC) experiments can constrain the selectron-smuon mass splitting through differences in the di-electron and di-muon edges from supersymmetry (SUSY) cascade decays. We study the sensitivity of the LHC to this mass splitting, which within mSUGRA may be constrained down to O(10^{-4}) for 30 fb^{-1} of integrated luminosity. Over substantial regions of SUSY breaking parameter space the fractional edge splitting can be significantly enhanced over the fractional mass splitting. Within models where the selectron and smuon are constrained to be universal at a high scale, edge splittings up to a few percent may be induced by renormalisation group effects and may be significantly discriminated from zero. The edge splitting provides important information about high-scale SUSY breaking terms and should be included in any fit of LHC data to high-scale models.

Continuous Global Symmetries and Hyperweak Interactions in String Compactifications

ArXiv (0)

CP Burgess, JP Conlon, L-Y Hung, CH Kom, A Maharana, F Quevedo

We revisit general arguments for the absence of exact continuous global symmetries in string compactifications and extend them to D-brane models. We elucidate the various ways approximate continuous global symmetries arise in the 4-dimensional effective action. In addition to two familiar methods - axionic Peccei-Quinn symmetries and remnant global abelian symmetries from Green-Schwarz gauge symmetry breaking - we identify new ways to generate approximate continuous global symmetries. Two methods stand out, both of which occur for local brane constructions within the LARGE volume scenario of moduli stabilisation. The first is the generic existence of continuous non-abelian global symmetries associated with local Calabi-Yau isometries. These symmetries are exact in the non-compact limit and are spontaneously broken by the LARGE volume, with breaking effects having phenomenologically interesting sizes \sim 0.01 for plausible choices for underlying parameters. Such approximate flavour symmetries are phenomenologically attractive and may allow the fermion mass hierarchies to be connected to the electroweak hierarchy via the large volume. The second is the possible existence of new hyper-weak gauge interactions under which Standard Model matter is charged, with \alpha_{HW} \sim 10^{-9}. Such groups arise from branes wrapping bulk cycles and intersecting the local (resolved) singularity on which the Standard Model is supported. We discuss experimental bounds for these new gauge bosons and their interactions with the Standard Model particles.

Volume Modulus Inflation and the Gravitino Mass Problem

ArXiv (0)

JP Conlon, R Kallosh, A Linde, F Quevedo

The Hubble constant during the last stages of inflation in a broad class of models based on the KKLT mechanism should be smaller than the gravitino mass, H <~ m_{3/2}. We point out that in the models with large volume of compactification the corresponding constraint typically is even stronger, H <~ m_{3/2}^{3/2}, in Planck units. In order to address this problem, we propose a class of models with large volume of compactification where inflation may occur exponentially far away from the present vacuum state. In these models, the Hubble constant during inflation can be many orders of magnitude greater than the gravitino mass. We introduce a toy model describing this scenario, and discuss its strengths and weaknesses.

Kahler Potentials of Chiral Matter Fields for Calabi-Yau String Compactifications

ArXiv (0)

JP Conlon, D Cremades, F Quevedo

The Kahler potential is the least understood part of effective N=1 supersymmetric theories derived from string compactifications. Even at tree-level, the Kahler potential for the physical matter fields, as a function of the moduli fields, is unknown for generic Calabi-Yau compactifications and has only been computed for simple toroidal orientifolds. In this paper we describe how the modular dependence of matter metrics may be extracted in a perturbative expansion in the Kahler moduli. Scaling arguments, locality and knowledge of the structure of the physical Yukawa couplings are sufficient to find the relevant Kahler potential. Using these techniques we compute the `modular weights' for bifundamental matter on wrapped D7 branes for large-volume IIB Calabi-Yau flux compactifications. We also apply our techniques to the case of toroidal compactifications, obtaining results consistent with those present in the literature. Our techniques do not provide the complex structure moduli dependence of the Kahler potential, but are sufficient to extract relevant information about the canonically normalised matter fields and the soft supersymmetry breaking terms in gravity mediated scenarios.

Soft SUSY Breaking Terms for Chiral Matter in IIB String Compactifications

ArXiv (0)

JP Conlon, SS Abdussalam, F Quevedo, K Suruliz

This paper develops the computation of soft supersymmetry breaking terms for chiral D7 matter fields in IIB Calabi-Yau flux compactifications with stabilised moduli. We determine explicit expressions for soft terms for the single-modulus KKLT scenario and the multiple-moduli large volume scenario. In particular we use the chiral matter metrics for Calabi-Yau backgrounds recently computed in hep-th/0609180. These differ from the better understood metrics for non-chiral matter and therefore give a different structure of soft terms. The soft terms take a simple form depending explicitly on the modular weights of the corresponding matter fields. For the large-volume case we find that in the simplest D7 brane configuration, scalar masses, gaugino masses and A-terms are very similar to the dilaton-dominated scenario. Although all soft masses are suppressed by ln(M_P/m_{3/2}) compared to the gravitino mass, the anomaly-mediated contributions do not compete, being doubly suppressed and thus subdominant to the gravity-mediated tree-level terms. Soft terms are flavour-universal to leading order in an expansion in inverse Kahler moduli. They also do not introduce extra CP violating phases to the effective action. We argue that soft term flavour universality should be a property of the large-volume compactifications, and more generally IIB flux models, in which flavour is determined by the complex structure moduli while supersymmetry is broken by the Kahler moduli. For the simplest large-volume case we run the soft terms to low energies and present some sample spectra and a basic phenomenological analysis.

Moduli Stabilisation and Applications in IIB String Theory

ArXiv (0)

JP Conlon

This article represents the author's PhD thesis. It describes moduli stabilisation in IIB string theory and applications to phenomenological topics. The first half of the thesis starts with an introductory review. It continues with an account of the statistics of complex structure moduli stabilisation before moving to Kahler moduli stabilisation. It describes in detail the large-volumes models and justifies the assumptions used in their construction. The second half of the thesis is concerned with applications to phenomenological topics. These include supersymmetry breaking and soft terms, inflationary model building and axions.

Gaugino and Scalar Masses in the Landscape

ArXiv (0)

JP Conlon, F Quevedo

In this letter we demonstrate the genericity of suppressed gaugino masses M_a \sim m_{3/2}/ln(M_P/m_{3/2}) in the IIB string landscape, by showing that this relation holds for D7-brane gauginos whenever the associated modulus is stabilised by nonperturbative effects. Although m_{3/2} and M_a take many different values across the landscape, the above small mass hierarchy is maintained. We show that it is valid for models with an arbitrary number of moduli and applies to both the KKLT and exponentially large volume approaches to Kahler moduli stabilisation. In the latter case we explicitly calculate gaugino and moduli masses for compactifications on the two-modulus Calabi-Yau P^4_[1,1,1,6,9]. In the large-volume scenario we also show that soft scalar masses are approximately universal with m_i^2 \sim m_{3/2}^2 (1 + \epsilon_i), with the non-universality parametrised by \epsilon_i \sim 1/ln (M_P/m_{3/2})^2 \sim 1/1000. We briefly discuss possible phenomenological implications of our results.