Publications


Review of Particle Physics

Progress of Theoretical and Experimental Physics Oxford University Press (OUP) 2020 (2020)

PA Zyla, RM Barnett, J Beringer, O Dahl, DA Dwyer, DE Groom, C-J Lin, KS Lugovsky, E Pianori, DJ Robinson, CG Wohl, W-M Yao, K Agashe, G Aielli, BC Allanach, C Amsler, M Antonelli, EC Aschenauer, DM Asner, H Baer, S Banerjee, L Baudis, CW Bauer, JJ Beatty, VI Belousov, S Bethke, A Bettini, O Biebel, KM Black, E Blucher, O Buchmuller, V Burkert, MA Bychkov, RN Cahn, M Carena, A Ceccucci, A Cerri, D Chakraborty, RS Chivukula, G Cowan, G D'Ambrosio, T Damour, D de Florian, A de Gouvêa, T DeGrand, P de Jong, G Dissertori, BA Dobrescu, M D'Onofrio, M Doser, M Drees, HK Dreiner, P Eerola, U Egede, S Eidelman, J Ellis, J Erler, VV Ezhela, W Fetscher, BD Fields, B Foster, A Freitas, H Gallagher, L Garren, H-J Gerber, G Gerbier, T Gershon, Y Gershtein, T Gherghetta, AA Godizov, MC Gonzalez-Garcia, M Goodman, C Grab, AV Gritsan, C Grojean, M Grünewald, A Gurtu, T Gutsche, HE Haber, C Hanhart, S Hashimoto, Y Hayato, A Hebecker, S Heinemeyer, B Heltsley, JJ Hernández-Rey, K Hikasa, J Hisano, A Höcker, J Holder, A Holtkamp, J Huston, T Hyodo, KF Johnson, M Kado, M Karliner, UF Katz, M Kenzie, VA Khoze, SR Klein, E Klempt, RV Kowalewski, F Krauss, M Kreps, B Krusche, Y Kwon, O Lahav, J Laiho, LP Lellouch, J Lesgourgues, AR Liddle, Z Ligeti, C Lippmann, TM Liss, L Littenberg, C Lourengo, SB Lugovsky, A Lusiani, Y Makida, F Maltoni, T Mannel, AV Manohar, WJ Marciano, A Masoni, J Matthews, U-G Meißner, M Mikhasenko, DJ Miller, D Milstead, RE Mitchell, K Mönig, P Molaro, F Moortgat, M Moskovic, K Nakamura, M Narain, P Nason, S Navas, M Neubert, P Nevski, Y Nir, KA Olive, C Patrignani, JA Peacock, ST Petcov, VA Petrov, A Pich, A Piepke, A Pomarol, S Profumo, A Quadt, K Rabbertz, J Rademacker, G Raffelt, H Ramani, M Ramsey-Musolf, BN Ratcliff, P Richardson, A Ringwald, S Roesler, S Rolli, A Romaniouk, LJ Rosenberg, JL Rosner, G Rybka, M Ryskin, RA Ryutin, Y Sakai, GP Salam, S Sarkar, F Sauli, O Schneider, K Scholberg, AJ Schwartz, J Schwiening, D Scott, V Sharma, SR Sharpe, T Shutt, M Silari, T Sjöstrand, P Skands, T Skwarnicki, GF Smoot, A Soffer, MS Sozzi, S Spanier, C Spiering, A Stahl, SL Stone, Y Sumino, T Sumiyoshi, MJ Syphers, F Takahashi, M Tanabashi, J Tanaka, M Taševský, K Terashi, J Terning, U Thoma, RS Thorne, L Tiator, M Titov, NP Tkachenko, DR Tovey, K Trabelsi, P Urquijo, G Valencia, R Van de Water, N Varelas, G Venanzoni, L Verde, MG Vincter, P Vogel, W Vogelsang, A Vogt, V Vorobyev, SP Wakely, W Walkowiak, CW Walter, D Wands, MO Wascko, DH Weinberg, EJ Weinberg, M White, LR Wiencke, S Willocq, CL Woody, RL Workman, M Yokoyama, R Yoshida, G Zanderighi, GP Zeller, OV Zenin, R-Y Zhu, S-L Zhu, F Zimmermann, J Anderson, T Basaglia, VS Lugovsky, P Schaffner, W Zheng

<jats:title>Abstract</jats:title> <jats:p>The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,324 new measurements from 878 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on High Energy Soft QCD and Diffraction and one on the Determination of CKM Angles from B Hadrons.</jats:p> <jats:p>The Review is divided into two volumes. Volume 1 includes the Summary Tables and 98 review articles. Volume 2 consists of the Particle Listings and contains also 22 reviews that address specific aspects of the data presented in the Listings.</jats:p> <jats:p>The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print and as a web version optimized for use on phones as well as an Android app.</jats:p>


In-situ calibration of the single-photoelectron charge response of the IceCube photomultiplier tubes

Journal of Instrumentation IOP Publishing (2020)

TI Collaboration

We describe an improved in-situ calibration of the single-photoelectron charge distributions for each of the in-ice Hamamatsu Photonics R7081-02[MOD] photomultiplier tubes in the IceCube Neutrino Observatory. The characterization of the individual PMT charge distributions is important for PMT calibration, data and Monte Carlo simulation agreement, and understanding the effect of hardware differences within the detector. We discuss the single photoelectron identification procedure and how we extract the single-photoelectron charge distribution using a deconvolution of the multiple-photoelectron charge distribution.


Quasi-normal modes of hairy scalar tensor black holes: odd parity

Classical and Quantum Gravity IOP Publishing 37 (2020) 115007

OJ Tattersall

The odd parity gravitational quasi-normal mode spectrum of black holes with non-trivial scalar hair in Horndeski gravity is investigated. We study 'almost' Schwarzschild black holes such that any modifications to the spacetime geometry (including the scalar field profile) are treated as small quantities. A modified Regge–Wheeler style equation for the odd parity gravitational degree of freedom is presented to quadratic order in the scalar hair and spacetime modifications, and a parameterisation of the modified quasi-normal mode spectrum is calculated. In addition, statistical error estimates for the new hairy parameters of the black hole and scalar field are given.


Progress Report on the Large-Scale Polarization Explorer

JOURNAL OF LOW TEMPERATURE PHYSICS (2020)

L Lamagna, G Addamo, PAR Ade, C Baccigalupi, AM Baldini, PM Battaglia, E Battistelli, A Bau, M Bersanelli, M Biasotti, C Boragno, A Boscaleri, B Caccianiga, S Caprioli, F Cavaliere, F Cei, KA Cleary, F Columbro, G Coppi, A Coppolecchia, D Corsini, F Cuttaia, G D'Alessandro, P de Bernardis, G De Gasperis, M De Petris, FD Torto, V Fafone, Z Farooqui, F Farsian, F Fontanelli, C Franceschet, TC Gaier, F Gatti, R Genova-Santos, M Gervasi, T Ghigna, M Grassi, D Grosso, F Incardona, M Jones, P Kangaslahti, N Krachmalnicoff, R Mainini, D Maino, S Mandelli, M Maris, S Masi, S Matarrese, A May, P Mena, A Mennella, R Molina, D Molinari, G Morgante, F Nati, P Natoli, L Pagano, A Paiella, F Paonessa, A Passerini, M Perez-de-Taoro, OA Peverini, F Pezzotta, F Piacentini, L Piccirillo, G Pisano, L Polastri, G Polenta, D Poletti, G Presta, S Realini, N Reyes, A Rocchi, JA Rubino-Martin, M Sandri, S Sartor, A Schillaci, G Signorelli, M Soria, F Spinella, V Tapia, A Tartari, A Taylor, L Terenzi, M Tomasi, E Tommasi, C Tucker, D Vaccaro, DM Vigano, F Villa, G Virone, N Vittorio, A Volpe, B Watkins, A Zacchei, M Zannoni


A Search for Neutrino Point-Source Populations in 7 Years of IceCube Data with Neutrino-count Statistics

The Astrophysical Journal: an international review of astronomy and astronomical physics American Astronomical Society (2020)

B Eberhardt, T Ehrhardt, P Eller, R Engel, A Fritz, TK Gaisser, J Gallagher, E Ganster, S Garrappa, L Gerhardt, K Ghorbani, T Glauch, T Glüsenkamp, A Goldschmidt, JG Gonzalez, D Grant, S Griswold, F Huang, M Huber, T Huber, K Hultqvist, GS Japaridze, M Jeong, K Jero, BJP Jones

The presence of a population of point sources in a dataset modifies the underlying neutrino-count statistics from the Poisson distribution. This deviation can be exactly quantified using the non-Poissonian template fitting technique, and in this work we present the first application this approach to the IceCube high-energy neutrino dataset. Using this method, we search in 7 years of IceCube data for point-source populations correlated with the disk of the Milky Way, the Fermi bubbles, the Schlegel, Finkbeiner, and Davis dust map, or with the isotropic extragalactic sky. No evidence for such a population is found in the data using this technique, and in the absence of a signal we establish constraints on population models with source count distribution functions that can be described by a power-law with a single break. The derived limits can be interpreted in the context of many possible source classes. In order to enhance the flexibility of the results, we publish the full posterior from our analysis, which can be used to establish limits on specific population models that would contribute to the observed IceCube neutrino flux.


A Closed-Cycle Miniature Dilution Refrigerator for a Fast-Cooldown 100 mK Detector Wafer Test Cryostat

JOURNAL OF LOW TEMPERATURE PHYSICS 199 (2020) 771-779

S Azzoni, A May, S Chase, G Coppi, L Kenny, S Melhuish, L Piccirillo, A Suzuki, J Wenninger

&#xA9; 2020, The Author(s). The forthcoming generation of cosmic microwave background polarization observatories is developing large format detector arrays which will operate at 100&#xA0;mK. Given the volume of detector wafers that will be required, fast-cooldown 100&#xA0;mK test cryostats are increasingly needed. A miniature dilution refrigerator (MDR) has been developed for this purpose and is reported. The MDR is precooled by a double-stage 3He &#x2013;4He Chase Research Cryogenics sorption refrigerator. The test cryostat based on this MDR will enable fast cooldown to 100&#xA0;mK to support rapid feedback testing of detector wafers fabricated for the Simons Observatory. The MDR has been designed to provide a 100&#xA0;mK stage to be retrocompatible with existing CRC10 sorption coolers, reducing the base temperature from 250&#xA0;mK for the new generation of detectors. Other 250&#xA0;mK cryostats can be retrofitted in the same way. This configuration will meet the cryogenic requirements for single-wafer testing, providing 5&#x2013;10&#xA0;&#x3BC; W of cooling power at 100&#xA0;mk for over 8&#xA0;h. The system operates in a closed cycle, thereby avoiding external gas connections and cold o-rings. No moving parts are required, with the system operated entirely by heaters.


K-CLASH: Strangulation and ram pressure stripping in galaxy cluster members at 0.3 &lt; z &lt; 0.6

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 496 (2020) 3841-3861

SP Vaughan, AL Tiley, RL Davies, LJ Prichard, SM Croom, M Bureau, JP Stott, A Bunker, M Cappellari, B Ansarinejad, MJ Jarvis

&lt;jats:title&gt;ABSTRACT&lt;/jats:title&gt; &lt;jats:p&gt;Galaxy clusters have long been theorized to quench the star formation of their members. This study uses integral-field unit observations from the K-band MultiObject Spectrograph (KMOS) &#x2013; Cluster Lensing And Supernova survey with Hubble (CLASH) survey (K-CLASH) to search for evidence of quenching in massive galaxy clusters at redshifts 0.3 &amp;amp;lt; z &amp;amp;lt; 0.6. We first construct mass-matched samples of exclusively star-forming cluster and field galaxies, then investigate the spatial extent of their H&#x2009;&#x3B1; emission and study their interstellar medium conditions using emission line ratios. The average ratio of H&#x2009;&#x3B1; half-light radius to optical half-light radius ($r_{\mathrm{e}, {\rm {H}\,\alpha }}/r_{\mathrm{e}, R_{\mathrm{c} } }$) for all galaxies is 1.14&#xA0;&#xB1;&#xA0;0.06, showing that star formation is taking place throughout stellar discs at these redshifts. However, on average, cluster galaxies have a smaller $r_{\mathrm{e}, {\rm {H}\alpha }}/r_{\mathrm{e}, R_{\mathrm{c} } }$ ratio than field galaxies: &#x2329;$r_{\mathrm{e}, {\rm {H}\alpha }}/r_{\mathrm{e}, R_{\mathrm{c} } }$&#x232A;&#xA0;= 0.96&#xA0;&#xB1;&#xA0;0.09 compared to 1.22&#xA0;&#xB1;&#xA0;0.08 (smaller at a 98&#x2009;per&#x2009;cent credibility level). These values are uncorrected for the wavelength difference between H&#x2009;&#x3B1; emission and Rc-band stellar light but implementing such a correction only reinforces our results. We also show that whilst the cluster and field samples follow indistinguishable mass&#x2013;metallicity (MZ) relations, the residuals around the MZ relation of cluster members correlate with cluster-centric distance; galaxies residing closer to the cluster centre tend to have enhanced metallicities (significant at the 2.6&#x3C3; level). Finally, in contrast to previous studies, we find no significant differences in electron number density between the cluster and field galaxies. We use simple chemical evolution models to conclude that the effects of disc strangulation and ram-pressure stripping can quantitatively explain our observations.&lt;/jats:p&gt;


K-CLASH: spatially-resolving star-forming galaxies in field and cluster environments at z ≈ 0.2-0.6

Monthly Notices of the Royal Astronomical Society Oxford University Press (2020)

AL Tiley, JP Stott, R Davies, LJ Prichard, A Bunker, M Bureau, M Cappellari, M Jarvis, A Robotham, L Cortese, S Bellstedt, B Ansarinejad

We present the KMOS-CLASH (K-CLASH) survey, a K-band Multi-Object Spectrograph (KMOS) survey of the spatially-resolved gas properties and kinematics of 191 (predominantly blue) Hα-detected galaxies at 0.2 ≲ z ≲ 0.6 in field and cluster environments. K-CLASH targets galaxies in four Cluster Lensing And Supernova survey with Hubble (CLASH) fields in the KMOS IZ-band, over 7′ radius (≈2–3 Mpc) fields-of-view. K-CLASH aims to study the transition of star-forming galaxies from turbulent, highly star-forming disc-like and peculiar systems at z ≈ 1–3, to the comparatively quiescent, ordered late-type galaxies at z ≈ 0, and to examine the role of clusters in the build-up of the red sequence since z ≈ 1. In this paper, we describe the K-CLASH survey, present the sample, and provide an overview of the K-CLASH galaxy properties. We demonstrate that our sample comprises star-forming galaxies typical of their stellar masses and epochs, residing both in field and cluster environments. We conclude K-CLASH provides an ideal sample to bridge the gap between existing large integral-field spectroscopy surveys at higher and lower redshifts. We find that star-forming K-CLASH cluster galaxies at intermediate redshifts have systematically lower stellar masses than their star-forming counterparts in the field, hinting at possible “downsizing” scenarios of galaxy growth in clusters at these epochs. We measure no difference between the star-formation rates of Hα-detected, star-forming galaxies in either environment after accounting for stellar mass, suggesting that cluster quenching occurs very rapidly during the epochs probed by K-CLASH, or that star-forming K-CLASH galaxies in clusters have only recently arrived there, with insufficient time elapsed for quenching to have occured.


eV-Scale Sterile Neutrino Search Using Eight Years of Atmospheric Muon Neutrino Data from the IceCube Neutrino Observatory

Physical Review Letters American Physical Society (APS) 125 (2020) 141801

MG Aartsen, R Abbasi, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, C Alispach, NM Amin, K Andeen, T Anderson, I Ansseau, G Anton, C Argüelles, J Auffenberg, S Axani, H Bagherpour, X Bai, A Balagopal, A Barbano, SW Barwick, B Bastian, V Basu, V Baum, S Baur, R Bay, JJ Beatty, K-H Becker, J Becker Tjus, S BenZvi, D Berley, E Bernardini, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, C Bohm, S Böser, O Botner, J Böttcher, E Bourbeau, J Bourbeau, F Bradascio, J Braun, S Bron, J Brostean-Kaiser, A Burgman, J Buscher, RS Busse, T Carver, C Chen, E Cheung, D Chirkin, S Choi, BA Clark, K Clark, L Classen, A Coleman, GH Collin, JM Conrad, P Coppin, P Correa, DF Cowen, R Cross, P Dave, C De Clercq, JJ DeLaunay, H Dembinski, K Deoskar, S De Ridder, A Desai, P Desiati, KD de Vries, G de Wasseige, M de With, T DeYoung, S Dharani, A Diaz, JC Díaz-Vélez, H Dujmovic, M Dunkman, MA DuVernois, E Dvorak, T Ehrhardt, P Eller, R Engel, PA Evenson, S Fahey, AR Fazely, A Fedynitch, J Felde, AT Fienberg, K Filimonov, C Finley, D Fox, A Franckowiak, E Friedman, A Fritz, TK Gaisser, J Gallagher, E Ganster, S Garrappa, L Gerhardt, T Glauch, T Glüsenkamp, A Goldschmidt, JG Gonzalez, D Grant, T Grégoire, Z Griffith, S Griswold, M Günder, M Gündüz, C Haack, A Hallgren, R Halliday, L Halve, F Halzen, K Hanson, J Hardin, A Haungs, S Hauser, D Hebecker, D Heereman, P Heix, K Helbing, R Hellauer, F Henningsen, S Hickford, J Hignight, GC Hill, KD Hoffman, R Hoffmann, T Hoinka, B Hokanson-Fasig, K Hoshina, F Huang, M Huber, T Huber, K Hultqvist, M Hünnefeld, R Hussain, S In, N Iovine, A Ishihara, M Jansson, GS Japaridze, M Jeong, BJP Jones, F Jonske, R Joppe, D Kang, W Kang, A Kappes, D Kappesser, T Karg, M Karl, A Karle, U Katz, M Kauer, M Kellermann, JL Kelley, A Kheirandish, J Kim, T Kintscher, J Kiryluk, T Kittler, SR Klein, R Koirala, H Kolanoski, L Köpke, C Kopper, S Kopper, DJ Koskinen, P Koundal, M Kowalski, K Krings, G Krückl, N Kulacz, N Kurahashi, A Kyriacou, JL Lanfranchi, MJ Larson, F Lauber, JP Lazar, K Leonard, A Leszczyńska, Y Li, QR Liu, E Lohfink, CJ Lozano Mariscal, L Lu, F Lucarelli, A Ludwig, J Lünemann, W Luszczak, Y Lyu, WY Ma, J Madsen, G Maggi, KBM Mahn, Y Makino, P Mallik, S Mancina, IC Mariş, R Maruyama, K Mase, R Maunu, F McNally, K Meagher, M Medici, A Medina, M Meier, S Meighen-Berger, J Merz, T Meures, J Micallef, D Mockler, G Momenté, T Montaruli, RW Moore, R Morse, M Moulai, P Muth, R Nagai, U Naumann, G Neer, LV Nguyen, H Niederhausen, MU Nisa, SC Nowicki, DR Nygren, A Obertacke Pollmann, M Oehler, A Olivas, A O’Murchadha, E O’Sullivan, T Palczewski, H Pandya, DV Pankova, N Park, GK Parker, EN Paudel, P Peiffer, C Pérez de los Heros, S Philippen, D Pieloth, S Pieper, E Pinat, A Pizzuto, M Plum, Y Popovych, A Porcelli, M Prado Rodriguez, PB Price, GT Przybylski, C Raab, A Raissi, M Rameez, L Rauch, K Rawlins, IC Rea, A Rehman, R Reimann, B Relethford, M Renschler, G Renzi, E Resconi, W Rhode, M Richman, B Riedel, S Robertson, M Rongen, C Rott, T Ruhe, D Ryckbosch, D Rysewyk Cantu, I Safa, SE Sanchez Herrera, A Sandrock, J Sandroos, M Santander, S Sarkar, S Sarkar, K Satalecka, M Scharf, M Schaufel, H Schieler, P Schlunder, T Schmidt, A Schneider, J Schneider, FG Schröder, L Schumacher, S Sclafani, D Seckel, S Seunarine, S Shefali, M Silva, B Smithers, R Snihur, J Soedingrekso, D Soldin, M Song, GM Spiczak, C Spiering, J Stachurska, M Stamatikos, T Stanev, R Stein, J Stettner, A Steuer, T Stezelberger, RG Stokstad, A Stößl, NL Strotjohann, T Stürwald, T Stuttard, GW Sullivan, I Taboada, F Tenholt, S Ter-Antonyan, A Terliuk, S Tilav, K Tollefson, L Tomankova, C Tönnis, S Toscano, D Tosi, A Trettin, M Tselengidou, CF Tung, A Turcati, R Turcotte, CF Turley, B Ty, E Unger, MA Unland Elorrieta, M Usner, J Vandenbroucke, W Van Driessche, D van Eijk, N van Eijndhoven, D Vannerom, J van Santen, S Verpoest, M Vraeghe, C Walck, A Wallace, M Wallraff, TB Watson, C Weaver, A Weindl, MJ Weiss, J Weldert, C Wendt, J Werthebach, BJ Whelan, N Whitehorn, K Wiebe, CH Wiebusch, DR Williams, L Wills, M Wolf, TR Wood, K Woschnagg, G Wrede, J Wulff, XW Xu, Y Xu, JP Yanez, G Yodh, S Yoshida, T Yuan, Z Zhang, M Zöcklein


The origin of radio emission in broad absorption line quasars: Results from the LOFAR Two-metre Sky Survey (Corrigendum)

ASTRONOMY & ASTROPHYSICS 640 (2020) ARTN C4

LK Morabito, JH Matthews, PN Best, G Gurkan, MJ Jarvis, I Prandoni, KJ Duncan, MJ Hardcastle, M Kunert-Bajraszewska, AP Mechev, S Mooney, J Sabater, HJA Rottgering, TW Shimwell, DJB Smith, C Tasse, WL Williams


The C-Band All-Sky Survey (C-BASS): total intensity point source detection over the northern sky

Monthly Notices of the Royal Astronomical Society Oxford University Press (2020) staa1572

R Grumitt, A Taylor, L Jew, ME Jones, C Dickinson, A Barr, R Cepeda-Arroita, H Chiang, S Harper, H Heilgendorff, JL Jonas, JP Leahy, J Leech, TJ Pearson, MW Peel, ACS Readhead, J Sievers

We present a point source detection algorithm that employs the second order Spherical Mexican Hat Wavelet filter (SMHW2), and use it on C-BASS northern intensity data to produce a catalogue of point sources. The SMHW2 allows us to filter the entire sky at once, avoiding complications from edge effects arising when filtering small sky patches. The algorithm is validated against a set of Monte Carlo simulations, consisting of diffuse emission, instrumental noise, and various point source populations. The simulated source populations are successfully recovered. The SMHW2 detection algorithm is used to produce a $4.76\,\mathrm{GHz}$ northern sky source catalogue in total intensity, containing 1729 sources and covering declinations $\delta\geq-10^{\circ}$. The C-BASS catalogue is matched with the GB6 and PMN catalogues over their common declinations. From this we estimate the $90\%$ completeness level to be approximately $630\,\mathrm{mJy}$, with a corresponding reliability of $95\%$, when applying a Galactic mask covering $20\%$ of the sky. We find the C-BASS and GB6/PMN flux density scales to be consistent with one another to within $3\%$. The absolute positional offsets of C-BASS sources from matched GB6/PMN sources peak at approximately $3.5\,\mathrm{arcmin}$.


Computational Techniques for the Analysis of Small Signals in High-Statistics Neutrino Oscillation Experiments

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment Elsevier (2020)

D Altmann, K Andeen, T Anderson, R Cross, P Dave, M Day, JPAMD André, GD Wasseige, Z Griffith, C Haack, A Hallgren, F Halzen, K Hanson, N Iovine, A Ishihara, D Kang, A Kappes, D Kappesser, T Karg, J Kiryluk, T Kittler, Klein, R Koirala, H Kolanoski, DJ Koskinen

The current and upcoming generation of Very Large Volume Neutrino Telescopes - collecting unprecedented quantities of neutrino events - can be used to explore subtle effects in oscillation physics, such as (but not restricted to) the neutrino mass ordering. The sensitivity of an experiment to these effects can be estimated from Monte Carlo simulations. With the very high number of events that will be collected, there is a trade-off between the computational expense of running such simulations and the inherent statistical uncertainty in the determined values. In such a scenario, it becomes impractical to produce and use adequately-sized sets of simulated events to use with traditional methods, such as Monte Carlo weighting. In this work we present a staged approach to the generation of binned event distributions in order to overcome these challenges. By combining multiple integration and smoothing techniques which address limited statistics from simulation it arrives at reliable analysis results using modest computational resources.


QUBIC: Using NbSi TESs with a Bolometric Interferometer to Characterize the Polarization of the CMB

Journal of Low Temperature Physics Springer Science and Business Media LLC (2020)

M Piat, B Bélier, L Bergé, N Bleurvacq, C Chapron, S Dheilly, L Dumoulin, M González, L Grandsire, J-C Hamilton, S Henrot-Versillé, D Hoang, S Marnieros, W Marty, J Aumont, S Azzoni, S Banfi, J Bonaparte, J Bonis, A Bottani, E Bunn, D Burke, A Buzzelli, F Cavaliere, P Chanial


The relation between the diffuse X-ray luminosity and the radio power of the central AGN in galaxy groups

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 497 (2020) 2163-2174

T Pasini, M Brüggen, F de Gasperin, L Bîrzan, E O’Sullivan, A Finoguenov, M Jarvis, M Gitti, F Brighenti, IH Whittam, JD Collier, I Heywood, G Gozaliasl

<jats:title>ABSTRACT</jats:title> <jats:p>Our understanding of how active galactic nucleus feedback operates in galaxy clusters has improved in recent years owing to large efforts in multiwavelength observations and hydrodynamical simulations. However, it is much less clear how feedback operates in galaxy groups, which have shallower gravitational potentials. In this work, using very deep Very Large Array and new MeerKAT observations from the MIGHTEE survey, we compiled a sample of 247 X-ray selected galaxy groups detected in the COSMOS field. We have studied the relation between the X-ray emission of the intra-group medium and the 1.4 GHz radio emission of the central radio galaxy. For comparison, we have also built a control sample of 142 galaxy clusters using ROSAT and NVSS data. We find that clusters and groups follow the same correlation between X-ray and radio emission. Large radio galaxies hosted in the centres of groups and merging clusters increase the scatter of the distribution. Using statistical tests and Monte Carlo simulations, we show that the correlation is not dominated by biases or selection effects. We also find that galaxy groups are more likely than clusters to host large radio galaxies, perhaps owing to the lower ambient gas density or a more efficient accretion mode. In these groups, radiative cooling of the intra-cluster medium could be less suppressed by active galactic nucleus heating. We conclude that the feedback processes that operate in galaxy clusters are also effective in groups.</jats:p>


Updated Design of the CMB Polarization Experiment Satellite LiteBIRD

JOURNAL OF LOW TEMPERATURE PHYSICS 199 (2020) 1107-1117

H Sugai, PAR Ade, Y Akiba, D Alonso, K Arnold, J Aumont, J Austermann, C Baccigalupi, AJ Banday, R Banerji, RB Barreiro, S Basak, J Beall, S Beckman, M Bersanelli, J Borrill, F Boulanger, ML Brown, M Bucher, A Buzzelli, E Calabrese, FJ Casas, A Challinor, V Chan, Y Chinone, J-F Cliche, F Columbro, A Cukierman, D Curtis, P Danto, P de Bernardis, T de Haan, M De Petris, C Dickinson, M Dobbs, T Dotani, L Duband, A Ducout, S Duff, A Duivenvoorden, J-M Duval, K Ebisawa, T Elleflot, H Enokida, HK Eriksen, J Errard, T Essinger-Hileman, F Finelli, R Flauger, C Franceschet, U Fuskeland, K Ganga, J-R Gao, R Genova-Santos, T Ghigna, A Gomez, ML Gradziel, J Grain, F Grupp, A Gruppuso, JE Gudmundsson, NW Halverson, P Hargrave, T Hasebe, M Hasegawa, M Hattori, M Hazumi, S Henrot-Versille, D Herranz, C Hill, G Hilton, Y Hirota, E Hivon, R Hlozek, D-T Hoang, J Hubmayr, K Ichiki, T Iida, H Imada, K Ishimura, H Ishino, GC Jaehnig, M Jones, T Kaga, S Kashima, Y Kataoka, N Katayama, T Kawasaki, R Keskitalo, A Kibayashi, T Kikuchi, K Kimura, T Kisner, Y Kobayashi, N Kogiso, A Kogut, K Kohri, E Komatsu, K Komatsu, K Konishi, N Krachmalnicoff, CL Kuo, N Kurinsky, A Kushino, M Kuwata-Gonokami, L Lamagna, M Lattanzi, AT Lee, E Linder, B Maffei, D Maino, M Maki, A Mangilli, E Martinez-Gonzalez, S Masi, R Mathon, T Matsumura, A Mennella, M Migliaccio, Y Minami, K Mistuda, D Molinari, L Montier, G Morgante, B Mot, Y Murata, JA Murphy, M Nagai, R Nagata, S Nakamura, T Namikawa, P Natoli, S Nerval, T Nishibori, H Nishino, Y Nomura, F Noviello, C O'Sullivan, H Ochi, H Ogawa, H Ogawa, H Ohsaki, I Ohta, N Okada, N Okada, L Pagano, A Paiella, D Paoletti, G Patanchon, F Piacentini, G Pisano, G Polenta, D Poletti, T Prouve, G Puglisi, D Rambaud, C Raum, S Realini, M Remazeilles, G Roudil, JA Rubino-Martin, M Russell, H Sakurai, Y Sakurai, M Sandri, G Savini, D Scott, Y Sekimoto, BD Sherwin, K Shinozaki, M Shiraishi, P Shirron, G Signorelli, G Smecher, P Spizzi, SL Stever, R Stompor, S Sugiyama, A Suzuki, J Suzuki, E Switzer, R Takaku, H Takakura, S Takakura, Y Takeda, A Taylor, E Taylor, Y Terao, KL Thompson, B Thorne, M Tomasi, H Tomida, N Trappe, M Tristram, M Tsuji, M Tsujimoto, C Tucker, J Ullom, S Uozumi, S Utsunomiya, J Van Lanen, G Vermeulen, P Vielva, F Villa, M Vissers, N Vittorio, F Voisin, I Walker, N Watanabe, I Wehus, J Weller, B Westbrook, B Winter, E Wollack, R Yamamoto, NY Yamasaki, M Yanagisawa, T Yoshida, J Yumoto, M Zannoni, A Zonca


Erratum: Tomographic measurement of the intergalactic gas pressure through galaxy-tSZ cross-correlations

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 499 (2020) 520-522

N Koukoufilippas, D Alonso, M Bilicki, JA Peacock


IceCube Search for Neutrinos Coincident with Compact Binary Mergers from LIGO-Virgo's First Gravitational-Wave Transient Catalog

The Astrophysical Journal: an international review of astronomy and astronomical physics American Astronomical Society (2020)

MG Aartsen, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, C Alispach, K Andeen, T Anderson, I Ansseau, G Anton, C Argüelles, J Auffenberg, S Axani, H Bagherpour, X Bai, AB V, A Barbano, I Bartos, SW Barwick, B Bastian, V Baum, S Baur, R Bay, JJ Beatty, K-H Becker, JB Tjus, S BenZvi, D Berley, E Bernardini, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, C Bohm, S Böser, O Botner, J Böttcher, E Bourbeau, J Bourbeau, F Bradascio, J Braun, S Bron, J Brostean-Kaiser, A Burgman, J Buscher, RS Busse, T Carver, C Chen, E Cheung, D Chirkin, S Choi, BA Clark, K Clark, L Classen, A Coleman, GH Collin, JM Conrad, P Coppin, KR Corley, P Correa, S Countryman, DF Cowen, R Cross, P Dave, CD Clercq, JJ DeLaunay, H Dembinski, K Deoskar, SD Ridder, P Desiati, KDD Vries, GD Wasseige, MD With, T DeYoung, S Dharani, A Diaz, JC Díaz-Vélez, H Dujmovic, M Dunkman, E Dvorak, B Eberhardt, T Ehrhardt, P Eller, R Engel, PA Evenson, S Fahey, AR Fazely, J Felde, K Filimonov, C Finley, D Fox, A Franckowiak, E Friedman, A Fritz, TK Gaisser, J Gallagher, E Ganster, S Garrappa, L Gerhardt, K Ghorbani, T Glauch, T Glüsenkamp, A Goldschmidt, JG Gonzalez, D Grant, T Grégoire, Z Griffith, S Griswold, M Günder, M Gündüz, C Haack, A Hallgren, R Halliday, L Halve, F Halzen, K Hanson, A Haungs, S Hauser, D Hebecker, D Heereman, P Heix, K Helbing, R Hellauer, F Henningsen, S Hickford, J Hignight, GC Hill, KD Hoffman, R Hoffmann, T Hoinka, B Hokanson-Fasig, K Hoshina, F Huang, M Huber, T Huber, K Hultqvist, M Hünnefeld, R Hussain, S In, N Iovine, A Ishihara, M Jansson, GS Japaridze, M Jeong, K Jero, BJP Jones, F Jonske, R Joppe, D Kang, W Kang, A Kappes, D Kappesser, T Karg, M Karl, A Karle, U Katz, M Kauer, A Keivani, M Kellermann, JL Kelley, A Kheirandish, J Kim, T Kintscher, J Kiryluk, T Kittler, SR Klein, R Koirala, H Kolanoski, L Köpke, C Kopper, S Kopper, DJ Koskinen, P Koundal, M Kowalski, K Krings, G Krückl, N Kulacz, N Kurahashi, A Kyriacou, JL Lanfranchi, MJ Larson, F Lauber, JP Lazar, K Leonard, A Leszczynska, Y Li, QR Liu, E Lohfink, CJL Mariscal, L Lu, F Lucarelli, A Ludwig, J Lünemann, W Luszczak, Y Lyu, WY Ma, J Madsen, G Maggi, KBM Mahn, Y Makino, P Mallik, K Mallot, S Mancina, IC Mariş, S Marka, Z Marka, R Maruyama, K Mase, R Maunu, F McNally, K Meagher, M Medici, A Medina, M Meier, S Meighen-Berger, G Merino, J Merz, T Meures, J Micallef, D Mockler, G Momenté, T Montaruli, RW Moore, R Morse, M Moulai, P Muth, R Nagai, U Naumann, G Neer, LV Nguyen, H Niederhausen, MU Nisa, SC Nowicki, DR Nygren, AO Pollmann, M Oehler, A Olivas, A O'Murchadha, E O'Sullivan, T Palczewski, H Pandya, DV Pankova, N Park, P Peiffer, CPDL Heros, S Philippen, D Pieloth, S Pieper, E Pinat, A Pizzuto, M Plum, Y Popovych, A Porcelli, PB Price, GT Przybylski, C Raab, A Raissi, M Rameez, L Rauch, K Rawlins, IC Rea, A Rehman, R Reimann, B Relethford, M Renschler, G Renzi, E Resconi, W Rhode, M Richman, S Robertson, M Rongen, C Rott, T Ruhe, D Ryckbosch, DR Cantu, I Safa, SES Herrera, A Sandrock, J Sandroos, M Santander, S Sarkar, S Sarkar, K Satalecka, M Scharf, M Schaufel, H Schieler, P Schlunder, T Schmidt, A Schneider, J Schneider, FG Schröder, L Schumacher, S Sclafani, D Seckel, S Seunarine, S Shefali, M Silva, R Snihur, J Soedingrekso, D Soldin, M Song, GM Spiczak, C Spiering, J Stachurska, M Stamatikos, T Stanev, R Stein, J Stettner, A Steuer, T Stezelberger, RG Stokstad, A Stössl, NL Strotjohann, T Stürwald, T Stuttard, GW Sullivan, I Taboada, F Tenholt, S Ter-Antonyan, A Terliuk, S Tilav, K Tollefson, L Tomankova, C Tönnis, S Toscano, D Tosi, A Trettin, M Tselengidou, CF Tung, A Turcati, R Turcotte, CF Turley, B Ty, E Unger, MAU Elorrieta, M Usner, J Vandenbroucke, WV Driessche, DV Eijk, NV Eijndhoven, JV Santen, S Verpoest, D Veske, M Vraeghe, C Walck, A Wallace, M Wallraff, N Wandkowsky, TB Watson, C Weaver, A Weindl, MJ Weiss, J Weldert, C Wendt, J Werthebach, BJ Whelan, N Whitehorn, K Wiebe, CH Wiebusch, L Wille, DR Williams, L Wills, M Wolf, J Wood, TR Wood, K Woschnagg, G Wrede, J Wulff, DL Xu, XW Xu, Y Xu, JP Yanez, G Yodh, S Yoshida, T Yuan, M Zöcklein

Using the IceCube Neutrino Observatory, we search for high-energy neutrino emission coincident with compact binary mergers observed by the LIGO and Virgo gravitational wave (GW) detectors during their first and second observing runs. We present results from two searches targeting emission coincident with the sky localization of each gravitational wave event within a 1000 second time window centered around the reported merger time. One search uses a model-independent unbinned maximum likelihood analysis, which uses neutrino data from IceCube to search for point-like neutrino sources consistent with the sky localization of GW events. The other uses the Low-Latency Algorithm for Multi-messenger Astrophysics, which incorporates astrophysical priors through a Bayesian framework and includes LIGO-Virgo detector characteristics to determine the association between the GW source and the neutrinos. No significant neutrino coincidence is seen by either search during the first two observing runs of the LIGO-Virgo detectors. We set upper limits on the time-integrated neutrino emission within the 1000 second window for each of the 11 GW events. These limits range from 0.02-0.7 $\mathrm{GeV~cm^{-2}}$. We also set limits on the total isotropic equivalent energy, $E_{\mathrm{iso}}$, emitted in high-energy neutrinos by each GW event. These limits range from 1.7 $\times$ 10$^{51}$ - 1.8 $\times$ 10$^{55}$ erg. We conclude with an outlook for LIGO-Virgo observing run O3, during which both analyses are running in real time.


Resolved observations at 31 GHz of spinning dust emissivity variations in rho Oph

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 495 (2020) 3482-3493

C Arce-Tord, M Vidal, S Casassus, M Carcamo, C Dickinson, BS Hensley, R Genova-Santos, JR Bond, ME Jones, ACS Readhead, AC Taylor, JA Zensus


A flexible method for estimating luminosity functions via kernel density estimation

Astrophysical Journal Supplement American Astronomical Society 248 (2020)

Z Yuan, MJ Jarvis, J Wang

We propose a flexible method for estimating luminosity functions (LFs) based on kernel density estimation (KDE), the most popular nonparametric density estimation approach developed in modern statistics, to overcome issues surrounding the binning of LFs. One challenge in applying KDE to LFs is how to treat the boundary bias problem, as astronomical surveys usually obtain truncated samples predominantly due to the flux-density limits of surveys. We use two solutions, the transformation KDE method ( ) and the transformation–reflection KDE method ( ) to reduce the boundary bias. We develop a new likelihood cross-validation criterion for selecting optimal bandwidths, based on which the posterior probability distribution of the bandwidth and transformation parameters for and are derived within a Markov Chain Monte Carlo sampling procedure. The simulation result shows that and perform better than the traditional binning method, especially in the sparse data regime around the flux limit of a survey or at the bright end of the LF. To further improve the performance of our KDE methods, we develop the transformation–reflection adaptive KDE approach ( ). Monte Carlo simulations suggest that it has good stability and reliability in performance, and is around an order of magnitude more accurate than using the binning method. By applying our adaptive KDE method to a quasar sample, we find that it achieves estimates comparable to the rigorous determination in a previous work, while making far fewer assumptions about the LF. The KDE method we develop has the advantages of both parametric and nonparametric methods.


Augmenting machine learning photometric redshifts with Gaussian mixture models

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2020)

P Hatfield, I Almosallam, M Jarvis, N Adams, R Bowler, Z Gomes, S Roberts, C Schreiber

&lt;jats:title&gt;Abstract&lt;/jats:title&gt; &lt;jats:p&gt;Wide-area imaging surveys are one of the key ways of advancing our understanding of cosmology, galaxy formation physics, and the large-scale structure of the Universe in the coming years. These surveys typically require calculating redshifts for huge numbers (hundreds of millions to billions) of galaxies - almost all of which must be derived from photometry rather than spectroscopy. In this paper we investigate how using statistical models to understand the populations that make up the colour-magnitude distribution of galaxies can be combined with machine learning photometric redshift codes to improve redshift estimates. In particular we combine the use of Gaussian Mixture Models with the high performing machine learning photo-z algorithm GPz and show that modelling and accounting for the different colour-magnitude distributions of training and test data separately can give improved redshift estimates, reduce the bias on estimates by up to a half, and speed up the run-time of the algorithm. These methods are illustrated using data from deep optical and near infrared data in two separate deep fields, where training and test data of different colour-magnitude distributions are constructed from the galaxies with known spectroscopic redshifts, derived from several heterogeneous surveys.&lt;/jats:p&gt;

Pages