Publications by Jay Patel


Temperature-dependent refractive index of quartz at terahertz frequencies

Journal of Infrared, Millimeter and Terahertz Waves Springer Verlag 39 (2018) 1236–1248-

CL Davies, JB Patel, CQ Xia, LM Herz, M Johnston

Characterisation of materials often requires the use of a substrate to support the sample being investigated. For optical characterisation at terahertz frequencies, quartz is commonly used owing to its high transmission and low absorption at these frequencies. Knowledge of the complex refractive index of quartz is required for analysis of time-domain terahertz spectroscopy and optical pump terahertz probe spectroscopy for samples on a quartz substrate. Here, we present the refractive index and extinction coefficient for α-quartz between 0.5 THz and 5.5 THz (17–183 cm^−1) taken at 10, 40, 80, 120, 160, 200 and 300 K. Quartz shows excellent transmission and is thus an ideal optical substrate over the THz band, apart from the region 3.9 ± 0.1 THz owing to a spectral feature originating from the lowest energy optical phonon modes. We also present the experimentally measured polariton dispersion of α-quartz over this frequency range.


Modification of the fluorinated tin oxide/electron-transporting material interface by a strong reductant and its effect on perovskite solar cell efficiency

Molecular Systems Design and Engineering Royal Society of Chemistry 3 (2018) 741-747

F Pulvirenti, B Wegner, NK Noel, G Mazzotta, R Hill, JB Patel, LM Herz, MB Johnston, MK Riede, HJ Snaith, N Koch, S Barlow

To date, the most efficient hybrid metal halide peroskite solar cells employ TiO2 as electron-transporting material (ETM), making these devices unstable under UV light exposure. Replacing TiO2 with fullerene derivatives has been shown to result in improved electronic contact and increased device lifetime, making it of interest to assess whether similar improvements can be achieved by using other organic semiconductors as ETMs. In this work, we investigate perylene-3,4:9,10-tetracarboxylic bis(benzimidazole) as a vacuum-processable ETM, and we minimize electron-collection losses at the electron-selective contact by depositing pentamethylcyclopentadienyl cyclopentadienyl rhodium dimer, (RhCp*Cp)2, on fluorinated tin oxide. With (RhCp*Cp)2 as an interlayer, ohmic contacts can be formed, there is interfacial doping of the ETM, and stabilized power conversion efficiencies of up to 14.2% are obtained.


Bimolecular recombination in methylammonium lead triiodide perovskite is an inverse absorption process

Nature Communications Springer Nature 9 (2018) 293

CL Davies, MR Filip, JB Patel, TW Crothers, C Verdi, AD Wright, RL Milot, F Giustino, MB Johnston, L Herz

Photovoltaic devices based on metal halide perovskites are rapidly improving in efficiency. Once the Shockley–Queisser limit is reached, charge-carrier extraction will be limited only by radiative bimolecular recombination of electrons with holes. Yet, this fundamental process, and its link with material stoichiometry, is still poorly understood. Here we show that bimolecular charge-carrier recombination in methylammonium lead triiodide perovskite can be fully explained as the inverse process of absorption. By correctly accounting for contributions to the absorption from excitons and electron-hole continuum states, we are able to utilise the van Roosbroeck–Shockley relation to determine bimolecular recombination rate constants from absorption spectra. We show that the sharpening of photon, electron and hole distribution functions significantly enhances bimolecular charge recombination as the temperature is lowered, mirroring trends in transient spectroscopy. Our findings provide vital understanding of band-to-band recombination processes in this hybrid perovskite, which comprise direct, fully radiative transitions between thermalized electrons and holes.


Modelling and simulation of photovoltaic module for micro inverter application

Proceedings - International Conference on Trends in Electronics and Informatics, ICEI 2017 2018-January (2018) 82-85

M Patel, H Surati, J Patel

© 2017 IEEE. This paper presents on a program developed in MATLAB/Simulink of photovoltaic module for micro inverter application. This program is based on mathematical equations and is defined through an equivalent circuit including a photocurrent source, and a diode. The developed program allows the prediction of PV module behaviour under different temperature and radiation. Effect of two environmental parameters of temperature and irradiance variations could be observed from simulated characteristics. The boost converter is to be used along with a Maximum Power Point Tracking topology. The MPPT is responsible for extracting the maximum possible power from the photovoltaic and feed it to the load via the boost converter which is used to steps up the voltage to required magnitude.


Photocurrent spectroscopy of perovskite solar cells over a wide temperature range from 15 to 350 K

Journal of Physical Chemistry Letters American Chemical Society 2018 (2017) 263-268

J Patel, Q Lin, O Zadvorna, C Davies, L Herz, M Johnston

Solar cells based on metal halide perovskite thin films show great promise for energy generation in a range of environments from terrestrial installations to space applications. Here we assess the device characteristics of the prototypical perovskite solar cells based on methylammonium lead triiodide (CH3NH3PbI3) over a broad temperature range from 15 to 350 K (−258 to 77 °C). For these devices, we observe a peak in the short-circuit current density and open-circuit voltage at 200 K (−73 °C) with decent operation maintained up to 350 K. We identify the clear signature of crystalline PbI2 contributing directly to the low-temperature photocurrent spectra, showing that PbI2 plays an active role (beyond passivation) in CH3NH3PbI3 solar cells. Finally we observe a blue-shift in the photocurrent spectrum with respect to the absorption spectrum at low temperature (15 K), allowing us to extract a lower limit on the exciton binding energy of 9.1 meV for CH3NH3PbI3.


Highly crystalline methylammonium lead tribromide perovskite films for efficient photovoltaic devices

ACS Energy Letters American Chemical Society 3 (2018) 1233−1240-

N Noel, B Wenger, S Habisreutinger, J Patel, T Crothers, Z Wang, R Nicholas, M Johnston, L Herz, H Snaith

The rise of metal-halide perovskite solar cells has captivated the research community, promising to disrupt the current energy landscape. While a sizable percentage of the research done on this class of materials has been focused on the neat and iodide-rich perovskites, bromide-based perovskites can deliver substantially higher voltages because of their relatively wide band gaps of over 2 eV. The potential for efficient, high-voltage devices makes materials such as these incredibly attractive for multijunction photovoltaic applications. Here, we use the acetonitrile/methylamine solvent system to deposit smooth, highly crystalline films of CH3NH3PbBr3. By using choline chloride as a passivating agent for these films, we achieve photoluminescence quantum efficiencies of up to 5.5% and demonstrate charge-carrier mobilities of 17.8 cm2/(V s). Incorporating these films into photovoltaic devices, we achieve scanned power conversion efficiencies of up to 8.9%, with stabilized efficiencies of 7.6%, providing a simple route to realizing efficient, high-voltage CH3NH3PbBr3 planar-heterojunction devices.


Influence of interface morphology on hysteresis in vapor-deposited perovskite solar cells

Advanced Electronic Materials Wiley 3 (2016) 1600470-

JB Patel, J Wong-Leung, S Van Reenen, N Sakai, JTW Wang, ES Parrott, M Liu, HJ Snaith, LM Herz, M Johnston

Hysteresis in the current–voltage characteristics of vapor-deposited perovskite solar cells is shown to originate from an amorphous region of CH3NH3PbI3 at the interface with the device's electron transport layer. Interface engineering is used to produce highly crystalline perovskite material at this interface which results in hysteresis-free evaporated planar heterojunction solar cells.


Large-area, highly uniform evaporated formamidinium lead triiodide thin-films for solar cells

ACS Energy Letters American Chemical Society 2 (2017) 2799-2804

J Borchert, R Milot, JB Patel, CL Davies, A Wright, LM Maestro, HJ Snaith, LM Hertz, M Johnston

Perovskite thin-film solar cells are one of the most promising emerging renewable energy technologies because of their potential for low-cost, large-area fabrication combined with high energy conversion efficiencies. Recently, formamidinium lead triiodide (FAPbI3) and other formamidinium (CH(NH2)2) based perovskites have been explored as interesting alternatives to methylammonium lead triiodide (MAPbI3) because they exhibit better thermal stability. However, at present a major challenge is the scale-up of perovskite solar cells from small test-cells to full solar modules. We show that coevaporation is a scalable method for the deposition of homogeneous FAPbI3 thin films over large areas. The method allows precise control over film thickness and results in highly uniform, pinhole-free layers. Our films exhibited a high charge-carrier mobility of 26 cm2 V–1s–1, excellent optical properties, and a bimolecular recombination constant of 7 × 10–11 cm3 s–1. Solar cells fabricated using these vapor-deposited layers within a regular device architecture produced stabilized power conversion efficiencies of up to 14.2%. Thus, we demonstrate that efficient FAPbI3 solar cells can be vapor-deposited, which opens up a pathway toward large-area stable perovskite photovoltaics.


Photon Re-Absorption Masks Intrinsic Bimolecular Charge-Carrier Recombination in CH3NH3PbI3 Perovskite

Nano Letters American Chemical Society 17 (2017) 5782–5789-

TW Crothers, RL Milot, JB Patel, ES Parrott, J Schlipf, P Muller-Buschbaum, MB Johnston, L Herz

An understanding of charge-carrier recombination processes is essential for the development of hybrid metal halide perovskites for photovoltaic applications. We show that typical measurements of the radiative bimolecular recombination constant in CH3NH3PbI3 are strongly affected by photon re-absorption which masks a much larger intrinsic bimolecular recombination rate constant. By investigating a set of films whose thickness varies between 50nm and 533nm, we find that the bimolecular charge recombination rate appears to slow by an order of magnitude as the film thickness increases. However, by using a dynamical model that accounts for photon re-absorption and charge-carrier diffusion we determine that a single intrinsic bimolecular recombination coefficient, of value 6.8x10(-10)cm(3)s(-1), is common to all samples irrespective of film thickness. Hence we postulate that the wide range of literature values reported for such coefficients is partly to blame on differences in photon out-coupling between samples, with crystal grains or mesoporous scaffolds of different sizes influencing light scattering, while thinner films or index-matched surrounding layers can reduce the possibility for photon re-absorption. We discuss the critical role of photon confinement on free charge-carrier retention in thin photovoltaic layers and highlight an approach to assess the success of such schemes from transient spectroscopic measurement.


Crystallization kinetics and morphology control of formamidinium-cesium mixed-cation lead mixed-halide perovskite via tunability of the colloidal precursor solution

Advanced Materials Wiley 29 (2017) 1-8

D McMeekin, Z Wang, W Rehman, F Pulvirenti, JB Patel, NK Noel, MB Johnston, Marder, L Herz, HJ Snaith

The meteoric rise of the field of perovskite solar cells has been fueled by the ease with which a wide range of high-quality materials can be fabricated via simple solution processing methods. However, to date, little effort has been devoted to understanding the precursor solutions, and the role of additives such as hydrohalic acids upon film crystallization and final optoelectronic quality. Here, a direct link between the colloids concentration present in the [HC(NH2 )2 ]0.83 Cs0.17 Pb(Br0.2 I0.8 )3 precursor solution and the nucleation and growth stages of the thin film formation is established. Using dynamic light scattering analysis, the dissolution of colloids over a time span triggered by the addition of hydrohalic acids is monitored. These colloids appear to provide nucleation sites for the perovskite crystallization, which critically impacts morphology, crystal quality, and optoelectronic properties. Via 2D X-ray diffraction, highly ordered and textured crystals for films prepared from solutions with lower colloidal concentrations are observed. This increase in material quality allows for a reduction in microstrain along with a twofold increase in charge-carrier mobilities leading to values exceeding 20 cm(2) V(-1) s(-1) . Using a solution with an optimized colloidal concentration, devices that reach current-voltage measured power conversion efficiency of 18.8% and stabilized efficiency of 17.9% are fabricated.


Unveiling the influence of pH on the crystallization of hybrid perovskites, felivering low voltage loss photovoltaics

Joule Cell Press 1 (2017) 328-343

N Noel, M Congiu, AJ Ramadan, S Fearn, DP McMeekin, JB Patel, MB Johnston, B Wenger, HJ Snaith

Impressive power conversion efficiencies coupled with the relative ease of fabrication have made perovskite solar cells a front runner for next-generation photovoltaics. Although perovskite films and optoelectronic devices have been widely studied, relatively little is known about the chemistry of the precursor solutions. Here, we present a study on the hydrolysis of N,N-dimethylformamide, correlating how pH changes related to its degradation affect the crystallization of MAPbI3xClx perovskite films. By careful manipulation of the pH, and the resulting colloid distribution in precursor solutions, we fabricate perovskite films with greatly improved crystallinity, which when incorporated into photovoltaic devices reproducibly yield efficiencies of over 18%. Extending this method to the mixed cation, mixed halide perovskite FA0.83MA0.17Pb(I0.83Br0.17)3, we obtain power conversion efficiencies of up to 19.9% and open-circuit voltages of 1.21 V for a material with a bandgap of 1.57 eV, achieving the lowest yet reported loss in potential from bandgap to a VOC of only 360 mV.


Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers

Advanced Materials Wiley 29 (2016)

Z Wang, DP McMeekin, N Sakai, S van Reenen, K Wojciechowski, JB Patel, M Johnston, HJ Snaith

Air-stable doping of the n-type fullerene layer in an n-i-p planar heterojunction perovskite device is capable of enhancing device efficiency and improving device stability. Employing a (HC(NH2 )2 )0.83 Cs0.17 Pb(I0.6 Br0.4 )3 perovskite as the photoactive layer, glass-glass laminated devices are reported, which sustain 80% of their "post burn-in" efficiency over 3400 h under full sun illumination in ambient conditions.


Near-infrared and short-wavelength infrared photodiodes based on dye-perovskite composites

Advanced Functional Materials Wiley 27 (2017) 1702485

Q Lin, Z Wang, M Young, JB Patel, RL Milot, L Martinez Maestro, RR Lunt, HJ Snaith, MB Johnston, L Herz

Organohalide perovskites have emerged as promising light-sensing materials because of their superior optoelectronic properties and low-cost processing methods. Recently, perovskite-based photodetectors have successfully been demonstrated as both broadband and narrowband varieties. However, the photodetection bandwidth in perovskite-based photodetectors has so far been limited to the near-infrared regime owing to the relatively wide band gap of hybrid organohalide perovskites. In particular, short-wavelength infrared photodiodes operating beyond 1 μm have not yet been realized with organohalide perovskites. In this study, narrow band gap organic dyes are combined with hybrid perovskites to form composite films as active photoresponsive layers. Tuning the dye loading allows for optimization of the spectral response characteristics and excellent charge-carrier mobilities near 11 cm 2 V -1 s -1 , suggesting that these composites combine the light-absorbing properties or IR dyes with the outstanding charge-extraction characteristics of the perovskite. This study demonstrates the first perovskite photodiodes with deep near-infrared and short-wavelength infrared response that extends as far as 1.6 μm. All devices are solution-processed and exhibit relatively high responsivity, low dark current, and fast response at room temperature, making this approach highly attractive for next-generation light-detection techniques.


Photovoltaic mixed-cation lead mixed-halide perovskites: Links between crystallinity, photo-stability and electronic properties

Energy and Environmental Science Royal Society of Chemistry 10 (2016) 361-369

W Rehman, DP McMeekin, JB Patel, RL Milot, MB Johnston, HJ Snaith, LM Herz

<p> Lead mixed halide perovskites are highly promising semiconductors for both multi-junction photovoltaic and light emitting applications due to their tunable band gaps, with emission and absorption energies spanning the UV-visible to near IR regions. However, many such perovskites exhibit unwanted halide segregation under photoillumination, the cause of which is still unclear. In our study, we establish crucial links between crystal phase stability, photostability and optoelectronic properties of the mixed-cation lead mixed-halide perovskite CsyFA(1-y)Pb(BrxI(1-x))3. We demonstrate a region for caesium content between 0.10 &lt; y &lt; 0.30 which features high crystalline quality, long chargecarrier lifetimes and high charge-carrier mobilities. Importantly, we show that for such high-quality perovskites, photoinduced halide segregation is strongly suppressed, suggesting that high crystalline quality is a prerequisite for good optoelectronic quality and band gap stability. We propose that regions of short-range crystalline order aid halide segregation, possibly by releasing lattice strain between iodide rich and bromide rich domains. For an optimized caesium content, we explore the orthogonal halide-variation parameter space for Cs0.17FA0.83Pb(BrxI(1-x))3 perovskites. We demonstrate excellent charge-carrier mobilities (11-40 cm2 V^−1 s^−1) and diffusion lengths (0.8 - 4.4 µm) under solar conditions across the full iodide-bromide tuning range. Therefore, the addition of caesium yields a more photostable perovskite system whose absorption onsets can be tuned for bandgap-optimized tandem solar cells.</p>


Perovskite-perovskite tandem photovoltaics with optimized bandgaps

Science American Association for the Advancement of Science (2016)

GE Eperon, T Leijtens, KA Bush, R Prasanna, T Green, JT-W Wang, DP McMeekin, G Volonakis, RL Milot, R May, A Palmstrom, DJ Slotcavage, RA Belisle, JB Patel, ES Parrott, RJ Sutton, W Ma, F Moghadam, B Conings, A Babayigit, H-G Boyen, LM Herz, MB Johnston, MD McGehee, HJ Snaith

Multi-junction solar photovoltaics are proven to deliver the highest performance of any solar cell architecture, making them ideally suited for deployment in an increasingly efficiency driven solar industry. Conventional multi-junction cells reach up to 45% efficiency, but are so costly to manufacture that they are only currently useful for space and solar concentrator photovoltaics. Here, we demonstrate the first four and two-terminal perovskite-perovskite tandem solar cells with ideally matched bandgaps. We develop an infrared absorbing 1.2eV bandgap perovskite, FA0.75Cs0.25Sn0.5Pb0.5I3, which is capable of delivering 13.6% efficiency. By combining this material with a wider bandgap FA0.83Cs0.17Pb(I0.5Br0.5)3 material, we reach initial monolithic two terminal tandem efficiencies of 14.0 % with over 1.75 V open circuitvoltage. We also make mechanically stacked four terminal tandem cells and obtain 18.1 % efficiency for small cells, and 16.0 % efficiency for 1cm^2 cells. Crucially, we find that our infrared absorbing perovskite cells exhibit excellent thermal and atmospheric stability, unprecedented for Sn based perovskites. This device architecture and materials set will enable “all perovskite” thin film solar cells to reach the highest efficiencies in the long term at the lowest costs, delivering a viable photovoltaic technology to supplant fossil fuels.


Efficient perovskite solar cells by metal ion doping

ENERGY & ENVIRONMENTAL SCIENCE 9 (2016) 2892-2901

JT-W Wang, Z Wang, S Pathak, W Zhang, DW deQuilettes, F Wisnivesky-Rocca-Rivarola, J Huang, PK Nayak, JB Patel, HAM Yusof, Y Vaynzof, R Zhu, I Ramirez, J Zhang, C Ducati, C Grovenor, MB Johnston, DS Ginger, RJ Nicholas, HJ Snaith


Structured organic–inorganic perovskite toward a distributed feedback laser

Advanced Materials Wiley 28 (2015) 923-929

M Saliba, S Wood, J Patel, P Nayak, J Huang, J Alexander-Webber, B Wenger, S Stranks, M Hörantner, J Wang, R Nicholas, L Herz, M Johnston, S Morris, H Snaith, M Riede

A general strategy for the in-plane structuring of organic-inorganic perovskite films is presented. The method is used to fabricate an industrially relevant distributed feedback (DFB) cavity, which is a critical step towards all-electrially pumped injection laser diodes. This approach opens the prospects of perovskite materials for much improved optical control in LEDs, solar cells and also toward applications as optical devices.


Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells

Advanced Energy Materials 6 (2016) 1502458-

R Sutton, GE Eperon, L Miranda, ES Parrott, BA Kamino, JB Patel, MT Hörantner, MB Johnston, AA Haghighirad, DT Moore, HJ Snaith

Highest reported efficiency cesium lead halide perovskite solar cells are realized by tuning the bandgap and stabilizing the black perovskite phase at lower temperatures. CsPbI2Br is employed in a planar architecture device resulting in 9.8% power conversion efficiency and over 5% stabilized power output. Offering substantially enhanced thermal stability over their organic based counterparts, these results show that all-inorganic perovskites can represent a promising next step for photovoltaic materials.


Formation dynamics of CH3NH3PbI3 Perovskite following two-step layer deposition

Journal of physical chemistry letters American Chemical Society 7 (2016) 96-102

JB Patel, RL Milot, AD Wright, L Herz, M Johnston

Hybrid metal-halide perovskites have emerged as a leading class of semiconductors for optoelectronic devices because of their desirable material properties and versatile fabrication methods. However, little is known about the chemical transformations that occur in the initial stages of perovskite crystal formation. Here we follow the real-time formation dynamics of MAPbI3 from a bilayer of lead iodide (PbI2) and methylammonium iodide (MAI) deposited through a two-step thermal evaporation process. By lowering the substrate temperature during deposition, we are able to initially inhibit intermixing of the two layers. We subsequently use infrared and visible light transmission, X-ray diffraction, and photoluminescence lifetime measurements to reveal the room-temperature transformations that occur in vacuum and ambient air, as MAI diffuses into the PbI2 lattice to form MAPbI3. In vacuum, the transformation to MAPbI3 is incomplete as unreacted MAI is retained in the film. However, exposure to moist air allows for conversion of the unreacted MAI to MAPbI3, demonstrating that moisture is essential in making MAI more mobile and thus aiding perovskite crystallization. These dynamic processes are reflected in the observed charge-carrier lifetimes, which strongly fluctuate during periods of large ion migration but steadily increase with improving crystallinity.


Vibrational properties of the organic inorganic halide perovskite CH3NH3PbI3 from theory and experiment: factor group analysis, first-principles calculations, and low-temperature infrared spectra

Journal Of Physical Chemistry C American Chemical Society 119 (2015) 25703-25718

M-A Perez-Osorio, RL Milot, MR Filip, JB Patel, L Herz, MB Johnston, F Giustino

In this work, we investigate the vibrational properties of the hybrid organic/inorganic halide perovskite MAPbI3 (MA = CH3NH3) in the range 6-3500 cm-1 by combining first-principles density-functional perturbation theory calculations and low-temperature infrared (IR) absorption measurements on evaporated perovskite films. By using a group factor analysis, we establish the symmetry of the normal modes of vibration and predict their IR and Raman activity. We validate our analysis via explicit calculation of the IR intensities. Our calculated spectrum is in good agreement with our measurements. By comparing theory and experiment, we are able to assign most of the features in the IR spectrum. Our analysis shows that the IR spectrum of MAPbI3 can be partitioned into three distinct regions: the internal vibrations of the MA cations (800-3100 cm-1), the cation librations (140-180 cm-1), and the internal vibrations of the PbI3 network (&lt;100 cm-1). The low-frequency region of the IR spectrum is dominated by Pb-I stretching modes of the PbI3 network with Bu symmetry and librational modes of the MA cations. In addition, we find that the largest contributions to the static dielectric constant arise from Pb-I stretching and Pb-I-Pb rocking modes, and that one low-frequency B2u Pb-I stretching mode exhibits a large LO-TO splitting of 50 cm-1.

Pages