Publications by Nicole Robb

The role of the priming loop in Influenza A virus RNA synthesis.

Nature microbiology 1 (2016)

AJW Te Velthuis, NC Robb, AN Kapanidis, E Fodor

RNA-dependent RNA polymerases (RdRps) are used by RNA viruses to replicate and transcribe their RNA genomes1. They adopt a closed, right-handed fold with conserved subdomains called palm, fingers, and thumb1,2. Conserved RdRp motifs A-F coordinate the viral RNA template, NTPs, and magnesium ions to facilitate nucleotide condensation1. For the initiation of RNA synthesis, most RdRps use either a primer-dependent or de novo mechanism3. The Influenza A virus RdRp in contrast, uses a capped RNA oligonucleotide to initiate transcription, and a combination of terminal and internal de novo initiation for replication4. To understand how the Influenza A virus RdRp coordinates these processes, we analysed the function of a thumb subdomain β-hairpin using initiation, elongation, and single-molecule FRET assays. Our data shows that this β-hairpin is essential for terminal initiation during replication, but auxiliary for internal initiation and transcription. Analysis of individual residues in the tip of the β-hairpin shows that PB1 proline 651 is critical for efficient RNA synthesis in vitro and in cell culture. Overall, this work advances our understanding of Influenza A virus RNA synthesis and identifies the initiation platform of viral replication.

Show full publication list