Publications


Impact of a quasi-stochastic cellular automaton backscatter scheme on the systematic error and seasonal prediction skill of a global climate model

in Stochastic Physics and Climate Modelling, Cambridge University Press (2009) 15

J Berner, FJ Doblas-Reyes, TN Palmer, GJ Shutts, A Weisheimer


Future change in wintertime atmospheric blocking simulated using a 20-km-mesh atmospheric global circulation model

Journal of Geophysical Research: Atmospheres 114 (2009)

M Matsueda, R Mizuta, S Kusunoki

Future change in the frequency of atmospheric blocking is investigated through present-day (1979-2003) and future (2075-2099) simulations using 20-, 60-, 120-, and 180-km-mesh atmospheric general circulation models (AGCMs) under the Intergovernmental Panel on Climate Change Special Reports on Emission Scenarios AlB emission scenario, focusing on the Northern Hemisphere winter (December-February). The results of present-day climate simulations reveal that the AGCM with the highest horizontal resolution is required to accurately simulate Euro-Atlantic blocking, whereas the AGCM with the lowest horizontal resolution is in good agreement with reanalysis data regarding the frequency of Pacific blocking. While the lower-resolution models accurately reproduce long-lived Pacific blocking, they are unable to accurately simulate long-lived Euro-Atlantic blocking. This result suggests that the maintenance mechanism of Euro-Atlantic blocking is different from that of Pacific blocking. In the future climate simulations, both frequencies of Euro-Atlantic and Pacific blockings are predicted to show a significant decrease, mainly in the western part of each peak in present-day blocking frequency, where the westerly jet is predicted to increase in strength; no significant change is predicted in the eastern part of each peak. The number of Euro-Atlantic blocking events is predicted to decrease for almost all blocking durations, whereas the decrease in the number of Pacific blockings is remarkable for long-duration events. It is possible that long-lived (>25 days) Euro-Atlantic and Pacific blockings will disappear altogether in the future. Copyright 2009 by the American Geophysical Union.


Monte Carlo approach to turbulence

Proceedings of the XXVII International Symposium on Lattice Field Theory ‘Lattice 2009' (2009)

Dueben, D Homeier, K Jansen, D Mesterhazy, G Muenster


Addressing model uncertainty in seasonal and annual dynamical ensemble forecasts

Quarterly Journal of the Royal Meteorological Society 135 (2009) 1538-1559

FJ Doblas-Reyes, A Weisheimer, A Déqué, NS Keenlyside, M McVean, JM Murphy, P Rogel, DK Smith, TN Palmer

The relative merits of three forecast systems addressing the impact of model uncertainty on seasonal/annual forecasts are described. One system consists of a multi-model, whereas two other systems sample uncertainties by perturbing the parametrization of reference models through perturbed parameter and stochastic physics techniques. Ensemble reforecasts over 1991 to 2001 were performed with coupled climate models started from realistic initial conditions. Forecast quality varies due to the different strategies for sampling uncertainties, but also to differences in initialisation methods and in the reference forecast system. Both the stochastic-physics and perturbed-parameter ensembles improve the reliability with respect to their reference forecast systems, but not the discrimination ability. Although the multi-model experiment has an ensemble size larger than the other two experiments, most of the assessment was done using equally-sized ensembles. The three ensembles show similar levels of skill: significant differences in performance typically range between 5 and 20%. However, a nine-member multi-model shows better results for seasonal predictions with lead times shorter than five months, followed by the stochastic-physics and perturbed-parameter ensembles. Conversely, for seasonal predictions with lead times longer than four months, the perturbed-parameter ensemble gives more often better results. All systems suggest that spread cannot be considered a useful predictor of skill. Annual-mean predictions showed lower forecast quality than seasonal predictions. Only small differences between the systems were found. The full multi-model ensemble has improved quality with respect to all other systems, mainly from the larger ensemble size for lead times longer than four months and annual predictions. © 2009 Royal Meteorological Society and Crown Copyright.


Impact of a quasi-stochastic cellular automaton backscatter scheme on the systematic error and seasonal prediction skill of a global climate model.

Philos Trans A Math Phys Eng Sci 366 (2008) 2561-2579

J Berner, FJ Doblas-Reyes, TN Palmer, G Shutts, A Weisheimer

The impact of a nonlinear dynamic cellular automaton (CA) model, as a representation of the partially stochastic aspects of unresolved scales in global climate models, is studied in the European Centre for Medium Range Weather Forecasts coupled ocean-atmosphere model. Two separate aspects are discussed: impact on the systematic error of the model, and impact on the skill of seasonal forecasts. Significant reductions of systematic error are found both in the tropics and in the extratropics. Such reductions can be understood in terms of the inherently nonlinear nature of climate, in particular how energy injected by the CA at the near-grid scale can backscatter nonlinearly to larger scales. In addition, significant improvements in the probabilistic skill of seasonal forecasts are found in terms of a number of different variables such as temperature, precipitation and sea-level pressure. Such increases in skill can be understood both in terms of the reduction of systematic error as mentioned above, and in terms of the impact on ensemble spread of the CA's representation of inherent model uncertainty.


Ensemble forecasting

JOURNAL OF COMPUTATIONAL PHYSICS 227 (2008) 3515-3539

M Leutbecher, TN Palmer


Introduction. Stochastic physics and climate modelling.

Philos Trans A Math Phys Eng Sci 366 (2008) 2421-2427

TN Palmer, PD Williams

Finite computing resources limit the spatial resolution of state-of-the-art global climate simulations to hundreds of kilometres. In neither the atmosphere nor the ocean are small-scale processes such as convection, clouds and ocean eddies properly represented. Climate simulations are known to depend, sometimes quite strongly, on the resulting bulk-formula representation of unresolved processes. Stochastic physics schemes within weather and climate models have the potential to represent the dynamical effects of unresolved scales in ways which conventional bulk-formula representations are incapable of so doing. The application of stochastic physics to climate modelling is a rapidly advancing, important and innovative topic. The latest research findings are gathered together in the Theme Issue for which this paper serves as the introduction.


Monte Carlo simulations of the randomly forced Burgers equation

Europhysics Letters: a letters journal exploring the frontiers of physics 84 (2008)

Dueben, D Homeier, K Jansen, D Mesterhazy, G Muenster, C Urbach


Edward Norton Lorenz - Obituaries

PHYSICS TODAY 61 (2008) 81-82

T Palmer


The new VarEPS-monthly forecasting system: A first step towards seamless prediction

QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY 134 (2008) 1789-1799

F Vitart, R Buizza, MA Balmaseda, G Balsamo, J-R Bidlot, A Bonet, M Fuentes, A Hofstadler, F Molteni, TN Palmer


Toward seamless prediction: Calibration of climate change projections using seasonal forecasts

Bulletin of the American Meteorological Society 89 (2008) 459-470

TN Palmer, FJ Doblas-Reyes, A Weisheimer, MJ Rodwell

Trustworthy probabilistic projections of regional climate are essential for society to plan for future climate change, and yet, by the nonlinear nature of climate, finite computational models of climate are inherently deficient in their ability to simulate regional climatic variability with complete accuracy. How can we determine whether specific regional climate projections may be untrustworthy in the light of such generic deficiencies? A calibration method is proposed whose basis lies in the emerging notion of seamless prediction. Specifically, calibrations of ensemble-based climate change probabilities are derived from analyses of the statistical reliability of ensemble-based forecast probabilities on seasonal time scales. The method is demonstrated by calibrating probabilistic projections from the multimodel ensembles used in the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC), based on reliability analyses from the seasonal forecast Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) dataset. The focus in this paper is on climate change projections of regional precipitation, though the method is more general. © 2008 American Meteorological Society.


Can MCGE Outperform the ECMWF Ensemble?

SOLA 4 (2008) 77-80

M Matsueda, HL Tanaka


Dynamically-based seasonal forecasts of Atlantic tropical storm activity issued in June by EUROSIP

Geophysical Research Letters 34 (2007)

F Vitart, MR Huddleston, M Déqué, D Peake, TN Palmer, TN Stockdale, MK Davey, S Ineson, A Weisheimer

Most seasonal forecasts of Atlantic tropical storm numbers are produced using statistical-empirical models. However, forecasts can also be made using numerical models which encode the laws of physics, here referred to as "dynamical models". Based on 12 years of re-forecasts and 2 years of real-time forecasts, we show that the so-called EUROSIP (EUROpean Seasonal to Inter-annual Prediction) multi-model ensemble of coupled ocean atmosphere models has substantial skill in probabilistic prediction of the number of Atlantic tropical storms. The EUROSIP real-time forecasts correctly distinguished between the exceptional year of 2005 and the average hurricane year of 2006. These results have implications for the reliability of climate change predictions of tropical cyclone activity using similar dynamically-based coupled ocean-atmosphere models.


Initialisation strategies for decadal hindcasts for the 1960-2005 period within the ENSEMBLES project. ECMWF Tech Memo.

(2007) 521

A Weisheimer, FJ Doblas-Reyes, P Rogel, N Keenlyside, MA Balmaseda, J Murphy, D Smith, M Collins, B Bhaskaran, TN Palmer


Recent Advances in Radiation Transfer Parametrizations. ECMWF Tech Memo.

(2007) 539

J-J Morcrette, P Bechtold, A Beljaars, A Weisheimer


Historical Overview of Climate Change Science

in Intergovernmental Panel on Climate Change (IPCC), 4th Assessment Report, Working Group 1: The Physical Basis of Climate Change, (2007) 1

H Le Treut, R Somerville, A Weisheimer


How good is an ensemble an capturing truth? Using bounding boxes for forecast evaluation

Quarterly Journal of the Royal Meteorological Society 133 (2007) 1309-1325

KT Judd, LA Smith, A Weisheimer

Ensemble prediction systems aim to account for uncertainties of initial conditions and model error. Ensemble forecasting is sometimes viewed as a method of obtaining (objective) probabilistic forecasts. How is one to judge the quality of an ensemble at forecasting a system? The probability that the bounding box of an ensemble captures some target (such as 'truth' in a perfect model scenario) provides new statistics for quantifying the quality of an ensemble prediction system: information that can provide insight all the way from ensemble system design to user decision support. These simple measures clarify basic questions, such as the minimum size of an ensemble. To illustrate their utility, bounding boxes are used in the imperfect model context to quantify the differences between ensemble forecasting with a stochastic model ensemble prediction system and a deterministic model prediction system. Examining forecasts via their bounding box statistics provides an illustration of how adding stochastic terms to an imperfect model may improve forecasts even when the underlying system is deterministic. Copyright © 2007 Royal Meteorological Society.


Convective forcing fluctuations in a cloud-resolving model: Relevance to the stochastic parameterization problem

JOURNAL OF CLIMATE 20 (2007) 187-202

GJ Shutts, TN Palmer


Daily Forecast Skill of Multi-Center Grand Ensemble

SOLA 3 (2007) 29-32

M Matsueda, M Kyouda, HL Tanaka, T Tsuyuki


Ensemble decadal predictions from analysed initial conditions.

Philos Trans A Math Phys Eng Sci 365 (2007) 2179-2191

A Troccoli, TN Palmer

Sensitivity experiments using a coupled model initialized from analysed atmospheric and oceanic observations are used to investigate the potential for interannual-to-decadal predictability. The potential for extending seasonal predictions to longer time scales is explored using the same coupled model configuration and initialization procedure as used for seasonal prediction. It is found that, despite model drift, climatic signals on interannual-to-decadal time scales appear to be detectable. Two climatic states have been chosen: one starting in 1965, i.e. ahead of a period of global cooling, and the other in 1994, ahead of a period of global warming. The impact of initial conditions and of the different levels of greenhouse gases are isolated in order to gain insights into the source of predictability.