Anisotropy imprinting with pure spin currents

Time resolved measurements allow scientists to study physical processes that happen extremely rapidly, such as unravelling the interactions that couple the magnetisations of ultrathin layers at the picosecond timescale. Using the pulsed bunches of X-rays from the Diamond synchrotron, researchers were able to watch two different coupling mechanisms compete and collaborate, and how this ultrafast interaction can imprint an angular variation between layers. Deep knowledge of the coupling between different layers in a spin valve is an important building block for the next generation of electronic devices, as it puts a limit on how quickly and efficiently we can read and write information in electronic form. The most important property we must control for applications is the so-called Gilbert damping, which is a measure of the energy loss in the dynamics of the magnetisation.

Read the whole story here.

Link to the article in Physical Review Letters.