Publications associated with Dark matter

Geant4-based electromagnetic background model for the CRESST dark matter experiment.

The European physical journal. C, Particles and fields 79 (2019) 881-

AH Abdelhameed, G Angloher, P Bauer, A Bento, E Bertoldo, R Breier, C Bucci, L Canonica, A D'Addabbo, SD Lorenzo, A Erb, FV Feilitzsch, NF Iachellini, S Fichtinger, A Fuss, P Gorla, D Hauff, M Jes Kovský, J Jochum, J Kaizer, A Kinast, H Kluck, H Kraus, A Langenkämper, M Mancuso, V Mokina, E Mondragón, M Olmi, T Ortmann, C Pagliarone, V Palus Ová, L Pattavina, F Petricca, W Potzel, P Povinec, F Pröbst, F Reindl, J Rothe, K Schäffner, J Schieck, V Schipperges, D Schmiedmayer, S Schönert, C Schwertner, M Stahlberg, L Stodolsky, C Strandhagen, R Strauss, C Türkoğlu, I Usherov, M Willers, V Zema, J Zeman

The CRESST (Cryogenic Rare Event Search with Superconducting Thermometers) dark matter search experiment aims for the detection of dark matter particles via elastic scattering off nuclei in CaWO4 crystals. To understand the CRESST electromagnetic background due to the bulk contamination in the employed materials, a model based on Monte Carlo simulations was developed using the Geant4 simulation toolkit. The results of the simulation are applied to the TUM40 detector module of CRESST-II phase 2. We are able to explain up to (68±16)% of the electromagnetic background in the energy range between 1 and 40keV .

Show full publication list