The faint radio source population at 15.7 GHz - IV. The dominance of core emission in faint radio galaxies


I Whittam, D Green, M Jarvis, J Riley

S2COSMOS: Evolution of Gas Mass with Redshift Using Dust Emission

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2020)

HS Hwang, M Michałowski, A Babul, L Ho, Y Ao, JS Millard, SA Eales, M Smith, J Simpson, H Gomez, K Małek, Y Peng, A Bunker, M Sawicki, R Beeston, Y Toba, N Scoville, H Shim

<jats:title>Abstract</jats:title> <jats:p>We investigate the evolution of the gas mass fraction for galaxies in the COSMOS field using submillimetre emission from dust at 850μm. We use stacking methodologies on the 850 μm S2COSMOS map to derive the gas mass fraction of galaxies out to high redshifts, 0 ≤ z ≤ 5, for galaxies with stellar masses of $10^{9.5} < M_* ~(\rm M_{\odot }) < 10^{11.75}$. In comparison to previous literature studies we extend to higher redshifts, include more normal star-forming galaxies (on the main sequence), and also investigate the evolution of the gas mass fraction split by star-forming and passive galaxy populations. We find our stacking results broadly agree with scaling relations in the literature. We find tentative evidence for a peak in the gas mass fraction of galaxies at around z ∼ 2.5 − 3, just before the peak of the star formation history of the Universe. We find that passive galaxies are particularly devoid of gas, compared to the star-forming population. We find that even at high redshifts, high stellar mass galaxies still contain significant amounts of gas.</jats:p>

Scale invariant gravity and black hole ringdown

Physical Review D American Physical Society 101 (2020) 024011

P Ferreira, OJ Tattersall

A Search for MeV to TeV Neutrinos from Fast Radio Bursts with IceCube

The Astrophysical Journal: an international review of astronomy and astronomical physics American Astronomical Society (2020)

GW Sullivan, T Stürwald, K Tollefson, T Stuttard, L Tomankova, A Terliuk, F Tenholt, I Taboada, S Tilav, M Tselengidou, S Toscano, CF Turley, A Turcati, R Turcotte, C Tönnis, A Trettin, CF Tung, D Tosi, J Vandenbroucke, MAU Elorrieta, NV Eijndhoven, WV Driessche, S Vanheule, E Unger, M Usner

We present two searches for IceCube neutrino events coincident with 28 fast radio bursts (FRBs) and one repeating FRB. The first improves upon a previous IceCube analysis -- searching for spatial and temporal correlation of events with FRBs at energies greater than roughly 50 GeV -- by increasing the effective area by an order of magnitude. The second is a search for temporal correlation of MeV neutrino events with FRBs. No significant correlation is found in either search, therefore, we set upper limits on the time-integrated neutrino flux emitted by FRBs for a range of emission timescales less than one day. These are the first limits on FRB neutrino emission at the MeV scale, and the limits set at higher energies are an order-of-magnitude improvement over those set by any neutrino telescope.

The rest-frame UV luminosity function at z≃4 : a significant contribution of AGN to the bright-end of the galaxy population

Monthly Notices of the Royal Astronomical Society Oxford University Press (2020) staa687

N Adams, R Bowler, M Jarvis, B Haussler, R McLure, A Bunker, J Dunlop, A Verma

We measure the rest-frame UV luminosity function (LF) at z ∼ 4 self-consistently over a wide range in absolute magnitude (−27 . MUV . −20). The LF is measured with 46,904 sources selected using a photometric redshift approach over ∼ 6 deg2 of the combined COSMOS and XMM-LSS fields. We simultaneously fit for both AGN and galaxy LFs using a combination of Schechter or Double Power Law (DPL) functions alongside a single power law for the faint-end slope of the AGN LF. We find a lack of evolution in the shape of the bright-end of the LBG component when compared to other studies at z ' 5 and evolutionary recipes for the UV LF. Regardless of whether the LBG LF is fit with a Schechter function or DPL, AGN are found to dominate at MUV < −23.5. We measure a steep faint-end slope of the AGN LF with αAGN = −2.09+0.35 −0.38 (−1.66+0.29 −0.58) when fit alongside a Schechter function (DPL) for the galaxies. Our results suggest that if AGN are morphologically selected it results in a bias to lower number densities. Only by considering the full galaxy population over the transition region from AGN to LBG domination can an accurate measurement of the total LF be attained.

A lack of evolution in the very bright-end of the galaxy luminosity function from z ≃ 8-10

Monthly Notices of the Royal Astronomical Society Oxford University Press 493 (2020) 2059-2084

R Bowler, M Jarvis, JS Dunlop, HJ McCracken

We utilize deep near-infrared survey data from the UltraVISTA fourth data release (DR4) and the VIDEO survey, in combination with overlapping optical and Spitzer data, to search for bright star-forming galaxies at z ≳ 7.5. Using a full photometric redshift fitting analysis applied to the ∼6 deg2 of imaging searched, we find 27 Lyman break galaxies (LBGs), including 20 new sources, with best-fitting photometric redshifts in the range 7.4 < z < 9.1. From this sample, we derive the rest-frame UV luminosity function at z = 8 and z = 9 out to extremely bright UV magnitudes (MUV ≃ −23) for the first time. We find an excess in the number density of bright galaxies in comparison to the typically assumed Schechter functional form derived from fainter samples. Combined with previous studies at lower redshift, our results show that there is little evolution in the number density of very bright (MUV ∼ −23) LBGs between z ≃ 5 and z ≃ 9. The tentative detection of an LBG with best-fitting photometric redshift of z = 10.9 ± 1.0 in our data is consistent with the derived evolution. We show that a double power-law fit with a brightening characteristic magnitude (ΔM*/Δz ≃ −0.5) and a steadily steepening bright-end slope (Δβ/Δz ≃ −0.5) provides a good description of the z > 5 data over a wide range in absolute UV magnitude (−23 < MUV < −17). We postulate that the observed evolution can be explained by a lack of mass quenching at very high redshifts in combination with increasing dust obscuration within the first ∼1Gyr of galaxy evolution.

Non-Gaussianity constraints using future radio continuum surveys and the multitracer technique

Monthly Notices of the Royal Astronomical Society Oxford University Press 492 (2019) 1513-1522

Z Gomes, S Camera, M Jarvis, C Hale, J Fonseca

Tighter constraints on measurements of primordial non-Gaussianity (PNG) will allow the differentiation of inflationary scenarios. The cosmic microwave background bispectrum – the standard method of measuring the local non-Gaussianity – is limited by cosmic variance. Therefore, it is sensible to investigate measurements of non-Gaussianity using the large-scale structure. This can be done by investigating the effects of non-Gaussianity on the power spectrum on large scales. In this study, we forecast the constraints on the local PNG parameter fNL that can be obtained with future radio surveys. We utilize the multitracer method that reduces the effect of cosmic variance and takes advantage of the multiple radio galaxy populations that are differently biased tracers of the same underlying dark matter distribution. Improvements on previous work include the use of observational bias and halo mass estimates, updated simulations, and realistic photometric redshift expectations, thus producing more realistic forecasts. Combinations of Square Kilometre Array simulations and radio observations were used as well as different redshift ranges and redshift bin sizes. It was found that in the most realistic case the 1σ error on fNL falls within the range 4.07–6.58, rivalling the tightest constraints currently available.

The optically-selected 1.4-GHz quasar luminosity function below 1 mJy

Monthly Notices of the Royal Astronomical Society Oxford University Press 492 (2020) 5297–5312-

E Malefahlo, MG Santos, M Jarvis, SV White, JTL Zwart

We present the radio luminosity function (RLF) of optically selected quasars below 1 mJy, constructed by applying a Bayesian-fitting stacking technique to objects well below the nominal radio flux density limit. We test the technique using simulated data, confirming that we can reconstruct the RLF over three orders of magnitude below the typical 5σ detection threshold. We apply our method to 1.4-GHz flux densities from the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) survey, extracted at the positions of optical quasars from the Sloan Digital Sky Survey over seven redshift bins up to z = 2.15, and measure the RLF down to two orders of magnitude below the FIRST detection threshold. In the lowest redshift bin (0.2 < z < 0.45), we find that our measured RLF agrees well with deeper data from the literature. The RLF for the radio-loud quasars flattens below log10[L1.4/WHz−1]≈25.5 and becomes steeper again below log10[L1.4/WHz−1]≈24.8⁠, where radio-quiet quasars start to emerge. The radio luminosity where radio-quiet quasars emerge coincides with the luminosity where star-forming galaxies are expected to start dominating the radio source counts. This implies that there could be a significant contribution from star formation in the host galaxies, but additional data are required to investigate this further. The higher redshift bins show a similar behaviour to the lowest z bin, implying that the same physical process may be responsible.

The performance of photometric reverberation mapping at high redshift and the reliability of damped random walk models

Monthly Notices of the Royal Astronomical Society Oxford University Press 492 (2019) 3940-3959

M JARVIS, SC Read, DJB Smith, MJ Jarvis, G Gürkan

&lt;jats:title&gt;ABSTRACT&lt;/jats:title&gt; &lt;jats:p&gt;Accurate methods for reverberation mapping using photometry are highly sought after since they are inherently less resource intensive than spectroscopic techniques. However, the effectiveness of photometric reverberation mapping for estimating black hole masses is sparsely investigated at redshifts higher than z ≈ 0.04. Furthermore, photometric methods frequently assume a damped random walk (DRW) model, which may not be universally applicable. We perform photometric reverberation mapping using the javelin photometric DRW model for the QSO SDSS-J144645.44+625304.0 at z = 0.351 and estimate the Hβ lag of $65^{+6}_{-1}$ d and black hole mass of $10^{8.22^{+0.13}_{-0.15}}\, \mathrm{M_{\odot }}$. An analysis of the reliability of photometric reverberation mapping, conducted using many thousands of simulated CARMA process light curves, shows that we can recover the input lag to within 6 per cent on average given our target’s observed signal-to-noise of &amp;amp;gt;20 and average cadence of 14 d (even when DRW is not applicable). Furthermore, we use our suite of simulated light curves to deconvolve aliases and artefacts from our QSO’s posterior probability distribution, increasing the signal-to-noise on the lag by a factor of ∼2.2. We exceed the signal-to-noise of the Sloan Digital Sky Survey Reverberation Mapping Project (SDSS-RM) campaign with a quarter of the observing time per object, resulting in a ∼200 per cent increase in signal-to-noise efficiency over SDSS-RM.&lt;/jats:p&gt;

Time-integrated Neutrino Source Searches with 10 years of IceCube Data

Physical Review Letters American Physical Society (2020)

S Robertson, M Rongen, C Rott, T Ruhe, D Ryckbosch, D Rysewyk, I Safa, SES Herrera, A Sandrock, J Sandroos, M Santander, SUBIR Sarkar, S SARKAR, K Satalecka, M Schaufel, H Schieler, P Schlunder, T Schmidt, A Schneider, J Schneider, FG Schröder, L Schumacher, S Sclafani, D Seckel, S Seunarine

This paper presents the results from point-like neutrino source searches using ten years of IceCube data collected between Apr.~6, 2008 and Jul.~10, 2018. We evaluate the significance of an astrophysical signal from a point-like source looking for an excess of clustered neutrino events with energies typically above $\sim1\,$TeV among the background of atmospheric muons and neutrinos. We perform a full-sky scan, a search within a selected source catalog, a catalog population study, and three stacked Galactic catalog searches. The most significant point in the Northern hemisphere from scanning the sky is coincident with the Seyfert II galaxy NGC 1068, which was included in the source catalog search. The excess at the coordinates of NGC 1068 is inconsistent with background expectations at the level of $2.9\,\sigma$ after accounting for statistical trials. The combination of this result along with excesses observed at the coordinates of three other sources, including TXS 0506+056, suggests that, collectively, correlations with sources in the Northern catalog are inconsistent with background at 3.3$\,\sigma$ significance. These results, all based on searches for a cumulative neutrino signal integrated over the ten years of available data, motivate further study of these and similar sources, including time-dependent analyses, multimessenger correlations, and the possibility of stronger evidence with coming upgrades to the detector.

Development of an analysis to probe the neutrino mass ordering with atmospheric neutrinos using three years of IceCube DeepCore data: IceCube Collaboration

European Physical Journal C 80 (2020)

MG Aartsen, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, C Alispach, K Andeen, T Anderson, I Ansseau, G Anton, C Argüelles, J Auffenberg, S Axani, P Backes, H Bagherpour, X Bai, A Barbano, SW Barwick, V Baum, R Bay, JJ Beatty, KH Becker, JB Tjus, S BenZvi, D Berley, E Bernardini, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, C Bohm, M Börner, S Böser, O Botner, E Bourbeau, J Bourbeau, F Bradascio, J Braun, HP Bretz, S Bron, J Brostean-Kaiser, A Burgman, RS Busse, T Carver, C Chen, E Cheung, D Chirkin, K Clark, L Classen, GH Collin, JM Conrad, P Coppin, P Correa, DF Cowen, R Cross, P Dave, JPAM de André, C De Clercq, JJ DeLaunay, H Dembinski, K Deoskar, S De Ridder, P Desiati, KD de Vries, G de Wasseige, M de With, T DeYoung, A Diaz, JC Díaz-Vélez, H Dujmovic, M Dunkman, E Dvorak, B Eberhardt, T Ehrhardt, B Eichmann, P Eller, JJ Evans, PA Evenson, S Fahey, AR Fazely, J Felde, K Filimonov, C Finley, A Franckowiak, E Friedman, A Fritz, TK Gaisser, J Gallagher, E Ganster, S Garrappa, L Gerhardt, K Ghorbani, T Glauch, T Glüsenkamp, A Goldschmidt, JG Gonzalez, D Grant, Z Griffith

© 2020, The Author(s). The Neutrino Mass Ordering (NMO) remains one of the outstanding questions in the field of neutrino physics. One strategy to measure the NMO is to observe matter effects in the oscillation pattern of atmospheric neutrinos above ∼1GeV, as proposed for several next-generation neutrino experiments. Moreover, the existing IceCube DeepCore detector can already explore this type of measurement. We present the development and application of two independent analyses to search for the signature of the NMO with three years of DeepCore data. These analyses include a full treatment of systematic uncertainties and a statistically-rigorous method to determine the significance for the NMO from a fit to the data. Both analyses show that the dataset is fully compatible with both mass orderings. For the more sensitive analysis, we observe a preference for normal ordering with a p-value of pIO= 15.3 % and CL s= 53.3 % for the inverted ordering hypothesis, while the experimental results from both analyses are consistent within their uncertainties. Since the result is independent of the value of δCP and obtained from energies Eν≳5GeV, it is complementary to recent results from long-baseline experiments. These analyses set the groundwork for the future of this measurement with more capable detectors, such as the IceCube Upgrade and the proposed PINGU detector.

Tomographic measurement of the intergalactic gas pressure through galaxy–tSZ cross-correlations

Monthly Notices of the Royal Astronomical Society Oxford University Press 491 (2019) 5464-5480

N Koukoufilippas, D Alonso, M Bilicki, JA Peacock

We cross-correlate maps of the thermal Sunyaev–Zeldovich (tSZ) Compton-y parameter published by Planck with the projected distribution of galaxies in a set of low-redshift tomographic bins. We use the nearly full-sky 2MASS Photometric Redshift and WISE × SuperCOSMOS public catalogues, covering the redshift range z ≲ 0.4. Our measurements allow us to place constraints on the redshift dependence of the mass–observable relation for tSZ cluster count analyses in terms of the so-called hydrostatic mass bias parameter 1−bH⁠. These results can also be interpreted as measurements of the bias-weighted average gas pressure 〈bPe〉 as a function of redshift, a quantity that can be related to the thermodynamics of gas inside haloes and used to constrain energy injection processes. We measure 1−bH with ∼13 per cent precision in six equispaced redshift bins, and find no evidence for a redshift-dependent mass bias parameter, in agreement with previous analyses. Our mean value of 1−bH=0.59±0.03 is also in good agreement with the one estimated by the joint analysis of Planck cluster counts and cosmic microwave background anisotropies. Our measurements of 〈bPe〉, at the level of ∼10 per cent in each bin, are the most stringent constraints on the redshift dependence of this parameter to date, and agree well both with previous measurements and with theoretical expectations from shock-heating models.

Design and Performance of the first IceAct Demonstrator at the South Pole

Journal of Instrumentation IOP Publishing (2020)

GW Sullivan, I Taboada, A Taketa, S Ter-Antonyan, HKM Tanaka, F Tenholt, A Terliuk, S Tilav, K Tollefson, L Tomankova, C Tönnis, S Toscano, D Tosi, M Tselengidou, A Turcati, A Trettin, CF Tung, R Turcotte, CF Turley, MAU Elorrieta, B Ty, E Unger, J Vandenbroucke, M Usner, WV Driessche

In this paper we describe the first results of a compact imaging air-Cherenkov telescope, IceAct, operating in coincidence with the IceCube Neutrino Observatory (IceCube) at the geographic South Pole. An array of IceAct telescopes (referred to as the IceAct project) is under consideration as part of the IceCube-Gen2 extension to IceCube. Surface detectors in general will be a powerful tool in IceCube-Gen2 for distinguishing astrophysical neutrinos from the dominant backgrounds of cosmic-ray induced atmospheric muons and neutrinos: the IceTop array is already in place as part of IceCube, but has a high energy threshold. Although the duty cycle will be lower for the IceAct telescopes than the present IceTop tanks, the IceAct telescopes may prove to be more effective at lowering the detection threshold for air showers. Additionally, small imaging air-Cherenkov telescopes in combination with IceTop, the deep IceCube detector or other future detector systems might improve measurements of the composition of the cosmic ray energy spectrum. In this paper we present measurements of a first 7-pixel imaging air Cherenkov telescope demonstrator, proving the capability of this technology to measure air showers at the South Pole in coincidence with IceTop and the deep IceCube detector.

Search for PeV Gamma-Ray Emission from the Southern Hemisphere with 5 Years of Data from the IceCube Observatory

The Astrophysical Journal: an international review of astronomy and astronomical physics American Astronomical Society (2020)

H Bagherpour, C Argüelles, J Auffenberg, T Anderson, I Ansseau, P Backes, G Anton, S Axani, X Bai, E Bernardini, DZ Besson, E Blaufuss, D Bindig, S BenZvi, D Berley, JB Tjus, G Binder, S Blot, J Brostean-Kaiser, RS Busse, D Chirkin, A Burgman, J Buscher, T Carver, E Cheung

The measurement of diffuse PeV gamma-ray emission from the Galactic plane would provide information about the energy spectrum and propagation of Galactic cosmic rays, and the detection of a point-like source of PeV gamma rays would be strong evidence for a Galactic source capable of accelerating cosmic rays up to at least a few PeV. This paper presents several un-binned maximum likelihood searches for PeV gamma rays in the Southern Hemisphere using 5 years of data from the IceTop air shower surface detector and the in-ice array of the IceCube Observatory. The combination of both detectors takes advantage of the low muon content and deep shower maximum of gamma-ray air showers, and provides excellent sensitivity to gamma rays between $\sim$0.6 PeV and 100 PeV. Our measurements of point-like and diffuse Galactic emission of PeV gamma rays are consistent with background, so we constrain the angle-integrated diffuse gamma-ray flux from the Galactic Plane at 2 PeV to $2.61 \times 10^{-19}$ cm$^{-2}$ s$^{-1}$ TeV$^{-1}$ at 90% confidence, assuming an E$^{-3}$ spectrum, and we estimate 90% upper limits on point-like emission at 2 PeV between 10$^{-21}$ - 10$^{-20}$ cm$^{-2}$ s$^{-1}$ TeV$^{-1}$ for an E$^{-2}$ spectrum, depending on declination. Furthermore, we exclude unbroken power-law emission up to 2 PeV for several TeV gamma-ray sources observed by H.E.S.S., and calculate upper limits on the energy cutoffs of these sources at 90% confidence. We also find no PeV gamma rays correlated with neutrinos from IceCube's high-energy starting event sample. These are currently the strongest constraints on PeV gamma-ray emission.

Updated Design of the CMB Polarization Experiment Satellite LiteBIRD


H Sugai, PAR Ade, Y Akiba, D Alonso, K Arnold, J Aumont, J Austermann, C Baccigalupi, AJ Banday, R Banerji, RB Barreiro, S Basak, J Beall, S Beckman, M Bersanelli, J Borrill, F Boulanger, ML Brown, M Bucher, A Buzzelli, E Calabrese, FJ Casas, A Challinor, V Chan, Y Chinone, J-F Cliche, F Columbro, A Cukierman, D Curtis, P Danto, P de Bernardis, T de Haan, M De Petris, C Dickinson, M Dobbs, T Dotani, L Duband, A Ducout, S Duff, A Duivenvoorden, J-M Duval, K Ebisawa, T Elleflot, H Enokida, HK Eriksen, J Errard, T Essinger-Hileman, F Finelli, R Flauger, C Franceschet, U Fuskeland, K Ganga, J-R Gao, R Genova-Santos, T Ghigna, A Gomez, ML Gradziel, J Grain, F Grupp, A Gruppuso, JE Gudmundsson, NW Halverson, P Hargrave, T Hasebe, M Hasegawa, M Hattori, M Hazumi, S Henrot-Versille, D Herranz, C Hill, G Hilton, Y Hirota, E Hivon, R Hlozek, D-T Hoang, J Hubmayr, K Ichiki, T Iida, H Imada, K Ishimura, H Ishino, GC Jaehnig, M Jones, T Kaga, S Kashima, Y Kataoka, N Katayama, T Kawasaki, R Keskitalo, A Kibayashi, T Kikuchi, K Kimura, T Kisner, Y Kobayashi, N Kogiso, A Kogut, K Kohri, E Komatsu, K Komatsu, K Konishi, N Krachmalnicoff, CL Kuo, N Kurinsky, A Kushino, M Kuwata-Gonokami, L Lamagna, M Lattanzi, AT Lee, E Linder, B Maffei, D Maino, M Maki, A Mangilli, E Martinez-Gonzalez, S Masi, R Mathon, T Matsumura, A Mennella, M Migliaccio, Y Minami, K Mistuda, D Molinari, L Montier, G Morgante, B Mot, Y Murata, JA Murphy, M Nagai, R Nagata, S Nakamura, T Namikawa, P Natoli, S Nerval, T Nishibori, H Nishino, Y Nomura, F Noviello, C O'Sullivan, H Ochi, H Ogawa, H Ogawa, H Ohsaki, I Ohta, N Okada, N Okada, L Pagano, A Paiella, D Paoletti, G Patanchon, F Piacentini, G Pisano, G Polenta, D Poletti, T Prouve, G Puglisi, D Rambaud, C Raum, S Realini, M Remazeilles, G Roudil, JA Rubino-Martin, M Russell, H Sakurai, Y Sakurai, M Sandri, G Savini, D Scott, Y Sekimoto, BD Sherwin, K Shinozaki, M Shiraishi, P Shirron, G Signorelli, G Smecher, P Spizzi, SL Stever, R Stompor, S Sugiyama, A Suzuki, J Suzuki, E Switzer, R Takaku, H Takakura, S Takakura, Y Takeda, A Taylor, E Taylor, Y Terao, KL Thompson, B Thorne, M Tomasi, H Tomida, N Trappe, M Tristram, M Tsuji, M Tsujimoto, C Tucker, J Ullom, S Uozumi, S Utsunomiya, J Van Lanen, G Vermeulen, P Vielva, F Villa, M Vissers, N Vittorio, F Voisin, I Walker, N Watanabe, I Wehus, J Weller, B Westbrook, B Winter, E Wollack, R Yamamoto, NY Yamasaki, M Yanagisawa, T Yoshida, J Yumoto, M Zannoni, A Zonca

A Flexible Method for Estimating Luminosity Functions via Kernel Density Estimation

The Astrophysical Journal Supplement Series American Astronomical Society 248 (2020) 1-1

Z Yuan, MJ Jarvis, J Wang

The Karl G. Jansky very large array sky survey (VLASS). Science case and survey design

Publications of the Astronomical Society of the Pacific 132 (2020)

M Lacy, SA Baum, CJ Chandler, S Chatterjee, TE Clarke, S Deustua, J English, J Farnes, BM Gaensler, N Gugliucci, G Hallinan, BR Kent, A Kimball, CJ Law, TJW Lazio, J Marvil, SA Mao, D Medlin, K Mooley, EJ Murphy, S Myers, R Osten, GT Richards, E Rosolowsky, L Rudnick

© 2020. The Astronomical Society of the Pacific. The Very Large Array Sky Survey (VLASS) is a synoptic, all-sky radio sky survey with a unique combination of high angular resolution (≈2.″5), sensitivity (a 1σ goal of 70 μJy/beam in the coadded data), full linear Stokes polarimetry, time domain coverage, and wide bandwidth (2–4 GHz). The first observations began in 2017 September, and observing for the survey will finish in 2024. VLASS will use approximately 5500 hr of time on the Karl G. Jansky Very Large Array (VLA) to cover the whole sky visible to the VLA (decl. &gt; −40°), a total of 33 885 deg2. The data will be taken in three epochs to allow the discovery of variable and transient radio sources. The survey is designed to engage radio astronomy experts, multi-wavelength astronomers, and citizen scientists alike. By utilizing an “on the fly” interferometry mode, the observing overheads are much reduced compared to a conventional pointed survey. In this paper, we present the science case and observational strategy for the survey, and also results from early survey observations.

Permittivity and permeability of epoxy-magnetite powder composites at microwave frequencies

Journal of Applied Physics 127 (2020)

M Zannoni, T Ghigna, M Jones, A Simonetto

© 2020 Author(s). Radio, millimeter, and sub-millimeter astronomy experiments as well as remote sensing applications often require castable absorbers with well known electromagnetic properties to design and realize calibration targets. In this context, we fabricated and characterized two samples using different ratios of two easily commercially available materials: epoxy (Stycast 2850FT) and magnetite (F e 3 O 4) powder. We performed transmission and reflection measurements from 7 GHz up to 170 GHz with a vector network analyzer equipped with a series of standard horn antennas. Using an empirical model, we analyzed the data to extract complex permittivity and permeability from transmission data; then, we used reflection data to validate the results. In this paper, we present the sample fabrication procedure, analysis method, parameter extraction pipeline, and results for two samples with different epoxy-powder mass ratios.

Reionization history constraints from neural network based predictions of high-redshift quasar continua

Monthly Notices of the Royal Astronomical Society Oxford University Press 493 (2020) 4256–4275-

D Ďurovčíková, H Katz, SEI Bosman, FB Davies, J Devriendt, A Slyz

Observations of the early Universe suggest that reionization was complete by z ∼ 6, however, the exact history of this process is still unknown. One method for measuring the evolution of the neutral fraction throughout this epoch is via observing the Lyα damping wings of high-redshift quasars. In order to constrain the neutral fraction from quasar observations, one needs an accurate model of the quasar spectrum around Lyα, after the spectrum has been processed by its host galaxy but before it is altered by absorption and damping in the intervening IGM. In this paper, we present a novel machine learning approach, using artificial neural networks, to reconstruct quasar continua around Lyα. Our QSANNDRA algorithm improves the error in this reconstruction compared to the state-of-the-art PCA-based model in the literature by 14.2% on average, and provides an improvement of 6.1% on average when compared to an extension thereof. In comparison with the extended PCA model, QSANNDRA further achieves an improvement of 22.1% and 16.8% when evaluated on low-redshift quasars most similar to the two high-redshift quasars under consideration, ULAS J1120+0641 at z = 7.0851 and ULAS J1342+0928 at z = 7.5413, respectively. Using our more accurate reconstructions of these two z > 7 quasars, we estimate the neutral fraction of the IGM using a homogeneous reionization model and find x¯H1=0.25+0.05−0.05 at z = 7.0851 and x¯H1=0.60+0.11−0.11 at z = 7.5413. Our results are consistent with the literature and favour a rapid end to reionization.

Testing self-interacting dark matter with galaxy warps

PHYSICAL REVIEW D 100 (2019) ARTN 123006

K Pardo, H Desmond, PG Ferreira