Coupled commensurate charge density wave and lattice distortion in Na(2)Ti(2)Pn(2)O (Pn = As,Sb) determined by x-ray diffraction and angle-resolved photoemission spectroscopy

PHYSICAL REVIEW B 94 (2016) ARTN 104515

NR Davies, RD Johnson, AJ Princep, LA Gannon, J-Z Ma, T Qian, P Richard, H Li, M Shi, H Nowell, PJ Baker, YG Shi, H Ding, J Luo, YF Guo, AT Boothroyd

Spin resonance in the superconducting state of Li1-xFexODFe1-ySe observed by neutron spectroscopy

PHYSICAL REVIEW B 94 (2016) ARTN 144503

NR Davies, MC Rahn, HC Walker, RA Ewings, DN Woodruff, SJ Clarke, AT Boothroyd

Atomic-level structural and chemical analysis of Cr-doped Bi2Se3 thin films.

Scientific reports 6 (2016) 26549-

A Ghasemi, D Kepaptsoglou, LJ Collins-McIntyre, Q Ramasse, T Hesjedal, VK Lazarov

We present a study of the structure and chemical composition of the Cr-doped 3D topological insulator Bi2Se3. Single-crystalline thin films were grown by molecular beam epitaxy on Al2O3 (0001), and their structural and chemical properties determined on an atomic level by aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy. A regular quintuple layer stacking of the Bi2Se3 film is found, with the exception of the first several atomic layers in the initial growth. The spectroscopy data gives direct evidence that Cr is preferentially substituting for Bi in the Bi2Se3 host. We also show that Cr has a tendency to segregate at internal grain boundaries of the Bi2Se3 film.

Antiferromagnetism in a Family of S = 1 Square Lattice Coordination Polymers NiX2(pyz)2 (X = Cl, Br, I, NCS; pyz = Pyrazine).

Inorganic chemistry 55 (2016) 3515-3529

J Liu, PA Goddard, J Singleton, J Brambleby, F Foronda, JS Möller, Y Kohama, S Ghannadzadeh, A Ardavan, SJ Blundell, T Lancaster, F Xiao, RC Williams, FL Pratt, PJ Baker, K Wierschem, SH Lapidus, KH Stone, PW Stephens, J Bendix, TJ Woods, KE Carreiro, HE Tran, CJ Villa, JL Manson

The crystal structures of NiX2(pyz)2 (X = Cl (1), Br (2), I (3), and NCS (4)) were determined by synchrotron X-ray powder diffraction. All four compounds consist of two-dimensional (2D) square arrays self-assembled from octahedral NiN4X2 units that are bridged by pyz ligands. The 2D layered motifs displayed by 1-4 are relevant to bifluoride-bridged [Ni(HF2)(pyz)2]EF6 (E = P, Sb), which also possess the same 2D layers. In contrast, terminal X ligands occupy axial positions in 1-4 and cause a staggered packing of adjacent layers. Long-range antiferromagnetic (AFM) order occurs below 1.5 (Cl), 1.9 (Br and NCS), and 2.5 K (I) as determined by heat capacity and muon-spin relaxation. The single-ion anisotropy and g factor of 2, 3, and 4 were measured by electron-spin resonance with no evidence for zero-field splitting (ZFS) being observed. The magnetism of 1-4 spans the spectrum from quasi-two-dimensional (2D) to three-dimensional (3D) antiferromagnetism. Nearly identical results and thermodynamic features were obtained for 2 and 4 as shown by pulsed-field magnetization, magnetic susceptibility, as well as their Néel temperatures. Magnetization curves for 2 and 4 calculated by quantum Monte Carlo simulation also show excellent agreement with the pulsed-field data. Compound 3 is characterized as a 3D AFM with the interlayer interaction (J⊥) being slightly stronger than the intralayer interaction along Ni-pyz-Ni segments (J(pyz)) within the two-dimensional [Ni(pyz)2](2+) square planes. Regardless of X, J(pyz) is similar for the four compounds and is roughly 1 K.

Free-standing millimetre-long Bi2Te3 sub-micron belts catalyzed by TiO2 nanoparticles.

Nanoscale research letters 11 (2016) 308-

P Schönherr, F Zhang, D Kojda, R Mitdank, M Albrecht, SF Fischer, T Hesjedal

Physical vapour deposition (PVD) is used to grow millimetre-long Bi2Te3 sub-micron belts catalysed by TiO2 nanoparticles. The catalytic efficiency of TiO2 nanoparticles for the nanostructure growth is compared with the catalyst-free growth employing scanning electron microscopy. The catalyst-coated and catalyst-free substrates are arranged side-by-side, and overgrown at the same time, to assure identical growth conditions in the PVD furnace. It is found that the catalyst enhances the yield of the belts. Very long belts were achieved with a growth rate of 28 nm/min. A ∼1-mm-long belt with a rectangular cross section was obtained after 8 h of growth. The thickness and width were determined by atomic force microscopy, and their ratio is ∼1:10. The chemical composition was determined to be stoichiometric Bi2Te3 using energy-dispersive X-ray spectroscopy. Temperature-dependent conductivity measurements show a characteristic increase of the conductivity at low temperatures. The room temperature conductivity of 0.20 × 10(5) S m (-1) indicates an excellent sample quality.

Making hybrid [n]-rotaxanes as supramolecular arrays of molecular electron spin qubits.

Nature communications 7 (2016) 10240-

A Fernandez, J Ferrando-Soria, EM Pineda, F Tuna, IJ Vitorica-Yrezabal, C Knappke, J Ujma, CA Muryn, GA Timco, PE Barran, A Ardavan, REP Winpenny

Quantum information processing (QIP) would require that the individual units involved--qubits--communicate to other qubits while retaining their identity. In many ways this resembles the way supramolecular chemistry brings together individual molecules into interlocked structures, where the assembly has one identity but where the individual components are still recognizable. Here a fully modular supramolecular strategy has been to link hybrid organic-inorganic [2]- and [3]-rotaxanes into still larger [4]-, [5]- and [7]-rotaxanes. The ring components are heterometallic octanuclear [Cr7NiF8(O2C(t)Bu)16](-) coordination cages and the thread components template the formation of the ring about the organic axle, and are further functionalized to act as a ligand, which leads to large supramolecular arrays of these heterometallic rings. As the rings have been proposed as qubits for QIP, the strategy provides a possible route towards scalable molecular electron spin devices for QIP. Double electron-electron resonance experiments demonstrate inter-qubit interactions suitable for mediating two-qubit quantum logic gates.

Robustness of superconductivity to competing magnetic phases in tetragonal FeS

PHYSICAL REVIEW B 94 (2016) ARTN 134509

FKK Kirschner, F Lang, CV Topping, PJ Baker, FL Pratt, SE Wright, DN Woodruff, SJ Clarke, SJ Blundell

All-in-all-Out Magnetic Order and Propagating Spin Waves in Sm_{2}Ir_{2}O_{7}.

Physical review letters 117 (2016) 037201-

C Donnerer, MC Rahn, MM Sala, JG Vale, D Pincini, J Strempfer, M Krisch, D Prabhakaran, AT Boothroyd, DF McMorrow

Using resonant magnetic x-ray scattering we address the unresolved nature of the magnetic ground state and the low-energy effective Hamiltonian of Sm_{2}Ir_{2}O_{7}, a prototypical pyrochlore iridate with a finite temperature metal-insulator transition. Through a combination of elastic and inelastic measurements, we show that the magnetic ground state is an all-in-all-out (AIAO) antiferromagnet. The magnon dispersion indicates significant electronic correlations and can be well described by a minimal Hamiltonian that includes Heisenberg exchange [J=27.3(6)  meV] and Dzyaloshinskii-Moriya interactions [D=4.9(3)  meV], which provides a consistent description of the magnetic order and excitations. In establishing that Sm_{2}Ir_{2}O_{7} has the requisite inversion symmetry preserving AIAO magnetic ground state, our results support the notion that pyrochlore iridates may host correlated Weyl semimetals.

Photonic topological insulator with broken time-reversal symmetry.

Proceedings of the National Academy of Sciences of the United States of America 113 (2016) 4924-4928

C He, X-C Sun, X-P Liu, M-H Lu, Y Chen, L Feng, Y-F Chen

A topological insulator is a material with an insulating interior but time-reversal symmetry-protected conducting edge states. Since its prediction and discovery almost a decade ago, such a symmetry-protected topological phase has been explored beyond electronic systems in the realm of photonics. Electrons are spin-1/2 particles, whereas photons are spin-1 particles. The distinct spin difference between these two kinds of particles means that their corresponding symmetry is fundamentally different. It is well understood that an electronic topological insulator is protected by the electron's spin-1/2 (fermionic) time-reversal symmetry [Formula: see text] However, the same protection does not exist under normal circumstances for a photonic topological insulator, due to photon's spin-1 (bosonic) time-reversal symmetry [Formula: see text] In this work, we report a design of photonic topological insulator using the Tellegen magnetoelectric coupling as the photonic pseudospin orbit interaction for left and right circularly polarized helical spin states. The Tellegen magnetoelectric coupling breaks bosonic time-reversal symmetry but instead gives rise to a conserved artificial fermionic-like-pseudo time-reversal symmetry, Tp ([Formula: see text]), due to the electromagnetic duality. Surprisingly, we find that, in this system, the helical edge states are, in fact, protected by this fermionic-like pseudo time-reversal symmetry Tp rather than by the bosonic time-reversal symmetry Tb This remarkable finding is expected to pave a new path to understanding the symmetry protection mechanism for topological phases of other fundamental particles and to searching for novel implementations for topological insulators.

Electronic Structure, Surface Doping, and Optical Response in Epitaxial WSe2 Thin Films.

Nano letters 16 (2016) 2485-2491

Y Zhang, MM Ugeda, C Jin, S-F Shi, AJ Bradley, A Martín-Recio, H Ryu, J Kim, S Tang, Y Kim, B Zhou, C Hwang, Y Chen, F Wang, MF Crommie, Z Hussain, Z-X Shen, S-K Mo

High quality WSe2 films have been grown on bilayer graphene (BLG) with layer-by-layer control of thickness using molecular beam epitaxy. The combination of angle-resolved photoemission, scanning tunneling microscopy/spectroscopy, and optical absorption measurements reveal the atomic and electronic structures evolution and optical response of WSe2/BLG. We observe that a bilayer of WSe2 is a direct bandgap semiconductor, when integrated in a BLG-based heterostructure, thus shifting the direct-indirect band gap crossover to trilayer WSe2. In the monolayer limit, WSe2 shows a spin-splitting of 475 meV in the valence band at the K point, the largest value observed among all the MX2 (M = Mo, W; X = S, Se) materials. The exciton binding energy of monolayer-WSe2/BLG is found to be 0.21 eV, a value that is orders of magnitude larger than that of conventional three-dimensional semiconductors, yet small as compared to other two-dimensional transition metal dichalcogennides (TMDCs) semiconductors. Finally, our finding regarding the overall modification of the electronic structure by an alkali metal surface electron doping opens a route to further control the electronic properties of TMDCs.

Quantum Interference in Graphene Nanoconstrictions.

Nano letters 16 (2016) 4210-4216

P Gehring, H Sadeghi, S Sangtarash, CS Lau, J Liu, A Ardavan, JH Warner, CJ Lambert, GAD Briggs, JA Mol

We report quantum interference effects in the electrical conductance of chemical vapor deposited graphene nanoconstrictions fabricated using feedback controlled electroburning. The observed multimode Fabry-Pérot interferences can be attributed to reflections at potential steps inside the channel. Sharp antiresonance features with a Fano line shape are observed. Theoretical modeling reveals that these Fano resonances are due to localized states inside the constriction, which couple to the delocalized states that also give rise to the Fabry-Pérot interference patterns. This study provides new insight into the interplay between two fundamental forms of quantum interference in graphene nanoconstrictions.

On the temperature dependence of spin pumping in ferromagnet-topological insulator-ferromagnet spin valves

Results in Physics 6 (2016) 293-294

AA Baker, AI Figueroa, G van der Laan, T Hesjedal

Muon-spin relaxation study of the double perovskite insulators Sr2 BOsO6 (B  =  Fe, Y, ln).

Journal of physics. Condensed matter : an Institute of Physics journal 28 (2016) 076001-

RC Williams, F Xiao, IO Thomas, SJ Clark, T Lancaster, GA Cornish, SJ Blundell, W Hayes, AK Paul, C Felser, M Jansen

We present the results of zero-field muon-spin relaxation measurements made on the double perovskite insulators Sr2 BOsO6 (B = Fe,Y, In). Spontaneous muon-spin precession indicative of quasistatic long range magnetic ordering is observed in Sr2FeOsO6 within the AF1 antiferromagnetic phase for temperatures below [Formula: see text] K. Upon cooling below T2≈67 K the oscillations cease to be resolvable owing to the coexistence of the AF1 and AF2 phases, which leads to a broader range of internal magnetic fields. Using density functional calculations we identify a candidate muon stopping site within the unit cell, which dipole field simulations show to be consistent with the proposed magnetic structure. The possibility of incommensurate magnetic ordering is discussed for temperatures below TN = 53 K and 25 K for Sr2YOsO6 and Sr2InOsO6, respectively.

Bimetallic MOFs (H3O)x[Cu(MF6)(pyrazine)2]·(4 - x)H2O (M = V4+, x = 0; M = Ga3+, x = 1): co-existence of ordered and disordered quantum spins in the V4+ system.

Chemical communications (Cambridge, England) 52 (2016) 12653-12656

JL Manson, JA Schlueter, KE Garrett, PA Goddard, T Lancaster, JS Möller, SJ Blundell, AJ Steele, I Franke, FL Pratt, J Singleton, J Bendix, SH Lapidus, M Uhlarz, O Ayala-Valenzuela, RD McDonald, M Gurak, C Baines

The title compounds are bimetallic MOFs containing [Cu(pyz)2]2+ square lattices linked by MF6n- octahedra. In each, only the Cu2+ spins exhibit long-range magnetic order below 3.5 K (M = V4+) and 2.6 K (M = Ga3+). The V4+ spins remain disordered down to 0.5 K.

Incommensurate counterrotating magnetic order stabilized by Kitaev interactions in the layered honeycomb alpha-Li2IrO3

PHYSICAL REVIEW B 93 (2016) ARTN 195158

SC Williams, RD Johnson, F Freund, S Choi, A Jesche, I Kimchi, S Manni, A Bombardi, P Manuel, P Gegenwart, R Coldea

La2SrCr2O7F2: A Ruddlesden-Popper Oxyfluoride Containing Octahedrally Coordinated Cr(4+) Centers.

Inorganic chemistry 55 (2016) 3169-3174

R Zhang, G Read, F Lang, T Lancaster, SJ Blundell, MA Hayward

The low-temperature fluorination of the n = 2 Ruddlesden-Popper phase La2SrCr2O7 yields La2SrCr2O7F2 via a topochemical fluorine insertion reaction. The structure-conserving nature of the fluorination reaction means that the chromium centers of the initial oxide phase retain an octahedral coordination environment in the fluorinated product, resulting in a material containing an extended array of apex-linked Cr(4+)O6 units. Typically materials containing networks of octahedrally coordinated Cr(4+) centers can only be prepared at high pressure; thus, the preparation of La2SrCr2O7F2 demonstrates that low-temperature topochemical reactions offer an alternative synthesis route to materials of this type. Neutron diffraction, magnetization, and μ(+)SR data indicate that La2SrCr2O7F2 undergoes a transition to an antiferromagnetic state below TN ≈ 140 K. The structure-property relations of this phase and other Cr(4+) oxide phases are discussed.

Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity.

Nature communications 7 (2016) 10699-

J Yin, H Wang, H Peng, Z Tan, L Liao, L Lin, X Sun, AL Koh, Y Chen, H Peng, Z Liu

Graphene with ultra-high carrier mobility and ultra-short photoresponse time has shown remarkable potential in ultrafast photodetection. However, the broad and weak optical absorption (∼ 2.3%) of monolayer graphene hinders its practical application in photodetectors with high responsivity and selectivity. Here we demonstrate that twisted bilayer graphene, a stack of two graphene monolayers with an interlayer twist angle, exhibits a strong light-matter interaction and selectively enhanced photocurrent generation. Such enhancement is attributed to the emergence of unique twist-angle-dependent van Hove singularities, which are directly revealed by spatially resolved angle-resolved photoemission spectroscopy. When the energy interval between the van Hove singularities of the conduction and valance bands matches the energy of incident photons, the photocurrent generated can be significantly enhanced (up to ∼ 80 times with the integration of plasmonic structures in our devices). These results provide valuable insight for designing graphene photodetectors with enhanced sensitivity for variable wavelength.

Ordering Gold Nanoparticles with DNA Origami Nanoflowers.

ACS nano 10 (2016) 7303-7306

R Schreiber, I Santiago, A Ardavan, AJ Turberfield

Nanostructured materials, including plasmonic metamaterials made from gold and silver nanoparticles, provide access to new materials properties. The assembly of nanoparticles into extended arrays can be controlled through surface functionalization and the use of increasingly sophisticated linkers. We present a versatile way to control the bonding symmetry of gold nanoparticles by wrapping them in flower-shaped DNA origami structures. These "nanoflowers" assemble into two-dimensonal gold nanoparticle lattices with symmetries that can be controlled through auxiliary DNA linker strands. Nanoflower lattices are true composites: interactions between the gold nanoparticles are mediated entirely by DNA, and the DNA origami will fold into its designed form only in the presence of the gold nanoparticles.

Building Large-Domain Twisted Bilayer Graphene with van Hove Singularity.

ACS nano 10 (2016) 6725-6730

Z Tan, J Yin, C Chen, H Wang, L Lin, L Sun, J Wu, X Sun, H Yang, Y Chen, H Peng, Z Liu

Twisted bilayer graphene (tBLG) with van Hove Singularity (VHS) has exhibited novel twist-angle-dependent chemical and physical phenomena. However, scalable production of high-quality tBLG is still in its infancy, especially lacking the angle controlled preparation methods. Here, we report a facile approach to prepare tBLG with large domain sizes (>100 μm) and controlled twist angles by a clean layer-by-layer transfer of two constituent graphene monolayers. The whole process without interfacial polymer contamination in two monolayers guarantees the interlayer interaction of the π-bond electrons, which gives rise to the existence of minigaps in electronic structures and the consequent formation of VHSs in density of state. Such perturbation on band structure was directly observed by angle-resolved photoemission spectroscopy with submicrometer spatial resolution (micro-ARPES). The VHSs lead to a strong light-matter interaction and thus introduce ∼20-fold enhanced intensity of Raman G-band, which is a characteristic of high-quality tBLG. The as-prepared tBLG with strong light-matter interaction was further fabricated into high-performance photodetectors with selectively enhanced photocurrent generation (up to ∼6 times compared with monolayer in our device).

Nanoscale depth-resolved polymer dynamics probed by the implantation of low energy muons

POLYMER 105 (2016) 516-525

FL Pratt, T Lancaster, PJ Baker, SJ Blundell, T Prokscha, E Morenzoni, A Suter, HE Assender