# Publications

## Black hole genesis of dark matter

JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2018) ARTN 009

## Heterotic line bundle models on elliptically fibered Calabi-Yau three-folds

JOURNAL OF HIGH ENERGY PHYSICS (2018) ARTN 087

## Search for nonstandard neutrino interactions with IceCube DeepCore

Physical Review D, Particles and fields American Physical Society **97** (2018) ARTN 072009

## A Search for Neutrino Emission from Fast Radio Bursts with Six Years of IceCube Data

Astrophysical Journal University of Chicago Press **857** (2018) ARTN 117

## Electron acceleration by wave turbulence in a magnetized plasma

Nature Physics **14** (2018) 475-479

© 2018 The Author(s). Astrophysical shocks are commonly revealed by the non-thermal emission of energetic electrons accelerated in situ1-3. Strong shocks are expected to accelerate particles to very high energies4-6; however, they require a source of particles with velocities fast enough to permit multiple shock crossings. While the resulting diffusive shock acceleration4process can account for observations, the kinetic physics regulating the continuous injection of non-thermal particles is not well understood. Indeed, this injection problem is particularly acute for electrons, which rely on high-frequency plasma fluctuations to raise them above the thermal pool7,8. Here we show, using laboratory laser-produced shock experiments, that, in the presence of a strong magnetic field, significant electron pre-heating is achieved. We demonstrate that the key mechanism in producing these energetic electrons is through the generation of lower-hybrid turbulence via shock-reflected ions. Our experimental results are analogous to many astrophysical systems, including the interaction of a comet with the solar wind9, a setting where electron acceleration via lower-hybrid waves is possible.

## Measurement of Atmospheric Neutrino Oscillations at 6-56 GeV with IceCube DeepCore.

Physical Review Letters **120** (2018) 071801-071801

We present a measurement of the atmospheric neutrino oscillation parameters using three years of data from the IceCube Neutrino Observatory. The DeepCore infill array in the center of IceCube enables the detection and reconstruction of neutrinos produced by the interaction of cosmic rays in Earth's atmosphere at energies as low as ∼5 GeV. That energy threshold permits measurements of muon neutrino disappearance, over a range of baselines up to the diameter of the Earth, probing the same range of L/E_{ν} as long-baseline experiments but with substantially higher-energy neutrinos. This analysis uses neutrinos from the full sky with reconstructed energies from 5.6 to 56 GeV. We measure Δm_{32}^{2}=2.31_{-0.13}^{+0.11}×10^{-3} eV^{2} and sin^{2}θ_{23}=0.51_{-0.09}^{+0.07}, assuming normal neutrino mass ordering. These results are consistent with, and of similar precision to, those from accelerator- and reactor-based experiments.

## Constraints on Massive Axion-Like Particles from X-ray Observations of NGC1275

Monthly Notices of the Royal Astronomical Society (2018)

## The impact of LHC jet data on the MMHT PDF fit at NNLO

EUROPEAN PHYSICAL JOURNAL C **78** (2018) ARTN 248

## Parton distributions and lattice QCD calculations: A community white paper

PROGRESS IN PARTICLE AND NUCLEAR PHYSICS **100** (2018) 107-160

## The string soundscape at gravitational wave detectors

PHYSICS LETTERS B **779** (2018) 348-352

## Reconstruction of a direction-dependent primordial power spectrum from Planck CMB data

Journal of Cosmology and Astroparticle Physics **2018** (2018)

© 2018 IOP Publishing Ltd and Sissa Medialab. We consider the possibility that the primordial curvature perturbation is direction-dependent. To first order this is parameterised by a quadrupolar modulation of the power spectrum and results in statistical anisotropy of the CMB, which can be quantified using 'bipolar spherical harmonics'. We compute these for the Planck DR2-2015 SMICA map and estimate the noise covariance from Planck Full Focal Plane 9 simulations. A constant quadrupolar modulation is detected with 2.2 σ significance, dropping to 2σ when the primordial power is assumed to scale with wave number k as a power law. Going beyond previous work we now allow the spectrum to have arbitrary scale-dependence. Our non-parametric reconstruction then suggests several spectral features, the most prominent at k ∼ 0.006 Mpc-1. When a constant quadrupolar modulation is fitted to data in the range 0.005 ≤ k/Mpc-1≤ 0.008, its preferred directions are found to be related to the cosmic hemispherical asymmetry and the CMB dipole. To determine the significance we apply two test statistics to our reconstructions of the quadrupolar modulation from data, against reconstructions of realisations of noise only. With a test statistic sensitive only to the amplitude of the modulation, the reconstructions from the multipole range 30 ≤ ℓ ≤ 1200 are unusual with 2.1σ significance. With the second test statistic, sensitive also to the direction, the significance rises to 6.9σ. Our approach is easily generalised to include other data sets such as polarisation, large-scale structure and forthcoming 21-cm line observations which will enable these anomalies to be investigated further.

## Collider constraints on light pseudoscalars

JOURNAL OF HIGH ENERGY PHYSICS (2018) ARTN 178

## Let there be light from a second light Higgs doublet

JOURNAL OF HIGH ENERGY PHYSICS (2018) ARTN 135

## The dipole anisotropy of AllWISE galaxies

Monthly Notices of the Royal Astronomical Society Blackwell Publishing Inc. **477** (2018) 1772-1781

We determine the dipole in the WISE galaxy catalogue. After reducing star contamination to <0.1% by rejecting sources with high apparent motion and those close to the Galactic plane, we eliminate low redshift sources to suppress the non-kinematic, clustering dipole. We remove sources within {\pm}5{\deg} of the super-galactic plane, as well as those within 1'' of 2MRS sources at redshift z < 0.03. We enforce cuts on the source angular extent to preferentially select distant ones. As we progress along these steps, the dipole converges in direction to within 5{\deg} of the CMB dipole and its magnitude also progressively reduces but stabilises at {\sim}0.012, corresponding to a velocity >1000 km/s if it is solely of kinematic origin. However, previous studies have shown that only {\sim}70% of the velocity of the Local Group as inferred from the CMB dipole is due to sources at z < 0.03. We examine the Dark Sky simulations to quantify the prevalence of such environments and find that <2.1% of Milky Way-like observers in a {\Lambda}CDM universe should observe the bulk flow (> 240 km/s extending to z > 0.03) that we do. We construct mock catalogues in the neighbourhood of such peculiar observers in order to mimic our final galaxy selection and quantify the residual clustering dipole. After subtracting this the remaining dipole is 0.0048 {\pm} 0.0022, corresponding to a velocity of 420 {\pm} 213 km/s which is consistent with the CMB. However the sources (at z > 0.03) of such a large clustering dipole remain to be identified.

## Discrete Symmetries of Calabi–Yau Hypersurfaces in Toric Four-Folds

Communications in Mathematical Physics (2017) 1-50

© 2017 The Author(s) We analyze freely-acting discrete symmetries of Calabi–Yau three-folds defined as hypersurfaces in ambient toric four-folds. An algorithm that allows the systematic classification of such symmetries which are linearly realised on the toric ambient space is devised. This algorithm is applied to all Calabi–Yau manifolds with (Formula presented.) obtained by triangulation from the Kreuzer–Skarke list, a list of some 350 manifolds. All previously known freely-acting symmetries on these manifolds are correctly reproduced and we find five manifolds with freely-acting symmetries. These include a single new example, a manifold with a (Formula presented.) symmetry where only one of the (Formula presented.) factors was previously known. In addition, a new freely-acting (Formula presented.) symmetry is constructed for a manifold with (Formula presented.). While our results show that there are more freely-acting symmetries within the Kreuzer–Skarke set than previously known, it appears that such symmetries are relatively rare.

## Paths to equilibrium in non-conformal collisions

JOURNAL OF HIGH ENERGY PHYSICS (2017) ARTN 154

## Phase transitions, inhomogeneous horizons and second-order hydrodynamics

JOURNAL OF HIGH ENERGY PHYSICS (2017) ARTN 129

## Second-order transport, quasinormal modes and zero-viscosity limit in the Gauss-Bonnet holographic fluid

Journal of High Energy Physics **2017** (2017)

© 2017, The Author(s). Gauss-Bonnet holographic fluid is a useful theoretical laboratory to study the effects of curvature-squared terms in the dual gravity action on transport coefficients, quasinormal spectra and the analytic structure of thermal correlators at strong coupling. To understand the behavior and possible pathologies of the Gauss-Bonnet fluid in 3 + 1 dimensions, we compute (analytically and non-perturbatively in the Gauss-Bonnet coupling) its second-order transport coefficients, the retarded two- and three-point correlation functions of the energy-momentum tensor in the hydrodynamic regime as well as the relevant quasinormal spectrum. The Haack-Yarom universal relation among the second-order transport coefficients is violated at second order in the Gauss-Bonnet coupling. In the zero-viscosity limit, the holographic fluid still produces entropy, while the momentum diffusion and the sound attenuation are suppressed at all orders in the hydrodynamic expansion. By adding higher-derivative electromagnetic field terms to the action, we also compute corrections to charge diffusion and identify the non-perturbative parameter regime in which the charge diffusion constant vanishes.

## Heterotic instanton superpotentials from complete intersection Calabi-Yau manifolds

JOURNAL OF HIGH ENERGY PHYSICS (2017) ARTN 032

## High-redshift radio galaxies and divergence from the CMB dipole

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY **471** (2017) 1045-1055