Publications


Dense plasma heating by crossing relativistic electron beams

Physical Review E American Physical Society 95 (2016) 013211

N Ratan, NJ Sircombe, LA Ceurvorst, J Sadler, MF Kasim, J Holloway, MC Levy, R Trines, R Bingham, P Norreys

Here we investigate, using relativistic fluid theory and Vlasov-Maxwell simulations, the local heating of a dense plasma by two crossing electron beams. Heating occurs as an instability of the electron beams drives Langmuir waves which couple nonlinearly into damped ion-acoustic waves. Simulations show a factor 2.8 increase in electron kinetic energy with a coupling efficiency of 18%. Our results support applications to the production of warm dense matter and as a driver for inertial fusion plasmas.


Thomson scattering measurement of a collimated plasma jet generated by a high-power laser system

8TH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS (IFSA 2013) 688 (2016) ARTN 012098

T Ishikawa, Y Sakawa, T Morita, Y Yamaura, Y Kuramitsu, T Moritaka, T Sano, R Shimoda, K Tomita, K Uchino, S Matsukiyo, A Mizuta, N Ohnishi, R Crowston, N Woolsey, H Doyle, G Gregori, M Koenig, C Michaut, A Pelka, D Yuan, Y Li, K Zhang, J Zhong, F Wang, H Takabe, IOP


Spherical shock in the presence of an external magnetic field

8TH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS (IFSA 2013) 688 (2016) ARTN 012056

Y Kuramitsu, S Matsukiyo, S Isayama, D Harada, T Oyama, R Fujino, Y Sakawa, T Morita, Y Yamaura, T Ishikawa, T Moritaka, T Sano, K Tomita, R Shimoda, Y Sato, K Uchino, A Pelka, R Crowston, N Woolsey, G Gregori, M Koenig, DW Yuan, CL Yin, YT Li, K Zhang, JY Zhong, FL Wang, N Ohnishi, K Nagamine, H Yoneda, H Takabe, IOP


Laboratory astrophysical collisionless shock experiments on Omega and NIF

8TH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS (IFSA 2013) 688 (2016) ARTN 012084

H-S Park, JS Ross, CM Huntington, F Fiuza, D Ryutov, D Casey, RP Drake, G Fiksel, D Froula, G Gregori, NL Kugland, C Kuranz, MC Levy, CK Li, J Meinecke, T Morita, R Petrasso, C Plechaty, B Remington, Y Sakawa, A Spitkovsky, H Takabe, AB Zylstra, IOP


Proton imaging of an electrostatic field structure formed in laser-produced counter-streaming plasmas

8TH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS (IFSA 2013) 688 (2016) ARTN 012071

T Morita, NL Kugland, W Wan, R Crowston, RP Drake, F Fiuza, G Gregori, C Huntington, T Ishikawa, M Koenig, C Kuranz, MC Levy, D Martinez, J Meinecke, F Miniati, CD Murphy, A Pelka, C Plechaty, R Presura, N Quiros, BA Remington, B Reville, JS Ross, DD Ryutov, Y Sakawa, L Steele, H Takabe, Y Yamaura, N Woolsey, H-S Park, IOP


Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering

Nature Communications 7 (2016)

J Vieira, RMGM Trines, EP Alves, RA Fonseca, JT Mendonça, R Bingham, P Norreys, LO Silva

© 2016, Nature Publishing Group. All rights reserved. Twisted Laguerre-Gaussian lasers, with orbital angular momentum and characterized by doughnut-shaped intensity profiles, provide a transformative set of tools and research directions in a growing range of fields and applications, from super-resolution microcopy and ultra-fast optical communications to quantum computing and astrophysics. The impact of twisted light is widening as recent numerical calculations provided solutions to long-standing challenges in plasma-based acceleration by allowing for high-gradient positron acceleration. The production of ultra-high-intensity twisted laser pulses could then also have a broad influence on relativistic laser-matter interactions. Here we show theoretically and with ab initio three-dimensional particle-in-cell simulations that stimulated Raman backscattering can generate and amplify twisted lasers to petawatt intensities in plasmas. This work may open new research directions in nonlinear optics and high-energy-density science, compact plasma-based accelerators and light sources.


EFFECT OF PREPLASMA ON DOUBLE PULSE IRRADIATION OF TARGETS FOR PROTON ACCELERATION

2016 43RD IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCE (ICOPS) (2016)

S Kerr, MZ Mo, R Masud, X Jin, L Manzoor, HF Tiedje, Y Tsui, R Fedosejevs, A Link, P Patel, HS McLean, A Hazi, H Chen, L Ceurvorst, P Norreys, IEEE


AWAKE: A Proton-Driven Plasma Wakefield Acceleration Experiment at CERN

NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS 273 (2016) 175-180

C Bracco, LD Amorim, R Assmann, F Batsch, R Bingham, G Burt, B Buttenschoen, A Butterworth, A Caldwell, S Chattopadhyay, S Cipiccia, LC Deacon, S Doebert, U Dorda, E Feldbaumer, RA Fonseca, V Fedossev, B Goddard, J Grebenyuk, O Grulke, E Gschwendtner, J Hansen, C Hessler, W Hofle, J Holloway, D Jaroszynski, M Jenkins, L Jensen, S Jolly, R Jones, MF Kasim, N Lopes, K Lotov, SR Mandry, M Martyanov, M Meddahi, O Mete, V Minakov, J Moody, P Muggli, Z Najmudin, PA Norreys, E Oez, A Pardons, A Petrenko, A Pukhov, K Rieger, O Reimann, AA Seryi, E Shaposhnikova, P Sherwood, LO Silva, A Sosedkin, R Tarkeshian, RMGM Trines, FM Velotti, J Vieira, H Vincke, C Welsch, M Wing, G Xia


Theory of density fluctuations in strongly radiative plasmas

Physical Review E American Physical Society 93 (2016) 033201

JE Cross, P Mabey, DO Gericke, G Gregori

Derivation of the dynamic structure factor, an important parameter linking experimental and theoretical work in dense plasmas, is possible starting from hydrodynamic equations. Here we obtain, by modifying the governing hydrodynamic equations, a new form of the dynamic structure factor which includes radiative terms. The inclusion of such terms has an effect on the structure factor at high temperatures, which suggests that its effect must be taken into consideration in such regimes.


Path to AWAKE: Evolution of the concept

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 829 (2016) 3-16

A Caldwell, E Adli, L Amorim, R Apsimon, T Argyropoulos, R Assmann, A-M Bachmann, E Batsch, J Bauche, VKB Olsen, M Bernardini, R Bingham, B Biskup, T Bohl, C Bracco, PN Burrows, G Burt, B Buttenschoen, A Butterworth, M Cascella, S Chattopadhyay, E Chevallay, S Cipiccia, H Damerau, L Deacon, R Dirksen, S Doebert, U Dorda, E Eisen, J Farmer, S Fartoukh, V Fedosseev, E Feldbaumer, R Fiorito, R Fonseca, F Friebel, G Geschonke, B Goddard, AA Gorn, O Grulke, E Gschwendtner, J Hansen, C Hessler, S Hillenbrand, W Hofle, J Holloway, C Huang, M Huether, D Jaroszynski, L Jensen, S Jolly, A Joulaei, M Kasim, F Keeble, R Kersevan, N Kumar, Y Li, S Liu, N Lopes, KV Lotov, W Lu, J Machacek, S Mandry, I Martin, R Martorelli, M Martyanov, S Mazzoni, M Meddahi, L Merminga, O Mete, VA Minakov, J Mitchell, J Moody, A-S Mueller, Z Najmudin, TCQ Noakes, P Norreys, J Osterhoff, E Oez, A Pardons, K Pepitone, A Petrenko, G Plyushchev, J Pozimski, A Pukhov, O Reimann, K Rieger, S Roesler, H Ruhl, T Rusnak, E Salveter, N Savard, J Schmidt, H von der Schmitt, A Seryi, E Shaposhnikova, ZM Sheng, R Sherwood, L Silva, F Simon, L Soby, AP Sosedkin, RI Spitsyn, T Tajima, R Tarkeshian, H Timko, R Trines, T Tueckmantel, PV Tuev, M Turner, E Velotti, V Verzilov, J Vieira, H Vincke, Y Wei, CP Welsch, M Wing, G Xia, V Yakimenko, H Zhang, F Zimmermann


From microjoules to megajoules and kilobars to gigabars: Probing matter at extreme states of deformation

PHYSICS OF PLASMAS 22 (2015) ARTN 090501

BA Remington, RE Rudd, JS Wark


Mitigating the relativistic laser beam filamentation via an elliptical beam profile.

Physical review. E, Statistical, nonlinear, and soft matter physics 92 (2015) 053106-

TW Huang, CT Zhou, APL Robinson, B Qiao, H Zhang, SZ Wu, HB Zhuo, PA Norreys, XT He

It is shown that the filamentation instability of relativistically intense laser pulses in plasmas can be mitigated in the case where the laser beam has an elliptically distributed beam profile. A high-power elliptical Gaussian laser beam would break up into a regular filamentation pattern-in contrast to the randomly distributed filaments of a circularly distributed laser beam-and much more laser power would be concentrated in the central region. A highly elliptically distributed laser beam experiences anisotropic self-focusing and diffraction processes in the plasma channel ensuring that the unstable diffractive rings of the circular case cannot be produced. The azimuthal modulational instability is thereby suppressed. These findings are verified by three-dimensional particle-in-cell simulations.


Ultrafast electron kinetics in short pulse laser-driven dense hydrogen

JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS 48 (2015) ARTN 224004

U Zastrau, P Sperling, C Fortmann-Grote, A Becker, T Bornath, R Bredow, T Doeppner, T Fennel, LB Fletcher, E Foerster, S Goede, G Gregori, M Harmand, V Hilbert, T Laarmann, HJ Lee, T Ma, KH Meiwes-Broer, JP Mithen, CD Murphy, M Nakatsutsumi, P Neumayer, A Przystawik, S Skruszewicz, J Tiggesbaeumker, S Toleikis, TG White, SH Glenzer, R Redmer, T Tschentscher


Simulations of in situ x-ray diffraction from uniaxially compressed highly textured polycrystalline targets

JOURNAL OF APPLIED PHYSICS 118 (2015) ARTN 065902

D McGonegle, D Milathianaki, BA Remington, JS Wark, A Higginbotham


Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs.

Nature communications 6 (2015) 8742-

N Booth, APL Robinson, P Hakel, RJ Clarke, RJ Dance, D Doria, LA Gizzi, G Gregori, P Koester, L Labate, T Levato, B Li, M Makita, RC Mancini, J Pasley, PP Rajeev, D Riley, E Wagenaars, JN Waugh, NC Woolsey

Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. The inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.


Direct Observation of Melting in Shock-Compressed Bismuth With Femtosecond X-ray Diffraction.

Physical review letters 115 (2015) 095701-

MG Gorman, R Briggs, EE McBride, A Higginbotham, B Arnold, JH Eggert, DE Fratanduono, E Galtier, AE Lazicki, HJ Lee, HP Liermann, B Nagler, A Rothkirch, RF Smith, DC Swift, GW Collins, JS Wark, MI McMahon

The melting of bismuth in response to shock compression has been studied using in situ femtosecond x-ray diffraction at an x-ray free electron laser. Both solid-solid and solid-liquid phase transitions are documented using changes in discrete diffraction peaks and the emergence of broad, liquid scattering upon release from shock pressures up to 14 GPa. The transformation from the solid state to the liquid is found to occur in less than 3 ns, very much faster than previously believed. These results are the first quantitative measurements of a liquid material obtained on shock release using x-ray diffraction, and provide an upper limit for the time scale of melting of bismuth under shock loading.


X-ray free-electron laser studies of dense plasmas

JOURNAL OF PLASMA PHYSICS 81 (2015) ARTN 365810501

SM Vinko


Self-consistent inclusion of classical large-angle Coulomb collisions in plasma Monte Carlo simulations

JOURNAL OF COMPUTATIONAL PHYSICS 299 (2015) 144-155

AE Turrell, M Sherlock, SJ Rose


Laser-driven platform for generation and characterization of strong quasi-static magnetic fields

NEW JOURNAL OF PHYSICS 17 (2015) ARTN 083051

JJ Santos, M Bailly-Grandvaux, L Giuffrida, P Forestier-Colleoni, S Fujioka, Z Zhang, P Korneev, R Bouillaud, S Dorard, D Batani, M Chevrot, JE Cross, R Crowston, J-L Dubois, J Gazave, G Gregori, E d'Humieres, S Hulin, K Ishihara, S Kojima, E Loyez, J-R Marques, A Morace, P Nicolai, O Peyrusse, A Poye, D Raffestin, J Ribolzi, M Roth, G Schaumann, F Serres, VT Tikhonchuk, P Vacar, N Woolsey


The generation and amplification of intergalactic magnetic fields in analogue laboratory experiments with high power lasers

PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS 601 (2015) 1-34

G Gregori, B Reville, F Miniati

Pages