Publications


Limits on absorption from a 332-MHz survey for fast radio bursts

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 493 (2020) 4418-4427

KM Rajwade, MB Mickaliger, BW Stappers, CG Bassa, RP Breton, A Karastergiou, EF Keane


Initial results from a realtime FRB search with the GBT

Monthly Notices of the Royal Astronomical Society Oxford University Press 497 (2020) 352-360

D Agarwal, D Lorimer, MP Surnis, X Pei, A Karastergiou, G Golpayegani, D Werthimer, J Cobb, MA McLaughlin, S White, W Armour, DHE MacMahon, APV Siemion, G Foster

We present the data analysis pipeline, commissioning observations, and initial results from the GREENBURST fast radio burst (FRB) detection system on the Robert C. Byrd Green Bank Telescope (GBT) previously described by Surnis et al., which uses the 21-cm receiver observing commensally with other projects. The pipeline makes use of a state-of-the-art deep learning classifier to winnow down the very large number of false-positive single-pulse candidates that mostly result from radio frequency interference. In our observations, totalling 156.5 d so far, we have detected individual pulses from 20 known radio pulsars that provide an excellent verification of the system performance. We also demonstrate, through blind injection analyses, that our pipeline is complete down to a signal-to-noise threshold of 12. Depending on the observing mode, this translates into peak flux sensitivities in the range 0.14–0.89 Jy. Although no FRBs have been detected to date, we have used our results to update the analysis of Lawrence et al. to constrain the FRB all-sky rate to be 1150+200−180 per day above a peak flux density of 1 Jy. We also constrain the source count index α = 0.84 ± 0.06, which indicates that the source count distribution is substantially flatter than expected from a Euclidean distribution of standard candles (where α = 1.5). We discuss this result in the context of the FRB redshift and luminosity distributions. Finally, we make predictions for detection rates with GREENBURST, as well as other ongoing and planned FRB experiments.


Possible periodic activity in the repeating FRB 121102

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 495 (2020) 3551-3558

KM Rajwade, MB Mickaliger, BW Stappers, V Morello, D Agarwal, CG Bassa, RP Breton, M Caleb, A Karastergiou, EF Keane, DR Lorimer


S2COSMOS: Evolution of Gas Mass with Redshift Using Dust Emission

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2020)

HS Hwang, M Michałowski, A Babul, L Ho, Y Ao, JS Millard, SA Eales, M Smith, J Simpson, H Gomez, K Małek, Y Peng, A Bunker, M Sawicki, R Beeston, Y Toba, N Scoville, H Shim

<jats:title>Abstract</jats:title> <jats:p>We investigate the evolution of the gas mass fraction for galaxies in the COSMOS field using submillimetre emission from dust at 850μm. We use stacking methodologies on the 850 μm S2COSMOS map to derive the gas mass fraction of galaxies out to high redshifts, 0 ≤ z ≤ 5, for galaxies with stellar masses of $10^{9.5} < M_* ~(\rm M_{\odot }) < 10^{11.75}$. In comparison to previous literature studies we extend to higher redshifts, include more normal star-forming galaxies (on the main sequence), and also investigate the evolution of the gas mass fraction split by star-forming and passive galaxy populations. We find our stacking results broadly agree with scaling relations in the literature. We find tentative evidence for a peak in the gas mass fraction of galaxies at around z ∼ 2.5 − 3, just before the peak of the star formation history of the Universe. We find that passive galaxies are particularly devoid of gas, compared to the star-forming population. We find that even at high redshifts, high stellar mass galaxies still contain significant amounts of gas.</jats:p>


Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in root s=13 TeV pp collisions with the ATLAS detector

PHYSICAL REVIEW D 101 (2020) ARTN 072001

G Aad, B Abbott, DC Abbott, AA Abud, K Abeling, DK Abhayasinghe, SH Abidi, OS AbouZeid, NL Abraham, H Abramowicz, H Abreu, Y Abulaiti, BS Acharya, B Achkar, S Adachi, L Adam, CA Bourdarios, L Adamczyk, L Adamek, J Adelman, M Adersberger, A Adiguzel, S Adorni, T Adye, AA Affolder, Y Afik, C Agapopoulou, MN Agaras, A Aggarwal, C Agheorghiesei, JA Aguilar-Saavedra, F Ahmadov, WS Ahmed, X Ai, G Aielli, S Akatsuka, TPA Akesson, E Akilli, AV Akimov, K Al Khoury, GL Alberghi, J Albert, MJA Verzini, S Alderweireldt, M Aleksa, IN Aleksandrov, C Alexa, D Alexandre, T Alexopoulos, A Alfonsi, F Alfonsi, M Alhroob, B Ali, G Alimonti, J Alison, SP Alkire, C Allaire, BMM Allbrooke, BW Allen, PP Allport, A Aloisio, A Alonso, F Alonso, C Alpigiani, AA Alshehri, M Alvarez Estevez, D Alvarez Piqueras, MG Alviggi, Y Amaral Coutinho, A Ambler, L Ambroz, C Amelung, D Amidei, SP Amor Das Santos, S Amoroso, CS Amrouche, F An, C Anastopoulos, N Andari, T Andeen, CF Anders, JK Anders, A Andreazza, V Andrei, CR Anelli, S Angelidakis, A Angerami, AV Anisenkov, A Annovi, C Antel, MT Anthony, M Antonelli, DJA Antrim, F Anulli, M Aoki, JA Aparisi Pozo, LA Bella, G Arabidze, JP Araque, V Araujo Ferraz, R Araujo Pereira, C Arcangeletti, ATH Arce, FA Arduh, J-F Arguin, S Argyropoulos, J-H Arling, AJ Armbruster, A Armstrong, O Arnaez, H Arnold, A Artamonov, G Artoni, S Artz, S Asai, N Asbah, EM Asimakopoulou, L Asquith, J Assahsah, K Assamagan, R Astalos, RJ Atkin, M Atkinson, NB Atlay, H Atmani, K Augsten, G Avolio, R Avramidou, MK Ayoub, AM Azoulay, G Azuelos, H Bachacou, K Bachas, M Backes, F Backman, P Bagnaia, M Bahmani, H Bahrasemani, AJ Bailey, VR Bailey, JT Baines, M Bajic, C Bakalis, OK Baker, PJ Bakker, DB Gupta, S Balaji, EM Baldin, P Balek, F Balli, WK Balunas, J Balz, E Banas, A Bandyopadhyay, S Banerjee, AAE Bannoura, L Barak, WM Barbe, EL Barberio, D Barberis, M Barbero, G Barbour, T Barillari, M-S Barisits, J Barkeloo, T Barklow, R Barnea, SL Barnes, BM Barnett, RM Barnett, Z Barnovska-Blenessy, A Baroncelli, G Barone, AJ Barr, LB Navarro, F Barreiro, JBG da Costa, S Barsov, R Bartoldus, G Bartolini, AE Barton, P Bartos, A Basalaev, A Bassalat, MJ Basso, RL Bates, S Batlamous, JR Batley, B Batool, M Battaglia, M Bauce, F Bauer, KT Bauer, HS Bawa, JB Beacham, T Beau, PH Beauchemin, F Becherer, P Bechtle, HC Beck, HP Beck, K Becker, M Becker, C Becot, A Beddall, AJ Beddall, VA Bednyakov, M Bedognetti, TA Beermann, M Begalli, M Begel, A Behera, JK Behr, F Beisiegel, AS Bell, G Bella, L Bellagamba, A Bellerive, P Bellos, K Beloborodov, K Belotskiy, NL Belyaev, D Benchekroun, N Benekos, Y Benhammou, DP Benjamin, M Benoit, JR Bensinger, S Bentvelsen, L Beresford, M Beretta, D Berge, EB Kuutmann, N Berger, B Bergmann, LJ Bergsten, J Beringer, S Berlendis, NR Bernard, G Bernardi, C Bernius, FU Bernlochner, T Berry, P Berta, C Bertella, IA Bertram, OB Bylund, N Besson, A Bethani, S Bethke, A Betti, AJ Bevan, J Beyer, DS Bhattacharya, R Bi, RM Bianchi, O Biebel, D Biedermann, R Bielski, K Bierwagen, NV Biesuz, M Biglietti, TRV Billoud, M Bindi, A Bingul, C Bini, S Biondi, M Birman, T Bisanz, JP Biswal, D Biswas, A Bitadze, C Bittrich, K Bjorke, KM Black, T Blazek, I Bloch, C Blocker, A Blue, U Blumenschein, GJ Bobbink, VS Bobrovnikov, SS Bocchetta, A Bocci, D Boerner, D Bogavac, AG Bogdanchikov, C Bohm, V Boisvert, P Bokan, T Bold, AS Boldyrev, AE Bolz, M Bomben, M Bona, JS Bonilla, M Boonekamp, HM Borecka-Bielska, A Borisov, G Borissov, J Bortfeldt, D Bortoletto, D Boscherini, M Bosman, JDB Sola, K Bouaouda, J Boudreau, EV Bouhova-Thacker, D Boumediene, SK Boutle, A Boveia, J Boyd, D Boye, IR Boyko, AJ Bozson, J Bracinik, N Brahimi, G Brandt, O Brandt, F Braren, B Brau, JE Brau, WDB Madden, K Brendlinger, L Brenner, R Brenner, S Bressler, B Brickwedde, DL Briglin, D Britton, D Britzger, I Brock, R Brock, G Brooijmans, WK Brooks, E Brost, JH Broughton, PAB de Renstrom, D Bruncko, A Bruni, G Bruni, LS Bruni, S Bruno, BH Brunt, M Bruschi, N Bruscino, P Bryant, L Bryngemark, T Buanes, Q Buat, P Buchholz, AG Buckley, IA Budagov, MK Bugge, F Buehrer, O Bulekov, TJ Burch, S Burdin, CD Burgard, AM Burger, B Burghgrave, JTP Burr, CD Burton, JC Burzynski, V Buescher, E Buschmann, PJ Bussey, JM Butler, CM Buttar, JM Butterworth, P Butti, W Buttinger, A Buzatu, AR Buzykaev, G Cabras, S Cabrera Urban, D Caforio, H Cai, VMM Cairo, O Cakir, N Calace, P Calafiura, A Calandri, G Calderini, P Calfayan, G Callea, LP Caloba, S Calvente Lopez, D Calvet, S Calvet, TP Calvet, M Calvetti, RC Toro, S Camarda, D Camarero Munoz, P Camarri, D Cameron, RC Armadans, C Camincher, S Campana, M Campanelli, A Camplani, A Campoverde, V Canale, A Canesse, MC Bret, J Cantero, T Cao, Y Cao, MDMC Garrido, M Capua, R Cardarelli, F Cardillo, G Carducci, I Carli, T Carli, G Carlino, BT Carlson, L Carminati, RMD Carney, S Caron, E Carquin, S Carra, JWS Carter, MP Casado, AF Casha, DW Casper, R Castelijn, FL Castillo, V Castillo Gimenez, NF Castro, A Catinaccio, JR Catmore, A Cattai, J Caudron, V Cavaliere, E Cavallaro, M Cavalli-Sforza, V Cavasinni, E Celebi, F Ceradini, L Cerda Alberich, K Cerny, AS Cerqueira, A Cerri, L Cerrito, F Cerutti, A Cervelli, SA Cetin, Z Chadi, D Chakraborty, SK Chan, WS Chan, WY Chan, JD Chapman, B Chargeishvili, DG Charlton, TP Charman, CC Chau, S Che, S Chekanov, SV Chekulaev, GA Chelkov, MA Chelstowska, B Chen, C Chen, CH Chen, H Chen, J Chen, S Chen, SJ Chen, X Chen, Y Chen, Y-H Chen, HC Cheng, HJ Cheng, A Cheplakov, E Cheremushkina, RC El Moursli, E Cheu, K Cheung, TJA Chevalerias, L Chevalier, V Chiarella, G Chiarelli, G Chiodini, AS Chisholm, A Chitan, I Chiu, YH Chiu, MV Chizhov, K Choi, AR Chomont, S Chouridou, YS Chow, MC Chu, X Chu, J Chudoba, AJ Chuinard, JJ Chwastowski, L Chytka, D Cieri, KM Ciesla, D Cinca, V Cindro, IA Cioara, A Ciocio, F Cirotto, ZH Citron, M Citterio, DA Ciubotaru, BM Ciungu, A Clark, MR Clark, PJ Clark, C Clement, Y Coadou, M Cobal, A Coccaro, J Cochran, H Cohen, AEC Coimbra, L Colasurdo, B Cole, AP Colijn, J Collot, P Conde Muino, E Coniavitis, SH Connell, IA Connelly, S Constantinescu, F Conventi, AM Cooper-Sarkar, F Cormier, KJR Cormier, LD Corpe, M Corradi, EE Corrigan, F Corriveau, A Cortes-Gonzalez, MJ Costa, F Costanza, D Costanzo, G Cowan, JW Cowley, J Crane, K Cranmer, SJ Crawley, RA Creager, S Crepe-Renaudin, F Crescioli, M Cristinziani, V Croft, G Crosetti, A Cueto, TC Donszelmann, AR Cukierman, S Czekierda, P Czodrowski, MJCS De Sousa, PJV Fonseca, C Via, W Dabrowski, T Dado, S Dahbi, T Dai, C Dallapiccola, M Dam, G D'amen, V D'Amico, J Damp, JR Dandoy, MF Daneri, NP Dang, NS Dann, M Danninger, V Dao, G Darbo, O Dartsi, A Dattagupta, T Daubney, S D'Auria, W Davey, C David, T Davidek, DR Davis, I Dawson, K De, R De Asmundis, M De Beurs, S De Castro, S De Cecco, N De Groot, P de Jong, H De la Torre, A De Maria, D De Pedis, A De Salvo, U De Sanctis, M De Santis, A De Santo, KDV Corga, JBDV De Regie, C Debenedetti, DV Dedovich, AM Deiana, M Del Gaudio, J Del Peso, YD Diaz, D Delgove, F Deliot, CM Delitzsch, M Della Pietra, D Della Volpe, A Dell'Acqua, L Dell'Asta, M Delmastro, C Delporte, PA Delsart, DA DeMarco, S Demers, M Demichev, G Demontigny, SP Denisov, D Denysiuk, L D'Eramo, D Derendarz, JE Derkaoui, F Derue, P Dervan, K Desch, C Deterre, K Dette, C Deutsch, MR Devesa, PO Deviveiros, A Dewhurst, FA Di Bello, A Di Ciaccio, L Di Ciaccio, WK Di Clemente, C Di Donato, A Di Girolamo, G Di Gregorio, B Di Micco, R Di Nardo, KF Di Petrillo, R Di Sipio, D Di Valentino, C Diaconu, FA Dias, T Dias Do Vale, MA Diaz, J Dickinson, EB Diehl, J Dietrich, SD Cornell, A Dimitrievska, W Ding, J Dingfelder, F Dittus, F Djama, T Djobava, JI Djuvsland, MAB Vale, M Dobre, D Dodsworth, C Doglioni, J Dolejsi, Z Dolezal, M Donadelli, B Dong, J Donini, A D'onofrio, M D'Onofrio, J Dopke, A Doria, MT Dova, AT Doyle, E Drechsler, E Dreyer, T Dreyer, AS Drobac, Y Duan, F Dubinin, M Dubovsky, A Dubreuil, E Duchovni, G Duckeck, A Ducourthial, OA Ducu, D Duda, A Dudarev, AC Dudder, EM Duffield, L Duflot, M Duhrssen, C Duelsen, M Dumancic, AE Dumitriu, AK Duncan, M Dunford, A Duperrin, HD Yildiz, M Dueren, A Durglishvili, D Duschinger, B Dutta, D Duvnjak, GI Dyckes, M Dyndal, S Dysch, BS Dziedzic, KM Ecker, RC Edgar, MG Eggleston, T Eifert, G Eigen, K Einsweiler, T Ekelof, H El Jarrari, M El Kacimi, R El Kosseifi, V Ellajosyula, M Ellert, F Ellinghaus, AA Elliot, N Ellis, J Elmsheuser, M Elsing, D Emeliyanov, A Emerman, Y Enari, MB Epland, J Erdmann, A Ereditato, M Errenst, M Escalier, C Escobar, O Estrada Pastor, E Etzion, H Evans, A Ezhilov, F Fabbri, L Fabbri, V Fabiani, G Facini, RM Faisca Rodrigues Pereira, RM Fakhrutdinov, S Falciano, PJ Falke, S Falke, J Faltova, Y Fang, G Fanourakis, M Fanti, M Faraj, A Farbin, A Farilla, EM Farina, T Farooque, S Farrell, SM Farrington, P Farthouat, F Fassi, P Fassnacht, D Fassouliotis, MF Giannelli, WJ Fawcett, L Fayard, OL Fedin, W Fedorko, M Feickert, L Feligioni, A Fell, C Feng, EJ Feng, M Feng, MJ Fenton, AB Fenyuk, J Ferrando, A Ferrante, A Ferrari, P Ferrari, R Ferrari, DEF de Lima, A Ferrer, D Ferrere, C Ferretti, F Fiedler, A Filipcic, F Filthaut, KD Finelli, MCN Fiolhais, L Fiorini, F Fischer, WC Fisher, I Fleck, P Fleischmann, RRM Fletcher, T Flick, BM Flierl, L Flores, LRF Castillo, FM Follega, N Fomin, JH Foo, GT Forcolin, A Formica, FA Forster, AC Forti, AG Foster, MG Foti, D Fournier, H Fox, P Francavilla, S Francescato, M Franchini, S Franchino, D Francis, L Franconi, M Franklin, AN Fray, PM Freeman, B Freund, WS Freund, EM Freundlich, DC Frizzell, D Froidevaux, JA Frost, C Fukunaga, E Fullana Torregrosa, E Fumagalli, T Fusayasu, J Fuster, A Gabrielli, GP Gach, S Gadatsch, P Gadow, G Gagliardi, LG Gagnon, C Galea, B Galhardo, GE Gallardo, EJ Gallas, BJ Gallop, G Galster, RG Goni, KK Gan, S Ganguly, J Gao, Y Gao, YS Gao, C Garcia, JE Garcia Navarro, JAG Pascual, C Garcia-Argos, M Garcia-Sciveres, RW Gardner, N Garelli, S Gargiulo, V Garonne, A Gaudiello, G Gaudio, IL Gavrilenko, A Gavrilyuk, C Gay, G Gaycken, EN Gazis, AA Geanta, CM Gee, CNP Gee, J Geisen, M Geisen, MP Geisler, C Gemme, MH Genest, C Geng, S Gentile, S George, T Geralis, LO Gerlach, P Gessinger-Befurt, G Gessner, S Ghasemi, MG Bostanabad, A Ghosh, B Giacobbe, S Giagu, N Giangiacomi, P Giannetti, A Giannini, G Giannini, SM Gibson, M Gignac, D Gillberg, G Gilles, DM Gingrich, MP Giordani, FM Giorgi, PF Giraud, G Giugliarelli, D Giugni, F Giuli, S Gkaitatzis, I Gkialas, EL Gkougkousis, P Gkountoumis, LK Gladilin, C Glasman, J Glatzer, PCF Glaysher, A Glazov, GR Gledhill, M Goblirsch-Kolb, D Godin, S Goldfarb, T Golling, D Golubkov, A Gomes, RG Gama, R Goncalo, G Gonella, L Gonella, A Gongadze, F Gonnella, JL Gonski, S Gonzalez de la Hoz, S Gonzalez-Sevilla, GR Gonzalvo Rodriguez, L Goossens, PA Gorbounov, HA Gordon, B Gorini, E Gorini, A Gorisek, AT Goshaw, MI Gostkin, CA Gottardo, M Gouighri, D Goujdami, AG Goussiou, N Govender, C Goy, E Gozani, I Grabowska-Bold, EC Graham, J Gramling, E Gramstad, S Grancagnolo, M Grandi, V Gratchev, PM Gravila, FG Gravili, C Gray, HM Gray, C Grefe, K Gregersen, IM Gregor, P Grenier, K Grevtsov, C Grieco, NA Grieser, J Griffiths, AA Grillo, K Grimm, S Grinstein, J-F Grivaz, S Groh, E Gross, J Grosse-Knetter, ZJ Grout, C Grud, A Grummer, L Guan, W Guan, J Guenther, A Guerguichon, JGR Guerrero Rojas, F Guescini, D Guest, R Gugel, T Guillemin, S Guindon, U Gul, J Guo, W Guo, Y Guo, Z Guo, R Gupta, S Gurbuz, G Gustavino, M Guth, P Gutierrez, C Gutschow, C Guyot, C Gwenlan, CB Gwilliam, A Haas, C Haber, HK Hadavand, N Haddad, A Hadef, S Hageboeck, M Haleem, J Haley, G Halladjian, GD Hallewell, K Hamacher, P Hamal, K Hamano, H Hamdaoui, GN Hamity, K Han, L Han, S Han, YF Han, K Hanagaki, M Hance, DM Handl, B Haney, R Hankache, E Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hansen, EC Hanson, K Hara, T Harenberg, S Harkusha, PF Harrison, NM Hartmann, Y Hasegawa, A Hasib, S Hassani, S Haug, R Hauser, LB Havener, M Havranek, CM Hawkes, RJ Hawkings, D Hayden, C Hayes, RL Hayes, CP Hays, JM Hays, HS Hayward, SJ Haywood, F He, MP Heath, V Hedberg, L Heelan, S Heer, KK Heidegger, WD Heidorn, J Heilman, S Heim, T Heim, B Heinemann, JJ Heinrich, L Heinrich, C Heinz, J Hejbal, L Helary, A Held, S Hellesund, CM Helling, S Hellman, C Helsens, RCW Henderson, Y Heng, S Henkelmann, AMH Correia, GH Herbert, H Herde, V Herget, YH Jimenez, H Herr, MG Herrmann, T Herrmann, G Herten, R Hertenberger, L Hervas, TC Herwig, GG Hesketh, NP Hessey, A Higashida, S Higashino, E Higon-Rodriguez, K Hildebrand, E Hill, JC Hill, KK Hill, KH Hiller, SJ Hillier, M Hils, I Hinchliffe, F Hinterkeuser, M Hirose, S Hirose, D Hirschbuehl, B Hiti, O Hladik, DR Hlaluku, X Hoad, J Hobbs, N Hod, MC Hodgkinson, A Hoecker, F Hoenig, D Hohn, D Hohov, TR Holmes, M Holzbock, LBAH Hommels, S Honda, TM Hong, A Hoenle, BH Hooberman, WH Hopkins, Y Horii, P Horn, LA Horyn, S Hou, A Hoummada, J Howarth, J Hoya, M Hrabovsky, J Hrdinka, I Hristova, J Hrivnac, A Hrynevich, T Hryn'ova, PJ Hsu, S-C Hsu, Q Hu, S Hu, DP Huang, Y Huang, Z Hubacek, F Hubaut, M Huebner, F Huegging, TB Huffman, M Huhtinen, RFH Hunter, P Huo, AM Hupe, N Huseynov, J Huston, J Huth, R Hyneman, S Hyrych, G Iacobucci, G Iakovidis, I Ibragimov, L Iconomidou-Fayard, Z Idrissi, P Iengo, R Ignazzi, O Igonkina, R Iguchi, T Iizawa, Y Ikegami, M Ikeno, D Iliadis, N Ilic, F Iltzsche, G Introzzi, M Iodice, K Iordanidou, V Ippolito, MF Isacson, M Ishino, W Islam, C Issever, S Istin, F Ito, JMI Ponce, R Iuppa, A Ivina, H Iwasaki, JM Izen, V Izzo, P Jacka, P Jackson, RM Jacobs, BP Jaeger, V Jain, G Jaekel, KB Jakobi, K Jakobs, S Jakobsen, T Jakoubek, J Jamieson, KW Janas, R Jansky, J Janssen, M Janus, PA Janus, G Jarlskog, N Javadov, T Javurek, M Javurkova, F Jeanneau, L Jeanty, J Jejelava, A Jelinskas, P Jenni, J Jeong, N Jeong, S Jezequel, H Ji, J Jia, H Jiang, Y Jiang, Z Jiang, S Jiggins, FAJ Morales, JJ Pena, S Jin, A Jinaru, O Jinnouchi, H Jivan, P Johansson, KA Johns, CA Johnson, K Jon-And, RWL Jones, SD Jones, S Jones, TJ Jones, J Jongmanns, PM Jorge, J Jovicevic, X Ju, JJ Junggeburth, AJ Rozas, A Kaczmarska, M Kado, H Kagan, M Kagan, C Kahra, T Kaji, E Kajomovitz, CW Kalderon, A Kaluza, A Kamenshchikov, M Kaneda, L Kanjir, Y Kano, VA Kantserov, J Kanzaki, LS Kaplan, D Kar, K Karava, MJ Kareem, SN Karpov, ZM Karpova, V Kartvelishvili, AN Karyukhin, L Kashif, RD Kass, A Kastanas, C Kato, J Katzy, K Kawade, K Kawagoe, T Kawaguchi, T Kawamoto, G Kawamura, EF Kay, VF Kazanin, R Keeler, R Kehoe, JS Keller, E Kellermann, D Kelsey, JJ Kempster, J Kendrick, O Kepka, S Kersten, BP Kersevan, SK Haghighat, M Khader, F Khalil-Zada, M Khandoga, A Khanov, AG Kharlamov, T Kharlamova, EE Khoda, A Khodinov, TJ Khoo, E Khramov, J Khubua, S Kido, M Kiehn, CR Kilby, YK Kim, N Kimura, OM Kind, BT King, D Kirchmeier, J Kirk, AE Kiryunin, T Kishimoto, DP Kisliuk, V Kitali, O Kivernyk, T Klapdor-Kleingrothaus, M Klassen, MH Klein, M Klein, U Klein, K Kleinknecht, P Klimek, A Klimentov, T Klingl, T Klioutchnikova, FF Klitzner, P Kluit, S Kluth, E Kneringer, EBFG Knoops, A Knue, D Kobayashi, T Kobayashi, M Kobel, M Kocian, P Kodys, PT Koenig, T Koffas, NM Kohler, T Koi, M Kolb, I Koletsou, T Komarek, T Kondo, N Kondrashova, K Koeneke, AC Konig, T Kono, R Konoplich, V Konstantinides, N Konstantinidis, B Konya, R Kopeliansky, S Koperny, K Korcyl, K Kordas, G Koren, A Korn, I Korolkov, EV Korolkova, N Korotkova, O Kortner, S Kortner, T Kosek, VV Kostyukhin, A Kotwal, A Koulouris, A Kourkoumeli-Charalampidi, C Kourkoumelis, E Kourlitis, V Kouskoura, AB Kowalewska, R Kowalewski, C Kozakai, W Kozanecki, AS Kozhin, VA Kramarenko, G Kramberger, D Krasnopevtsev, MW Krasny, A Krasznahorkay, D Krauss, JA Kremer, J Kretzschmar, P Krieger, F Krieter, A Krishnan, K Krizka, K Kroeninger, H Kroha, J Kroll, J Krstic, U Kruchonak, H Krueger, N Krumnack, MC Kruse, JA Krzysiak, T Kubota, O Kuchinskaia, S Kuday, JT Kuechler, S Kuehn, A Kugel, T Kuhl, V Kukhtin, R Kukla, Y Kulchitsky, S Kuleshov, YP Kulinich, M Kuna, T Kunigo, A Kupco, T Kupfer, O Kuprash, H Kurashige, LL Kurchaninov, YA Kurochkin, A Kurova, MG Kurth, ES Kuwertz, M Kuze, AK Kvam, J Kvita, T Kwan, A La Rosa, L La Rotonda, F La Ruffa, C Lacasta, F Lacava, DPJ Lack, H Lacker, D Lacour, E Ladygin, R Lafaye, B Laforge, T Lagouri, S Lai, S Lammers, W Lampl, C Lampoudis, E Lancon, U Landgraf, MPJ Landon, MC Lanfermann, VS Lang, JC Lange, RJ Langenberg, AJ Lankford, F Lanni, K Lantzsch, A Lanza, A Lapertosa, S Laplace, JF Laporte, T Lari, FL Manghi, M Lassnig, TS Lau, A Laudrain, A Laurier, M Lavorgna, SD Lawlor, M Lazzaroni, B Le, E Le Guirriec, M LeBlanc, T LeCompte, F Ledroit-Guillon, ACA Lee, CA Lee, GR Lee, L Lee, SC Lee, SJ Lee, B Lefebvre, M Lefebvre, F Legger, C Leggett, K Lehmann, N Lehmann, GL Miotto, WA Leight, A Leisos, MAL Leite, CE Leitgeb, R Leitner, D Lellouch, KJC Leney, T Lenz, B Lenzi, R Leone, S Leone, C Leonidopoulos, A Leopold, G Lerner, C Leroy, R Les, CG Lester, M Levchenko, J Leveque, D Levin, LJ Levinson, DJ Lewis, B Li, C-Q Li, F Li, H Li, J Li, K Li, L Li, M Li, Q Li, QY Li, S Li, X Li, Y Li, Z Li, Z Liang, B Liberti, A Liblong, K Lie, CY Lin, K Lin, TH Lin, RA Linck, JH Lindon, AL Lionti, E Lipeles, A Lipniacka, M Lisovyi, TM Liss, A Lister, AM Litke, JD Little, B Liu, BL Liu, HB Liu, H Liu, JB Liu, JKK Liu, K Liu, M Liu, P Liu, Y Liu, YL Liu, YW Liu, M Livan, A Lleres, JL Merino, SL Lloyd, CY Lo, F Lo Sterzo, EM Lobodzinska, P Loch, S Loffredo, T Lohse, K Lohwasser, M Lokajicek, JD Long, RE Long, L Longo, KA Looper, JA Lopez, IL Paz, AL Solis, J Lorenz, NL Martinez, M Losada, PJ Loesel, A Loesle, X Lou, A Lounis, J Love, PA Love, JJ Lozano Bahilo, M Lu, YJ Lu, HJ Lubatti, C Luci, A Lucotte, C Luedtke, F Luehring, I Luise, L Luminari, B Lund-Jensen, MS Lutz, D Lynn, R Lysak, E Lytken, F Lyu, V Lyubushkin, T Lyubushkina, H Ma, Y Ma, G Maccarrone, A Macchiolo, CM Macdonald, JM Miguens, D Madaffari, R Madar, WF Mader, N Madysa, J Maeda, S Maeland, T Maeno, M Maerker, AS Maevskiy, V Magerl, N Magini, DJ Mahon, C Maidantchik, T Maier, A Maio, K Maj, O Majersky, S Majewski, Y Makida, N Makovec, B Malaescu, P Malecki, VP Maleev, F Malek, U Mallik, D Malon, C Malone, S Maltezos, S Malyukov, J Mamuzic, G Mancini, I Mandic, L Manhaes de Andrade Filho, IM Maniatis, JM Ramos, KH Mankinen, A Mann, A Manousos, B Mansoulie, I Manthos, S Manzoni, A Marantis, G Marceca, L Marchese, G Marchiori, M Marcisovsky, C Marcon, CAM Tobon, M Marjanovic, Z Marshall, MUF Martensson, S Marti-Garcia, CB Martin, TA Martin, VJ Martin, BMD Latour, L Martinelli, M Martinez, VIM Outschoorn, S Martin-Haugh, VS Martoiu, AC Martyniuk, A Marzin, SR Maschek, L Masetti, T Mashimo, R Mashinistov, J Masik, AL Maslennikov, L Massa, P Massarotti, P Mastrandrea, A Mastroberardino, T Masubuchi, D Matakias, A Matic, P Maettig, J Maurer, B Macek, DA Maximov, R Mazini, I Maznas, SM Mazza, SP Mc Kee, TG McCarthy, WP McCormack, EF McDonald, JA Mcfayden, G Mchedlidze, MA McKay, KD McLean, SJ McMahon, PC McNamara, CJ McNicol, RA McPherson, JE Mdhluli, ZA Meadows, S Meehan, T Megy, S Mehlhase, A Mehta, T Meideck, B Meirose, D Melini, BRM Garcia, JD Mellenthin, M Melo, F Meloni, A Melzer, SB Menary, ED Mendes Gouveia, L Meng, XT Meng, S Menke, E Meoni, S Mergelmeyer, SAM Merkt, C Merlassino, P Mermod, L Merola, C Meroni, O Meshkov, JKR Meshreki, A Messina, J Metcalfe, AS Mete, C Meyer, J Meyer, J-P Meyer, HM Zu Theenhausen, F Miano, M Michetti, RP Middleton, L Mijovic, G Mikenberg, M Mikestikova, M Mikuz, H Mildner, M Milesi, A Milic, DA Millar, DW Miller, A Milov, DA Milstead, RA Mina, AA Minaenko, M Minano Moya, IA Minashvili, AI Mincer, B Mindur, M Mineev, Y Minegishi, LM Mir, A Mirto, KP Mistry, T Mitani, J Mitrevski, VA Mitsou, M Mittal, O Miu, A Miucci, PS Miyagawa, A Mizukami, JU Mjornmark, T Mkrtchyan, M Mlynarikova, T Moa, K Mochizuki, P Mogg, S Mohapatra, R Moles-Valls, MC Mondragon, K Moenig, J Monk, E Monnier, A Montalbano, JM Berlingen, M Montella, F Monticelli, S Monzani, N Morange, D Moreno, MM Llacer, C Moreno Martinez, P Morettini, M Morgenstern, S Morgenstern, D Mori, M Morii, M Morinaga, V Morisbak, AK Morley, G Mornacchi, AP Morris, L Morvaj, P Moschovakos, B Moser, M Mosidze, T Moskalets, HJ Moss, J Moss, EJW Moyse, S Muanza, J Mueller, RSP Mueller, D Muenstermann, GA Mullier, JL Munoz Martinez, FJM Sanchez, P Murin, WJ Murray, A Murrone, M Muskinja, C Mwewa, AG Myagkov, J Myers, M Myska, BP Nachman, O Nackenhorst, AN Nag, K Nagai, K Nagano, Y Nagasaka, M Nagel, JL Nagle, E Nagy, AM Nairz, Y Nakahama, K Nakamura, T Nakamura, I Nakano, H Nanjo, F Napolitano, RFN Garcia, R Narayan, I Naryshkin, T Naumann, G Navarro, HA Neal, PY Nechaeva, F Nechansky, TJ Neep, A Negri, M Negrini, C Nellist, ME Nelson, S Nemecek, P Nemethy, M Nessi, MS Neubauer, M Neumann, PR Newman, YS Ng, YWY Ng, B Ngair, HDN Nguyen, T Nguyen Manh, E Nibigira, RB Nickerson, R Nicolaidou, DS Nielsen, J Nielsen, N Nikiforou, V Nikolaenko, I Nikolic-Audit, K Nikolopoulos, P Nilsson, HR Nindhito, Y Ninomiya, A Nisati, N Nishu, R Nisius, I Nitsche, T Nitta, T Nobe, Y Noguchi, I Nomidis, MA Nomura, M Nordberg, N Norjoharuddeen, T Novak, O Novgorodova, R Novotny, L Nozka, K Ntekas, E Nurse, FG Oakham, H Oberlack, J Ocariz, A Ochi, I Ochoa, JP Ochoa-Ricoux, K O'Connor, S Oda, S Odaka, S Oerdek, A Ogrodnik, A Oh, SH Oh, CC Ohm, H Oide, ML Ojeda, H Okawa, Y Okazaki, Y Okumura, T Okuyama, A Olariu, LF Oleiro Seabra, SA Olivares Pino, DO Damazio, JL Oliver, MJR Olsson, A Olszewski, J Olszowska, DC O'Neil, AP O'neill, A Onofre, PUE Onyisi, H Oppen, MJ Oreglia, GE Orellana, D Orestano, N Orlando, RS Orr, V O'Shea, R Ospanov, G Otero Y Garzon, H Otono, PS Ott, M Ouchrif, J Ouellette, F Ould-Saada, A Ouraou, Q Ouyang, M Owen, RE Owen, VE Ozcan, N Ozturk, J Pacalt, HA Pacey, K Pachal, A Pacheco Pages, C Padilla Aranda, SP Griso, M Paganini, G Palacino, S Palazzo, S Palestini, M Palka, D Pallin, I Panagoulias, CE Pandini, JGP Vazquez, P Pani, G Panizzo, L Paolozzi, C Papadatos, K Papageorgiou, S Parajuli, A Paramonov, DP Hernandez, SRP Saenz, B Parida, TH Park, AJ Parker, MA Parker, F Parodi, EW Parrish, JA Parsons, U Parzefall, LP Dominguez, VR Pascuzzi, JMP Pasner, E Pasqualucci, S Passaggio, F Pastore, P Pasuwan, S Pataraia, JR Pater, A Pathak, T Pauly, B Pearson, M Pedersen, LP Diaz, R Pedro, T Peiffer, SV Peleganchuk, O Penc, H Peng, BS Peralva, MM Perego, AP Pereira Peixoto, DV Perepelitsa, F Peri, L Perini, H Pernegger, S Perrella, K Peters, RFY Peters, BA Petersen, TC Petersen, E Petit, A Petridis, C Petridou, P Petroff, M Petrov, F Petrucci, M Pettee, NE Pettersson, K Petukhova, A Peyaud, R Pezoa, L Pezzotti, T Pham, FH Phillips, PW Phillips, MW Phipps, G Piacquadio, E Pianori, A Picazio, RH Pickles, R Piegaia, D Pietreanu, JE Pilcher, AD Pilkington, M Pinamonti, JL Pinfold, M Pitt, L Pizzimento, M-A Pleier, V Pleskot, E Plotnikova, P Podberezko, R Poettgen, R Poggi, L Poggioli, I Pogrebnyak, D Pohl, I Pokharel, G Polesello, A Poley, A Policicchio, R Polifka, A Polini, CS Pollard, V Polychronakos, D Ponomarenko, L Pontecorvo, S Popa, GA Popeneciu, L Portales, DMP Quintero, S Pospisil, K Potamianos, IN Potrap, CJ Potter, H Potti, T Poulsen, J Poveda, TD Powell, G Pownall, MEP Astigarraga, P Pralavorio, S Prell, D Price, M Primavera, S Prince, ML Proffitt, N Proklova, K Prokofiev, F Prokoshin, S Protopopescu, J Proudfoot, M Przybycien, D Pudzha, A Puri, P Puzo, J Qian, Y Qin, A Quadt, M Queitsch-Maitland, A Qureshi, M Racko, P Rados, F Ragusa, G Rahal, JA Raine, S Rajagopalan, AR Morales, K Ran, T Rashid, S Raspopov, DM Rauch, F Rauscher, S Rave, B Ravina, I Ravinovich, JH Rawling, M Raymond, AL Read, NP Readioff, M Reale, DM Rebuzzi, A Redelbach, G Redlinger, K Reeves, L Rehnisch, J Reichert, D Reikher, A Reiss, A Rej, C Rembser, M Renda, M Rescigno, S Resconi, ED Resseguie, S Rettie, E Reynolds, OL Rezanova, P Reznicek, E Ricci, R Richter, S Richter, E Richter-Was, O Ricken, M Ridel, P Rieck, CJ Riegel, O Rifki, M Rijssenbeek, A Rimoldi, M Rimoldi, L Rinaldi, G Ripellino, I Riu, JCR Vergara, F Rizatdinova, E Rizvi, C Rizzi, RT Roberts, SH Robertson, M Robin, D Robinson, JEM Robinson, CM Robles Gajardo, A Robson, A Rocchi, E Rocco, C Roda, S Rodriguez Bosca, A Rodriguez Perez, D Rodriguez Rodriguez, AMR Vera, S Roe, O Rohne, R Roehrig, CPA Roland, J Roloff, A Romaniouk, M Romano, N Rompotis, M Ronzani, L Roos, S Rosati, K Rosbach, G Rosin, BJ Rosser, E Rossi, LP Rossi, L Rossini, R Rosten, M Rotaru, J Rothberg, D Rousseau, G Rovelli, A Roy, D Roy, A Rozanov, Y Rozen, X Ruan, F Rubbo, F Ruehr, A Ruiz-Martinez, A Rummler, Z Rurikova, NA Rusakovich, HL Russell, L Rustige, JP Rutherfoord, EM Ruettinger, M Rybar, G Rybkin, EB Rye, A Ryzhov, P Sabatini, G Sabato, S Sacerdoti, HF-W Sadrozinski, R Sadykov, FS Tehrani, BS Samani, P Saha, S Saha, M Sahinsoy, A Sahu, M Saimpert, M Saito, T Saito, H Sakamoto, A Sakharov, D Salamani, G Salamanna, JE Salazar Loyola, PHS De Bruin, A Salnikov, J Salt, D Salvatore, F Salvatore, A Salvucci, A Salzburger, J Samarati, D Sammel, D Sampsonidis, D Sampsonidou, J Sanchez, AS Pineda, H Sandaker, CO Sander, IG Sanderswood, M Sandhoff, C Sandoval, DPC Sankey, M Sannino, Y Sano, A Sansoni, C Santoni, H Santos, SN Santpur, A Santra, A Sapronov, JG Saraiva, O Sasaki, K Sato, F Sauerburger, E Sauvan, P Savard, N Savic, R Sawada, C Sawyer, L Sawyer, C Sbarra, A Sbrizzi, T Scanlon, J Schaarschmidt, P Schacht, BM Schachtner, D Schaefer, L Schaefer, J Schaeffer, S Schaepe, U Schaefer, AC Schaffer, D Schaile, RD Schamberger, N Scharmberg, VA Schegelsky, D Scheirich, F Schenck, M Schernau, C Schiavi, S Schier, LK Schildgen, ZM Schillaci, EJ Schioppa, M Schioppa, KE Schleicher, S Schlenker, KR Schmidt-Sommerfeld, K Schmieden, C Schmitt, S Schmitt, S Schmitz, JC Schmoeckel, U Schnoor, L Schoeffel, A Schoening, PG Scholer, E Schopf, M Schott, JFP Schouwenberg, J Schovancova, S Schramm, F Schroeder, A Schulte, H-C Schultz-Coulon, M Schumacher, BA Schumm, P Schune, A Schwartzman, TA Schwarz, P Schwemling, R Schwienhorst, A Sciandra, G Sciolla, M Scodeggio, M Scornajenghi, F Scuri, F Scutti, LM Scyboz, CD Sebastiani, P Seema, SC Seidel, A Seiden, BD Seidlitz, T Seiss, JM Seixas, G Sekhniaidze, K Sekhon, SJ Sekula, N Semprini-Cesari, S Sen, S Senkin, C Serfon, L Serin, L Serkin, M Sessa, H Severini, T Sfiligoj, F Sforza, A Sfyrla, E Shabalina, JD Shahinian, NW Shaikh, DS Renous, LY Shan, R Shang, JT Shank, M Shapiro, A Sharma, AS Sharma, PB Shatalov, K Shaw, SM Shaw, A Shcherbakova, M Shehade, Y Shen, N Sherafati, AD Sherman, P Sherwood, L Shi, S Shimizu, CO Shimmin, Y Shimogama, M Shimojima, IPJ Shipsey, S Shirabe, M Shiyakova, J Shlomi, A Shmeleva, MJ Shochet, J Shojaii, DR Shope, S Shrestha, EM Shrif, E Shulga, P Sicho, AM Sickles, PE Sidebo, ES Haddad, O Sidiropoulou, A Sidoti, F Siegert, D Sijacki, SM Jr, OMV Silva, SB Silverstein, S Simion, E Simioni, R Simoniello, S Simsek, P Sinervo, V Sinetckii, NB Sinev, M Sioli, I Siral, SY Sivoklokov, J Sjoelin, E Skorda, P Skubic, M Slawinska, K Sliwa, R Slovak, V Smakhtin, BH Smart, J Smiesko, N Smirnov, SY Smirnov, Y Smirnov, LN Smirnova, O Smirnova, JW Smith, M Smizanska, K Smolek, A Smykiewicz, AA Snesarev, HL Snoek, IM Snyder, S Snyder, R Sobie, A Soffer, A Sogaard, F Sohns, CAS Sanchez, EY Soldatov, U Soldevila, AA Solodkov, A Soloshenko, OV Solovyanov, V Solovyev, P Sommer, H Son, W Song, WY Song, A Sopczak, F Sopkova, CL Sotiropoulou, S Sottocornola, R Soualah, AM Soukharev, D South, S Spagnolo, M Spalla, M Spangenberg, F Spano, D Sperlich, TM Spieker, R Spighi, G Spigo, M Spina, DP Spiteri, M Spousta, A Stabile, BL Stamas, R Stamen, M Stamenkovic, E Stanecka, B Stanislaus, MM Stanitzki, M Stankaityte, B Stapf, EA Starchenko, GH Stark, J Stark, SH Stark, P Staroba, P Starovoitov, S Starz, R Staszewski, G Stavropoulos, M Stegler, P Steinberg, AL Steinhebel, B Stelzer, HJ Stelzer, O Stelzer-Chilton, H Stenzel, TJ Stevenson, GA Stewart, MC Stockton, G Stoicea, M Stolarski, S Stonjek, A Straessner, J Strandberg, S Strandberg, M Strauss, P Strizenec, R Stroehmer, DM Strom, R Stroynowski, A Strubig, SA Stucci, B Stugu, J Stupak, NA Styles, D Su, S Suchek, VV Sulin, MJ Sullivan, DMS Sultan, S Sultansoy, T Sumida, S Sun, X Sun, K Suruliz, CJE Suster, MR Sutton, S Suzuki, M Svatos, M Swiatlowski, SP Swift, T Swirski, A Sydorenko, I Sykora, M Sykora, T Sykora, D Ta, K Tackmann, J Taenzer, A Taffard, R Tafirout, H Takai, R Takashima, K Takeda, T Takeshita, EP Takeva, Y Takubo, M Talby, AA Talyshev, NM Tamir, J Tanaka, M Tanaka, R Tanaka, ST Araya, S Tapprogge, ATA Mohamed, S Tarem, K Tariq, G Tarna, GF Tartarelli, P Tas, M Tasevsky, T Tashiro, E Tassi, A Tavares Delgado, Y Tayalati, AJ Taylor, GN Taylor, W Taylor, AS Tee, RT De Lima, P Teixeira-Dias, H Ten Kate, JJ Teoh, S Terada, K Terashi, J Terron, S Terzo, M Testa, RJ Teuscher, SJ Thais, T Theveneaux-Pelzer, F Thiele, DW Thomas, JO Thomas, JP Thomas, AS Thompson, PD Thompson, LA Thomsen, E Thomson, EJ Thorpe, Y Tian, RET Torres, VO Tikhomirov, YA Tikhonov, S Timoshenko, P Tipton, S Tisserant, K Todome, S Todorova-Nova, S Todt, J Tojo, S Tokar, K Tokushuku, E Tolley, KG Tomiwa, M Tomoto, L Tompkins, B Tong, P Tornambe, E Torrence, H Torres, ET Pastor, C Tosciri, J Toth, DR Tovey, A Traeet, CJ Treado, T Trefzger, F Tresoldi, A Tricoli, IM Trigger, S Trincaz-Duvoid, W Trischuk, B Trocme, A Trofymov, C Troncon, M Trovatelli, F Trovato, L Truong, M Trzebinski, A Trzupek, F Tsai, JC-L Tseng, PV Tsiareshka, A Tsirigotis, N Tsirintanis, V Tsiskaridze, EG Tskhadadze, M Tsopoulou, II Tsukerman, V Tsulaia, S Tsuno, D Tsybychev, Y Tu, A Tudorache, V Tudorache, TT Tulbure, AN Tuna, S Turchikhin, D Turgeman, IT Cakir, RJ Turner, RT Turra, PM Tuts, S Tzamarias, E Tzovara, G Ucchielli, K Uchida, I Ueda, M Ughetto, F Ukegawa, G Unal, A Undrus, G Unel, FC Ungaro, Y Unno, K Uno, J Urban, P Urquijo, G Usai, Z Uysal, L Vacavant, V Vacek, B Vachon, KOH Vadla, A Vaidya, C Valderanis, EV Santurio, M Valente, S Valentinetti, A Valero, L Valery, RA Vallance, A Vallier, JA Valls Ferrer, TR Van Daalen, P Van Gemmeren, I Van Vulpen, M Vanadia, W Vandelli, A Vaniachine, D Vannicola, R Vari, EW Varnes, C Varni, T Varol, D Varouchas, KE Varvell, ME Vasile, GA Vasquez, JG Vasquez, F Vazeille, D Vazquez Furelos, TV Schroeder, J Veatch, V Vecchio, MJ Veen, LM Veloce, F Veloso, S Veneziano, A Ventura, N Venturi, A Verbytskyi, V Vercesi, M Verducci, CMV Infante, C Vergis, W Verkerke, AT Vermeulen, JC Vermeulen, MC Vetterli, NV Maira, MVB Pinto, T Vickey, OEV Boeriu, GHA Viehhauser, L Vigani, M Villa, MV Perez, E Vilucchi, MG Vincter, GS Virdee, A Vishwakarma, C Vittori, I Vivarelli, M Vogel, P Vokac, SE von Buddenbrock, E Von Toerne, V Vorobel, K Vorobev, M Vos, JH Vossebeld, M Vozak, N Vranjes, MV Milosavljevic, V Vrba, M Vreeswijk, R Vuillermet, I Vukotic, P Wagner, W Wagner, J Wagner-Kuhr, S Wahdan, H Wahlberg, VM Walbrecht, J Walder, R Walker, SD Walker, W Walkowiak, V Wallangen, AM Wang, C Wang, F Wang, H Wang, J Wang, P Wang, Q Wang, R-J Wang, R Wang, SM Wang, WT Wang, W Wang, WX Wang, Y Wang, Z Wang, C Wanotayaroj, A Warburton, CP Ward, DR Wardrope, N Warrack, A Washbrook, AT Watson, MF Watson, G Watts, BM Waugh, AF Webb, S Webb, C Weber, MS Weber, SA Weber, SM Weber, AR Weidberg, J Weingarten, M Weirich, C Weiser, PS Wells, T Wenaus, T Wengler, S Wenig, N Wermes, MD Werner, M Wessels, TD Weston, K Whalen, NL Whallon, AM Wharton, AS White, A White, MJ White, D Whiteson, BW Whitmore, W Wiedenmann, M Wielers, N Wieseotte, C Wiglesworth, LAM Wiik-Fuchs, F Wilk, HG Wilkens, LJ Wilkins, HH Williams, S Williams, C Willis, S Willocq, JA Wilson, I Wingerter-Seez, E Winkels, F Winklmeier, OJ Winston, BT Winter, M Wittgen, M Wobisch, A Wolf, TMH Wolf, R Wolff, RW Wolker, J Wollrath, MW Wolter, H Wolters, VWS Wong, NL Woods, SD Worm, BK Wosiek, KW Wozniak, K Wraight, SL Wu, X Wu, Y Wu, TR Wyatt, BM Wynne, S Xella, Z Xi, L Xia, X Xiao, I Xiotidis, D Xu, H Xu, L Xu, T Xu, W Xu, Z Xu, B Yabsley, S Yacoob, K Yajima, DP Yallup, D Yamaguchi, Y Yamaguchi, A Yamamoto, M Yamatani, T Yamazaki, Y Yamazaki, Z Yan, HJ Yang, HT Yang, S Yang, X Yang, Y Yang, W-M Yao, YC Yap, Y Yasu, E Yatsenko, J Ye, S Ye, I Yeletskikh, MR Yexley, E Yigitbasi, K Yorita, K Yoshihara, CJS Young, C Young, J Yu, R Yuan, X Yue, SPY Yuen, M Zaazoua, B Zabinski, G Zacharis, E Zaffaroni, J Zahreddine, AM Zaitsev, T Zakareishvili, N Zakharchuk, S Zambito, D Zanzi, DR Zaripovas, SV Zeissner, C Zeitnitz, G Zemaityte, JC Zeng, O Zenin, T Zenis, D Zerwas, M Zgubic, DF Zhang, G Zhang, H Zhang, J Zhang, L Zhang, M Zhang, R Zhang, X Zhang, Y Zhang, Z Zhang, P Zhao, Y Zhao, Z Zhao, A Zhemchugov, Z Zheng, D Zhong, B Zhou, C Zhou, MS Zhou, M Zhou, N Zhou, Y Zhou, CG Zhu, HL Zhu, H Zhu, J Zhu, Y Zhu, X Zhuang, K Zhukov, V Zhulanov, D Zieminska, NI Zimine, S Zimmermann, Z Zinonos, M Ziolkowski, L Zivkovic, G Zobernig, A Zoccoli, K Zoch, TG Zorbas, R Zou, L Zwalinski, ATLAS Collaboration


The rest-frame UV luminosity function at z≃4 : a significant contribution of AGN to the bright-end of the galaxy population

Monthly Notices of the Royal Astronomical Society Oxford University Press 494 (2020) 1771-1783

N Adams, R Bowler, M Jarvis, B Haussler, R McLure, A Bunker, J Dunlop, A Verma

We measure the rest-frame UV luminosity function (LF) at z ∼ 4 self-consistently over a wide range in absolute magnitude (−27 . MUV . −20). The LF is measured with 46,904 sources selected using a photometric redshift approach over ∼ 6 deg2 of the combined COSMOS and XMM-LSS fields. We simultaneously fit for both AGN and galaxy LFs using a combination of Schechter or Double Power Law (DPL) functions alongside a single power law for the faint-end slope of the AGN LF. We find a lack of evolution in the shape of the bright-end of the LBG component when compared to other studies at z ' 5 and evolutionary recipes for the UV LF. Regardless of whether the LBG LF is fit with a Schechter function or DPL, AGN are found to dominate at MUV < −23.5. We measure a steep faint-end slope of the AGN LF with αAGN = −2.09+0.35 −0.38 (−1.66+0.29 −0.58) when fit alongside a Schechter function (DPL) for the galaxies. Our results suggest that if AGN are morphologically selected it results in a bias to lower number densities. Only by considering the full galaxy population over the transition region from AGN to LBG domination can an accurate measurement of the total LF be attained.


Measurement of the relative response of small-electrode CMOS sensors at Diamond Light Source

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 956 (2020) ARTN 163381

M Mironova, K Metodiev, P Allport, I Berdalovic, D Bortoletto, C Buttar, R Cardella, V Dao, M Dyndal, P Freeman, LFS de Acedo, L Gonella, T Kugathasan, H Pernegger, F Piro, R Plackett, P Riedler, A Sharma, EJ Schioppa, I Shipsey, CS Sanchez, W Snoeys, H Wennlof, D Weatherill, D Wood, S Worm


Evidence for electroweak production of two jets in association with a Z gamma pair in pp collisions at root S=13 TeV with the ATLAS detector

Physics Letters B Elsevier 803 (2020) 135341

G Aad, B Abbott, D Abbott, AA Abud, K Abeling, D Abhayasinghe, S Abidi, O AbouZeid, N Abraham, H Abramowicz, B Acharya, CA Bourdarios, L Adamczyk, M Adersberger, A Adiguzel, A Affolder, C Agapopoulou, C Agheorghiesei, J Aguilar-Saavedra, X Ai, G Aielli, A Akimov, T Alexopoulos

Evidence for electroweak production of two jets in association with a Zγ pair in s=13 TeV proton–proton collisions at the Large Hadron Collider is presented. The analysis uses data collected by the ATLAS detector in 2015 and 2016 that corresponds to an integrated luminosity of 36.1fb−1. Events that contain a Z boson candidate decaying leptonically into either e+e− or μ+μ−, a photon, and two jets are selected. The electroweak component is measured with observed and expected significances of 4.1 standard deviations. The fiducial cross-section for electroweak production is measured to be σZγjj−EW=7.8±2.0fb, in good agreement with the Standard Model prediction.


K-CLASH: Strangulation and ram pressure stripping in galaxy cluster members at 0.3 &lt; z &lt; 0.6

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 496 (2020) 3841-3861

SP Vaughan, AL Tiley, RL Davies, LJ Prichard, SM Croom, M Bureau, JP Stott, A Bunker, M Cappellari, B Ansarinejad, MJ Jarvis

&lt;jats:title&gt;ABSTRACT&lt;/jats:title&gt; &lt;jats:p&gt;Galaxy clusters have long been theorized to quench the star formation of their members. This study uses integral-field unit observations from the K-band MultiObject Spectrograph (KMOS) &#x2013; Cluster Lensing And Supernova survey with Hubble (CLASH) survey (K-CLASH) to search for evidence of quenching in massive galaxy clusters at redshifts 0.3 &amp;amp;lt; z &amp;amp;lt; 0.6. We first construct mass-matched samples of exclusively star-forming cluster and field galaxies, then investigate the spatial extent of their H&#x2009;&#x3B1; emission and study their interstellar medium conditions using emission line ratios. The average ratio of H&#x2009;&#x3B1; half-light radius to optical half-light radius ($r_{\mathrm{e}, {\rm {H}\,\alpha }}/r_{\mathrm{e}, R_{\mathrm{c} } }$) for all galaxies is 1.14&#xA0;&#xB1;&#xA0;0.06, showing that star formation is taking place throughout stellar discs at these redshifts. However, on average, cluster galaxies have a smaller $r_{\mathrm{e}, {\rm {H}\alpha }}/r_{\mathrm{e}, R_{\mathrm{c} } }$ ratio than field galaxies: &#x2329;$r_{\mathrm{e}, {\rm {H}\alpha }}/r_{\mathrm{e}, R_{\mathrm{c} } }$&#x232A;&#xA0;= 0.96&#xA0;&#xB1;&#xA0;0.09 compared to 1.22&#xA0;&#xB1;&#xA0;0.08 (smaller at a 98&#x2009;per&#x2009;cent credibility level). These values are uncorrected for the wavelength difference between H&#x2009;&#x3B1; emission and Rc-band stellar light but implementing such a correction only reinforces our results. We also show that whilst the cluster and field samples follow indistinguishable mass&#x2013;metallicity (MZ) relations, the residuals around the MZ relation of cluster members correlate with cluster-centric distance; galaxies residing closer to the cluster centre tend to have enhanced metallicities (significant at the 2.6&#x3C3; level). Finally, in contrast to previous studies, we find no significant differences in electron number density between the cluster and field galaxies. We use simple chemical evolution models to conclude that the effects of disc strangulation and ram-pressure stripping can quantitatively explain our observations.&lt;/jats:p&gt;


K-CLASH: spatially-resolving star-forming galaxies in field and cluster environments at z ≈ 0.2-0.6

Monthly Notices of the Royal Astronomical Society Oxford University Press (2020)

AL Tiley, JP Stott, R Davies, LJ Prichard, A Bunker, M Bureau, M Cappellari, M Jarvis, A Robotham, L Cortese, S Bellstedt, B Ansarinejad

We present the KMOS-CLASH (K-CLASH) survey, a K-band Multi-Object Spectrograph (KMOS) survey of the spatially-resolved gas properties and kinematics of 191 (predominantly blue) Hα-detected galaxies at 0.2 ≲ z ≲ 0.6 in field and cluster environments. K-CLASH targets galaxies in four Cluster Lensing And Supernova survey with Hubble (CLASH) fields in the KMOS IZ-band, over 7′ radius (≈2–3 Mpc) fields-of-view. K-CLASH aims to study the transition of star-forming galaxies from turbulent, highly star-forming disc-like and peculiar systems at z ≈ 1–3, to the comparatively quiescent, ordered late-type galaxies at z ≈ 0, and to examine the role of clusters in the build-up of the red sequence since z ≈ 1. In this paper, we describe the K-CLASH survey, present the sample, and provide an overview of the K-CLASH galaxy properties. We demonstrate that our sample comprises star-forming galaxies typical of their stellar masses and epochs, residing both in field and cluster environments. We conclude K-CLASH provides an ideal sample to bridge the gap between existing large integral-field spectroscopy surveys at higher and lower redshifts. We find that star-forming K-CLASH cluster galaxies at intermediate redshifts have systematically lower stellar masses than their star-forming counterparts in the field, hinting at possible “downsizing” scenarios of galaxy growth in clusters at these epochs. We measure no difference between the star-formation rates of Hα-detected, star-forming galaxies in either environment after accounting for stellar mass, suggesting that cluster quenching occurs very rapidly during the epochs probed by K-CLASH, or that star-forming K-CLASH galaxies in clusters have only recently arrived there, with insufficient time elapsed for quenching to have occured.


The origin of radio emission in broad absorption line quasars: Results from the LOFAR Two-metre Sky Survey (Corrigendum)

ASTRONOMY & ASTROPHYSICS 640 (2020) ARTN C4

LK Morabito, JH Matthews, PN Best, G Gurkan, MJ Jarvis, I Prandoni, KJ Duncan, MJ Hardcastle, M Kunert-Bajraszewska, AP Mechev, S Mooney, J Sabater, HJA Rottgering, TW Shimwell, DJB Smith, C Tasse, WL Williams


Formation channels of slowly rotating early-type galaxies

Astronomy and Astrophysics EDP Sciences 635 (2020) A129

D Krajnovic, U Ural, H Kuntschner, P Goudfrooij, M Wolfe, M Cappellari, R Davies, TP de Zeeuw, P-A Duc, E Emsellem, A Karick, RM McDermid, S Mei, T Naab

We study the evidence for a diversity of formation processes in early-type galaxies by presenting the first complete volume-limited sample of slow rotators with both integral-field kinematics from the ATLAS3D Project and high spatial resolution photometry from the Hubble Space Telescope. Analysing the nuclear surface brightness profiles of 12 newly imaged slow rotators, we classify their light profiles as core-less, and place an upper limit to the core size of about 10 pc. Considering the full magnitude and volume-limited ATLAS3D sample, we correlate the presence or lack of cores with stellar kinematics, including the proxy for the stellar angular momentum (λRe) and the velocity dispersion within one half-light radius (σe), stellar mass, stellar age, α-element abundance, and age and metallicity gradients. More than half of the slow rotators have core-less light profiles, and they are all less massive than 1011 M⊙. Core-less slow rotators show evidence for counter-rotating flattened structures, have steeper metallicity gradients, and a larger dispersion of gradient values (Δ[Z/H]¯ = −0.42 ± 0.18) than core slow rotators (Δ[Z/H]¯ = −0.23 ± 0.07). Our results suggest that core and core-less slow rotators have different assembly processes, where the former, as previously discussed, are the relics of massive dissipation-less merging in the presence of central supermassive black holes. Formation processes of core-less slow rotators are consistent with accretion of counter-rotating gas or gas-rich mergers of special orbital configurations, which lower the final net angular momentum of stars, but support star formation. We also highlight core fast rotators as galaxies that share properties of core slow rotators (i.e. cores, ages, σe, and population gradients) and core-less slow rotators (i.e. kinematics, λRe, mass, and larger spread in population gradients). Formation processes similar to those for core-less slow rotators can be invoked to explain the assembly of core fast rotators, with the distinction that these processes form or preserve cores.


The Thousand-Pulsar-Array programme on MeerKAT - I. Science objectives and first results

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 493 (2020) 3608-3615

S Johnston, A Karastergiou, MJ Keith, X Song, P Weltevrede, F Abbate, M Bailes, S Buchner, F Camilo, M Geyer, B Hugo, A Jameson, M Kramer, A Parthasarathy, DJ Reardon, A Ridolfi, M Serylak, RM Shannon, R Spiewak, W van Straten, VV Krishnan, F Jankowski, BW Meyers, L Oswald, B Posselt, C Sobey, A Szary, J van Leeuwen


The relation between the diffuse X-ray luminosity and the radio power of the central AGN in galaxy groups

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 497 (2020) 2163-2174

T Pasini, M Brüggen, F de Gasperin, L Bîrzan, E O’Sullivan, A Finoguenov, M Jarvis, M Gitti, F Brighenti, IH Whittam, JD Collier, I Heywood, G Gozaliasl

<jats:title>ABSTRACT</jats:title> <jats:p>Our understanding of how active galactic nucleus feedback operates in galaxy clusters has improved in recent years owing to large efforts in multiwavelength observations and hydrodynamical simulations. However, it is much less clear how feedback operates in galaxy groups, which have shallower gravitational potentials. In this work, using very deep Very Large Array and new MeerKAT observations from the MIGHTEE survey, we compiled a sample of 247 X-ray selected galaxy groups detected in the COSMOS field. We have studied the relation between the X-ray emission of the intra-group medium and the 1.4 GHz radio emission of the central radio galaxy. For comparison, we have also built a control sample of 142 galaxy clusters using ROSAT and NVSS data. We find that clusters and groups follow the same correlation between X-ray and radio emission. Large radio galaxies hosted in the centres of groups and merging clusters increase the scatter of the distribution. Using statistical tests and Monte Carlo simulations, we show that the correlation is not dominated by biases or selection effects. We also find that galaxy groups are more likely than clusters to host large radio galaxies, perhaps owing to the lower ambient gas density or a more efficient accretion mode. In these groups, radiative cooling of the intra-cluster medium could be less suppressed by active galactic nucleus heating. We conclude that the feedback processes that operate in galaxy clusters are also effective in groups.</jats:p>


New method for estimating detector efficiency for charged particles with Diamond Light Source

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 982 (2020)

K Metodiev, M Mironova, D Bortoletto, R Plackett, P Allport, IA Tortajada, R Cardella, F Dachs, V Dao, M Dyndal, LFS de Acedo, P Freeman, A Gabrielli, L Gonella, M Munker, H Pernegger, F Piro, P Riedler, A Sharma, EJ Schioppa, I Shipsey, W Snoeys, CS Sanchez, H Wennloef, DP Weatherill, D Wood, S Worm

© 2020 Elsevier B.V. Detector prototypes are commonly characterised in testbeams, either using charged particles or X-rays. Charged particles are used to quantify detector performance in terms of absolute efficiency, while X-rays can provide additional information about the detector structure. This paper presents an alternative approach to calculating charged particle efficiencies, using the results of an X-ray testbeam of the mini-MALTA CMOS prototype at Diamond Light Source, and additional laboratory measurements. Results are presented for an unirradiated and an irradiated sample and compared to the results of charged particle testbeams at SPS and ELSA. The extrapolated efficiencies are in agreement with the measured values. Additionally, the extrapolated efficiency maps provide more insight about the location of the pixel inefficiencies, due to the better spatial resolution of the X-ray testbeam.


Kinematic unrest of low mass galaxy groups

Astronomy and Astrophysics EDP Sciences 635 (2020) A36

J Devriendt, G Gozaliasl, A Finoguenov, HG Khosroshahi, C Laigle, CC Kirkpatrick, K Kiiveri, Y Dubois, J Ahoranta

In an effort to better understand the formation of galaxy groups, we examine the kinematics of a large sample of spectroscopically confirmed X-ray galaxy groups in the Cosmic Evolution Survey (COSMOS) with a high sampling of galaxy group members up to $z=1$. We compare our results with predictions from the cosmological hydrodynamical simulation of {\sc Horizon-AGN}. Using a phase-space analysis of dynamics of groups with halo masses of $M_{\mathrm{200c}}\sim 10^{12.6}-10^{14.50}M_\odot$, we show that the brightest group galaxies (BGG) in low mass galaxy groups ($M_{\mathrm{200c}}&lt;2 \times 10^{13} M_\odot$) have larger proper motions relative to the group velocity dispersion than high mass groups. The dispersion in the ratio of the BGG proper velocity to the velocity dispersion of the group, $\sigma_{\mathrm{BGG}}/\sigma_{group}$, is on average $1.48 \pm 0.13$ for low mass groups and $1.01 \pm 0.09$ for high mass groups. A comparative analysis of the {\sc Horizon-AGN} simulation reveals a similar increase in the spread of peculiar velocities of BGGs with decreasing group mass, though consistency in the amplitude, shape, and mode of the BGG peculiar velocity distribution is only achieved for high mass groups. The groups hosting a BGG with a large peculiar velocity are more likely to be offset from the $L_x-\sigma_{v}$ relation; this is probably because the peculiar motion of the BGG is influenced by the accretion of new members.


A flexible method for estimating luminosity functions via kernel density estimation

Astrophysical Journal Supplement American Astronomical Society 248 (2020)

Z Yuan, MJ Jarvis, J Wang

We propose a flexible method for estimating luminosity functions (LFs) based on kernel density estimation (KDE), the most popular nonparametric density estimation approach developed in modern statistics, to overcome issues surrounding the binning of LFs. One challenge in applying KDE to LFs is how to treat the boundary bias problem, as astronomical surveys usually obtain truncated samples predominantly due to the flux-density limits of surveys. We use two solutions, the transformation KDE method ( ) and the transformation–reflection KDE method ( ) to reduce the boundary bias. We develop a new likelihood cross-validation criterion for selecting optimal bandwidths, based on which the posterior probability distribution of the bandwidth and transformation parameters for and are derived within a Markov Chain Monte Carlo sampling procedure. The simulation result shows that and perform better than the traditional binning method, especially in the sparse data regime around the flux limit of a survey or at the bright end of the LF. To further improve the performance of our KDE methods, we develop the transformation–reflection adaptive KDE approach ( ). Monte Carlo simulations suggest that it has good stability and reliability in performance, and is around an order of magnitude more accurate than using the binning method. By applying our adaptive KDE method to a quasar sample, we find that it achieves estimates comparable to the rigorous determination in a previous work, while making far fewer assumptions about the LF. The KDE method we develop has the advantages of both parametric and nonparametric methods.


The Karl G. Jansky very large array sky survey (VLASS). Science case and survey design

Publications of the Astronomical Society of the Pacific 132 (2020)

M Lacy, SA Baum, CJ Chandler, S Chatterjee, TE Clarke, S Deustua, J English, J Farnes, BM Gaensler, N Gugliucci, G Hallinan, BR Kent, A Kimball, CJ Law, TJW Lazio, J Marvil, SA Mao, D Medlin, K Mooley, EJ Murphy, S Myers, R Osten, GT Richards, E Rosolowsky, L Rudnick

© 2020. The Astronomical Society of the Pacific. The Very Large Array Sky Survey (VLASS) is a synoptic, all-sky radio sky survey with a unique combination of high angular resolution (≈2.″5), sensitivity (a 1σ goal of 70 μJy/beam in the coadded data), full linear Stokes polarimetry, time domain coverage, and wide bandwidth (2–4 GHz). The first observations began in 2017 September, and observing for the survey will finish in 2024. VLASS will use approximately 5500 hr of time on the Karl G. Jansky Very Large Array (VLA) to cover the whole sky visible to the VLA (decl. &gt; −40°), a total of 33 885 deg2. The data will be taken in three epochs to allow the discovery of variable and transient radio sources. The survey is designed to engage radio astronomy experts, multi-wavelength astronomers, and citizen scientists alike. By utilizing an “on the fly” interferometry mode, the observing overheads are much reduced compared to a conventional pointed survey. In this paper, we present the science case and observational strategy for the survey, and also results from early survey observations.


Augmenting machine learning photometric redshifts with Gaussian mixture models

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2020)

P Hatfield, I Almosallam, M Jarvis, N Adams, R Bowler, Z Gomes, S Roberts, C Schreiber

&lt;jats:title&gt;Abstract&lt;/jats:title&gt; &lt;jats:p&gt;Wide-area imaging surveys are one of the key ways of advancing our understanding of cosmology, galaxy formation physics, and the large-scale structure of the Universe in the coming years. These surveys typically require calculating redshifts for huge numbers (hundreds of millions to billions) of galaxies - almost all of which must be derived from photometry rather than spectroscopy. In this paper we investigate how using statistical models to understand the populations that make up the colour-magnitude distribution of galaxies can be combined with machine learning photometric redshift codes to improve redshift estimates. In particular we combine the use of Gaussian Mixture Models with the high performing machine learning photo-z algorithm GPz and show that modelling and accounting for the different colour-magnitude distributions of training and test data separately can give improved redshift estimates, reduce the bias on estimates by up to a half, and speed up the run-time of the algorithm. These methods are illustrated using data from deep optical and near infrared data in two separate deep fields, where training and test data of different colour-magnitude distributions are constructed from the galaxies with known spectroscopic redshifts, derived from several heterogeneous surveys.&lt;/jats:p&gt;


Study of CMOS strip sensor for future silicon tracker

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 981 (2020)

Y Han, H Zhu, A Affolder, K Arndt, R Bates, M Benoit, F Di Bello, A Blue, D Bortoletto, M Buckland, C Buttar, P Caragiulo, Y Chen, D Das, D Doering, J Dopke, A Dragone, F Ehrler, V Fadeyev, W Fedorko, Z Galloway, C Gay, H Grabas, IM Gregor, P Grenier, A Grillo, B Hiti, M Hoeferkamp, LBA Hommels, T Huffman, J John, K Kanisauskas, C Kenney, G Kramberger, P Liu, W Lu, Z Liang, I Mandić, D Maneuski, F Martinez-Mckinney, S McMahon, L Meng, M Mikuz̆, D Muenstermann, R Nickerson, I Peric, P Phillips, R Plackett, F Rubbo, L Ruckman, J Segal, S Seidel, A Seiden, I Shipsey, W Song, M Stanitzki, D Su, C Tamma, R Turchetta, L Vigani, J Volk, R Wang, M Warren, F Wilson, S Worm, Q Xiu, J Zhang

© 2020 Elsevier B.V. Monolithic silicon sensors developed with High-Voltage CMOS (HV-CMOS) processes have become highly attractive for charged particle tracking. Compared with the standard CMOS sensors, HV-CMOS sensors can provide larger and deeper depletion regions that lead to larger signals and faster charge collection. They can provide high position resolution, low material budget, high radiation hardness and low cost that are desirable for high performance tracking in harsh collision environment. Various studies have been conducted to explore the technology feasibility for the large-area tracking systems at future collider experiments. CHESS (CMOS HV/HR Evaluation for Strip Sensor) sensor series have been developed as an alternative solution to the conventional silicon micro-strip detectors for the ATLAS inner tracker upgrade. The first prototype (named CHESS1) was to evaluate the diode geometry and the in-pixel analog electronics. Obtained test results were used to optimize the second prototype (named CHESS2). CHESS2 was implemented with a full digital readout architecture and realized as a full reticle sized monolithic sensor. In this paper, the basic characteristics of the CHESS2 prototype sensors and their performance in response to different input signals are presented.

Pages