Publications by Thorsten Hesjedal

Magnetization dynamics in an exchange-coupled NiFe/CoFe bilayer studied by x-ray detected ferromagnetic resonance


GBG Stenning, LR Shelford, SA Cavill, F Hoffmann, M Haertinger, T Hesjedal, G Woltersdorf, GJ Bowden, SA Gregory, CH Back, PAJ de Groot, G van der Laan

Universal Magnetic Hall Circuit Based on Paired Spin Heterostructures

Advanced Electronic Materials (2015) n/a-n/a

S Zhang, AA Baker, J-Y Zhang, G Yu, S Wang, T Hesjedal

Study of Dy-doped Bi2Te3: thin film growth and magnetic properties.

Journal of physics. Condensed matter : an Institute of Physics journal 27 (2015) 245602-

SE Harrison, LJ Collins-McIntyre, SL Zhang, AA Baker, AI Figueroa, AJ Kellock, A Pushp, SS Parkin, JS Harris, G van der Laan, T Hesjedal

Breaking the time-reversal symmetry (TRS) in topological insulators (TIs) through ferromagnetic doping is an essential prerequisite for unlocking novel physical phenomena and exploring potential device applications. Here, we report the successful growth of high-quality (DyxBi1-x)2Te3 thin films with Dy concentrations up to x = 0.355 by molecular beam epitaxy. Bulk-sensitive magnetisation studies using superconducting quantum interference device magnetometry find paramagnetic behaviour down to 2 K for the entire doping series. The effective magnetic moment, μeff, is strongly doping concentration-dependent and reduces from ∼12.6 μB Dy(-1) for x = 0.023 to ∼4.3 μB Dy(-1) for x = 0.355. X-ray absorption spectra and x-ray magnetic circular dichroism (XMCD) at the Dy M4,5 edge are employed to provide a deeper insight into the magnetic nature of the Dy(3+)-doped films. XMCD, measured in surface-sensitive total-electron-yield detection, gives μeff = 4.2 μB Dy(-1). The large measured moments make Dy-doped films interesting TI systems in which the TRS may be broken via the proximity effect due to an adjacent ferromagnetic insulator.

Structural properties and growth mechanism of Cd3As2 nanowires


P Schoenherr, T Hesjedal

Transverse field muon-spin rotation signature of the skyrmion-lattice phase in Cu2OSeO3

Phys Rev B. Solid State 91 (2015) 224408

T Lancaster, RC Williams, IO Thomas, F Xiao, FL Pratt, SJ Blundell, JC Loudon, T Hesjedal, SJ Clark, PD Hatton, M Ciomaga Hatnean, DS Keeble, G Balakrishnan

We present the results of transverse field (TF) muon-spin rotation (μ+SR) measurements on Cu2OSeO3, which has a skyrmion-lattice (SL) phase. We measure the response of the TF μ+SR signal in that phase along with the surrounding ones, and suggest how the phases might be distinguished using the results of these measurements. Dipole field simulations support the conclusion that the muon is sensitive to the SL via the TF line shape and, based on this interpretation, our measurements suggest that the SL is quasistatic on a time scale τ>100 ns.

Effect of interfacial structures on spin dependent tunneling in epitaxial L1(0)-FePt/MgO/FePt perpendicular magnetic tunnel junctions


G Yang, DL Li, SG Wang, QL Ma, SH Liang, HX Wei, XF Han, T Hesjedal, RCC Ward, A Kohn, A Elkayam, N Tal, X-G Zhang

A new topological insulator built from quasi one-dimensional atomic ribbons

Physica Status Solidi - Rapid Research Letters 9 (2015) 130-135

P Schönherr, S Zhang, Y Liu, Y Liu, P Kusch, S Reich, T Giles, D Daisenberger, D Prabhakaran, Y Chen, T Hesjedal

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. A novel topological insulator with orthorhombic crystal structure is demonstrated. It is characterized by quasi one-dimensional, conducting atomic chains instead of the layered, two-dimensional sheets known from the established Bi2(Se,Te)3 system. The Sb-doped Bi2Se3 nanowires are grown in a TiO2-catalyzed process by chemical vapor deposition. The binary Bi2Se3 is transformed from rhombohedral to orthorhombic by substituting Sb on ∼38% of the Bi sites. Pure Sb2Se3 is a topologically trivial band insulator with an orthorhombic crystal structure at ambient conditions, and it is known to transform into a topological insulator at high pressure. Angle-resolved photoemission spectroscopy shows a topological surface state, while Sb doping also tunes the Fermi level to reside in the bandgap.

An ultra-compact, high-throughput molecular beam epitaxy growth system.

The Review of scientific instruments 86 (2015) 043901-

AA Baker, W Braun, G Gassler, S Rembold, A Fischer, T Hesjedal

We present a miniaturized molecular beam epitaxy (miniMBE) system with an outer diameter of 206 mm, optimized for flexible and high-throughput operation. The three-chamber system, used here for oxide growth, consists of a sample loading chamber, a storage chamber, and a growth chamber. The growth chamber is equipped with eight identical effusion cell ports with linear shutters, one larger port for either a multi-pocket electron beam evaporator or an oxygen plasma source, an integrated cryoshroud, retractable beam-flux monitor or quartz-crystal microbalance, reflection high energy electron diffraction, substrate manipulator, main shutter, and quadrupole mass spectrometer. The system can be combined with ultrahigh vacuum (UHV) end stations on synchrotron and neutron beamlines, or equivalently with other complex surface analysis systems, including low-temperature scanning probe microscopy systems. Substrate handling is compatible with most UHV surface characterization systems, as the miniMBE can accommodate standard surface science sample holders. We introduce the design of the system, and its specific capabilities and operational parameters, and we demonstrate the epitaxial thin film growth of magnetoelectric Cr2O3 on c-plane sapphire and ferrimagnetic Fe3O4 on MgO (001).

Growth of Bi2Se3 and Bi2Te3 on amorphous fused silica by MBE

physica status solidi (b) 252 (2015) 1334-1338

LJ Collins-McIntyre, W Wang, B Zhou, Speller, Chen, T Hesjedal

Topological insulator (TI) thin films of Bi2Se3 and Bi2Te3 have been successfully grown on amorphous fused silica (vitreous SiO2) substrates by molecular beam epitaxy. We find that such growth is possible and investigations by X-ray diffraction reveal good crystalline quality with a high degree of order along the caxis. Atomic force microscopy, electron backscatter diffraction and X-ray reflectivity are used to study the surface morphology and structural film parameters. Angle-resolved photoemission spectroscopy studies confirm the existence of a topological surface state. This work shows that TI films can be grown on amorphous substrates, while maintaining the topological surface state despite the lack of in-plane rotational order of the domains. The growth on fused silica presents a promising route to detailed thermoelectric measurements of TI films, free from unwanted thermal, electrical, and piezoelectric influences from the substrate.

Magnetic reversal in Dy-doped DyFe2/YFe2 superlattice films

PHYSICAL REVIEW B 91 (2015) ARTN 094403

GBG Stenning, GJ Bowden, PAJ de Groot, G van der Laan, AI Figueroa, P Bencok, P Steadman, T Hesjedal

Spin pumping in ferromagnet-topological insulator-ferromagnet heterostructures.

Scientific reports 5 (2015) 7907-

AA Baker, AI Figueroa, LJ Collins-McIntyre, G van der Laan, T Hesjedal

Topological insulators (TIs) are enticing prospects for the future of spintronics due to their large spin-orbit coupling and dissipationless, counter-propagating conduction channels in the surface state. However, a means to interact with and exploit the topological surface state remains elusive. Here, we report a study of spin pumping at the TI-ferromagnet interface, investigating spin transfer dynamics in a spin-valve like structure using element specific time-resolved x-ray magnetic circular dichroism, and ferromagnetic resonance. Gilbert damping increases approximately linearly with increasing TI thickness, indicating efficient behaviour as a spin sink. However, layer-resolved measurements suggest that a dynamic coupling is limited. These results shed new light on the spin dynamics of this novel material class, and suggest great potential for TIs in spintronic devices, through their novel magnetodynamics that persist even up to room temperature.

A new topological insulator built from quasi one-dimensional atomic ribbons


P Schoenherr, S Zhang, Y Liu, P Kusch, S Reich, T Giles, D Daisenberger, D Prabhakaran, Y Chen, T Hesjedal

Catalyst-free growth of Bi2Te3 nanostructures by molecular beam epitaxy


SE Harrison, P Schoenherr, Y Huo, JS Harris, T Hesjedal

Controlling spin-dependent tunneling by bandgap tuning in epitaxial rocksalt MgZnO films.

Scientific reports 4 (2014) 7277-

DL Li, QL Ma, SG Wang, RC Ward, T Hesjedal, XG Zhang, A Kohn, E Amsellem, G Yang, JL Liu, J Jiang, HX Wei, XF Han

Widespread application of magnetic tunnel junctions (MTJs) for information storage has so far been limited by the complicated interplay between tunnel magnetoresistance (TMR) ratio and the product of resistance and junction area (RA). An intricate connection exists between TMR ratio, RA value and the bandgap and crystal structure of the barrier, a connection that must be unravelled to optimise device performance and enable further applications to be developed. Here, we demonstrate a novel method to tailor the bandgap of an ultrathin, epitaxial Zn-doped MgO tunnel barrier with rocksalt structure. This structure is attractive due to its good Δ1 spin filtering effect, and we show that MTJs based on tunable MgZnO barriers allow effective balancing of TMR ratio and RA value. In this way spin-dependent transport properties can be controlled, a key challenge for the development of spintronic devices.

Three dimensional magnetic abacus memory.

Scientific reports 4 (2014) 6109-

S Zhang, J Zhang, AA Baker, S Wang, G Yu, T Hesjedal

Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered 'quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory.

Engineering of Bi2Se3 nanowires by laser cutting


P Schoenherr, AA Baker, P Kusch, S Reich, T Hesjedal

Preparation of layered thin film samples for angle-resolved photoemission spectroscopy


SE Harrison, B Zhou, Y Huo, A Pushp, AJ Kellock, SSP Parkin, JS Harris, Y Chen, T Hesjedal

Magnetic ordering in Cr-doped Bi2Se3 thin films

EPL 107 (2014) ARTN 57009

LJ Collins-McIntyre, SE Harrison, P Schoenherr, N-J Steinke, CJ Kinane, TR Charlton, D Alba-Veneroa, A Pushp, AJ Kellock, SSP Parkin, JS Harris, S Langridge, G van der Laan, T Hesjedal

Study of Gd-doped Bi2Te3 thin films: Molecular beam epitaxy growth and magnetic properties

Journal of Applied Physics 115 (2014) 2

SE Harrison, LJ Collins-McIntyre, S Li, AA Baker, LR Shelford, Y Huo, A Pushp, SSP Parkin, JS Harris, E Arenholz, G van der Laan, T Hesjedal

X-ray magnetic spectroscopy of MBE-grown Mn-doped Bi2Se3 thin films

AIP ADVANCES 4 (2014) ARTN 127136

LJ Collins-McIntyre, MD Watson, AA Baker, SL Zhang, AI Coldea, SE Harrison, A Pushp, AJ Kellock, SSP Parkin, G van der Laan, T Hesjedal