Publications by Thorsten Hesjedal


Magnetic ordering in Ho-doped Bi2Te3 topological insulator

Physica Status Solidi - Rapid Research Letters (2016)

AI Figueroa, SE Harrison, LJ Collins-Mcintyre, G van der Laan, T Hesjedal

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. We investigate the magnetic properties of Ho-doped Bi2Te3 thin films grown by molecular beam epitaxy. Analysis of the polarized X-ray absorption spectra at the Ho M5 absorption edge gives an effective 4f magnetic moment which is ∼45% of the Hund's rule ground state value. X-ray magnetic circular dichroism (XMCD) shows no significant anisotropy, which suggests that the reduced spin moment is not due to the crystal field effects, but rather the presence of non-magnetic or antiferromagnetic Ho sites. Extrapolating the temperature dependence of the XMCD measured in total electron yield and fluorescence yield mode in a field of 7 T gives a Curie-Weiss temperature of θ CW ≈ -30 K, which suggests antiferromagnetic ordering, in contrast to the paramagnetic behavior observed with SQUID magnetometry. From the anomaly of the XMCD signal at low temperatures, a Néel temperature TN between 10 K and 25 K is estimated.


Engineering helimagnetism in MnSi thin films

AIP ADVANCES 6 (2016) ARTN 015217

SL Zhang, R Chalasani, AA Baker, N-J Steinke, AI Figueroa, A Kohn, G van der Laan, T Hesjedal


Transverse field muon-spin rotation measurement of the topological anomaly in a thin film of MnSi

Physical Review B - Condensed Matter and Materials Physics 93 (2016)

T Lancaster, F Xiao, Z Salman, IO Thomas, SJ Blundell, FL Pratt, SJ Clark, T Prokscha, A Suter, SL Zhang, AA Baker, T Hesjedal

© 2016 American Physical Society. We present the results of transverse-field muon-spin rotation measurements on an epitaxially grown 40-nm-thick film of MnSi on Si(111) in the region of the field-temperature phase diagram where a skyrmion phase has been observed in the bulk. We identify changes in the quasistatic magnetic field distribution sampled by the muon, along with evidence for magnetic transitions around T≈40 and 30 K. Our results suggest that the cone phase is not the only magnetic texture realized in film samples for out-of-plane fields.


Multidomain Skyrmion Lattice State in Cu2OSeO3.

Nano letters 16 (2016) 3285-3291

SL Zhang, A Bauer, DM Burn, P Milde, E Neuber, LM Eng, H Berger, C Pfleiderer, G van der Laan, T Hesjedal

Magnetic skyrmions in chiral magnets are nanoscale, topologically protected magnetization swirls that are promising candidates for spintronics memory carriers. Therefore, observing and manipulating the skyrmion state on the surface level of the materials are of great importance for future applications. Here, we report a controlled way of creating a multidomain skyrmion state near the surface of a Cu2OSeO3 single crystal, observed by soft resonant elastic X-ray scattering. This technique is an ideal tool to probe the magnetic order at the L3 edge of 3d metal compounds giving an average depth sensitivity of ∼50 nm. The single-domain 6-fold-symmetric skyrmion lattice can be broken up into domains, overcoming the propagation directions imposed by the cubic anisotropy by applying the magnetic field in directions deviating from the major cubic axes. Our findings open the door to a new way to manipulate and engineer the skyrmion state locally on the surface or on the level of individual skyrmions, which will enable applications in the future.


On the temperature dependence of spin transport in ferromagnet-topological insulator-ferromagnet spin valves

Results in Physics Elsevier: Results in Physics (2016)

A Baker, AI Figueroa, G van der Laan, T Hesjedal

Topological insulators (TIs) have a large potential for spintronics devices owing to their spinpolarized, counter-propagating surface states. Recently, we have investigated spin pumping in a ferromagnet-TI-ferromagnet structure at room temperature. Here, we present the temperature-dependent measurement of spin pumping down to 10 K, which shows no variation with temperature.


Oxidation Effects in Rare Earth Doped Topological Insulator Thin Films.

Scientific reports 6 (2016) 22935-

AI Figueroa, G van der Laan, SE Harrison, G Cibin, T Hesjedal

The breaking of time-reversal symmetry (TRS) in topological insulators is a prerequisite for unlocking their exotic properties and for observing the quantum anomalous Hall effect (QAHE). The incorporation of dopants which exhibit magnetic long-range order is the most promising approach for TRS-breaking. REBiTe3, wherein 50% of the Bi is substitutionally replaced by a RE atom (RE = Gd, Dy, and Ho), is a predicted QAHE system. Despite the low solubility of REs in bulk crystals of a few %, highly doped thin films have been demonstrated, which are free of secondary phases and of high crystalline quality. Here we study the effects of exposure to atmosphere of rare earth-doped Bi2(Se, Te)3 thin films using x-ray absorption spectroscopy. We demonstrate that these RE dopants are all trivalent and effectively substitute for Bi(3+) in the Bi2(Se, Te)3 matrix. We find an unexpected high degree of sample oxidation for the most highly doped samples, which is not restricted to the surface of the films. In the low-doping limit, the RE-doped films mostly show surface oxidation, which can be prevented by surface passivation, encapsulation, or in-situ cleaving to recover the topological surface state.


Anisotropic Absorption of Pure Spin Currents.

Physical review letters 116 (2016) 047201-

AA Baker, AI Figueroa, CJ Love, SA Cavill, T Hesjedal, G van der Laan

Spin transfer in magnetic multilayers offers the possibility of ultrafast, low-power device operation. We report a study of spin pumping in spin valves, demonstrating that a strong anisotropy of spin pumping from the source layer can be induced by an angular dependence of the total Gilbert damping parameter, α, in the spin sink layer. Using lab- and synchrotron-based ferromagnetic resonance, we show that an in-plane variation of damping in a crystalline Co_{50}Fe_{50} layer leads to an anisotropic α in a polycrystalline Ni_{81}Fe_{19} layer. This anisotropy is suppressed above the spin diffusion length in Cr, which is found to be 8 nm, and is independent of static exchange coupling in the spin valve. These results offer a valuable insight into the transmission and absorption of spin currents, and a mechanism by which enhanced spin torques and angular control may be realized for next-generation spintronic devices.


Spin pumping through a topological insulator probed by x-ray detected ferromagnetic resonance

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 400 (2016) 178-183

AI Figueroa, AA Baker, LJ Collins-McIntyre, T Hesjedal, G van der Laan


Atomic level structural and chemical analysis of Cr-doped Bi₂Se₃

Scientific Reports Nature Publishing Group: Open Access Journals - Option C 6 (2016) 26549

A Ghasemi, D Kepaptsoglou, L Collins-McIntyre, Q Ramasse, T Hesjedal, VK Lazarov

We present a study of the structure and chemical composition of the Cr-doped 3D topological insulator Bi2Se3. Single-crystalline thin films were grown by molecular beam epitaxy on Al2O3 (0001), and their structural and chemical properties determined on an atomic level by aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy. A regular quintuple layer stacking of the Bi2Se3 film is found, with the exception of the first several atomic layers in the initial growth. The spectroscopy data give direct evidence that Cr is preferentially substituting for Bi in the Bi2Se3 host. We also show that Cr has a tendency to segregate at internal grain boundaries of the Bi2Se3 film.


Transverse field muon-spin rotation measurement of the topological anomaly in a thin film of MnSi

Physical Review B: Condensed Matter and Materials Physics American Physical Society 93 (2016) 140412(R)

T Lancaster, F Xiao, Z Salman, IO Thomas, SJ Blundell, F Pratt, SJ Clark, T Prokscha, A Suter, SL Zhang, AA Baker, T Hesjedal


The Magneto-Hall Difference and the Planar Extraordinary Hall Balance

AIP Advances American Institute of Physics (AIP): Open Access Journals 6 (2016) 045019

T Hesjedal, SL Zhang

The extraordinary Hall balance (EHB) is a general device concept that harnesses the net extraordinary Hall effect (EHE) arising from two independent magnetic layers, which are electrically in parallel. Different EHB behavior can be achieved by tuning the strength and type of interlayer coupling, i.e., ferromagnetic or antiferromagnetic of varying strength, allowing for logic and memory applications. The physics of the EHE in such a multilayered systems, especially the interface-induced effect, will be discussed. A discrepancy between the magnetization and the Hall effect, called the magneto-Hall difference (MHD) is found, which is not expected in conventional EHE systems. By taking advantage of the MHD effect, and by optimizing the materials structure, magnetoresistance ratios in excess of 40,000% can be achieved at room-temperature. We present a new design, the planar EHB, which has the potential to achieve significantly larger magnetoresistance ratios.


Resonant elastic x-ray scattering from the skyrmion lattice in Cu₂OSeO₃

Physical Review B - Condensed Matter and Materials Physics American Physical Society (2016)

SL Zhang, A Bauer, H Berger, C Pfleiderer, G van der Laan, T Hesjedal

We report the study of the skyrmion state near the surface of Cu₂OSeO₃ using soft resonant elastic x-ray scattering (REXS) at the Cu L₃ edge. Within the lateral sampling area of 200 × 200 µm², we found a long-range-ordered skyrmion lattice phase as well as the formation of skyrmion domains via the multiple splitting of the diffraction spots. In a recent REXS study of the skyrmion phase of Cu₂OSeO₃ [Phys. Rev. Lett. 112, 167202 (2014)], Langner et al. reported a double-splitting which they interpret as arising from the moiré pattern of two superposed skyrmion sublattices, originating from the two inequivalent Cu sites. However, we find no energy splitting of the Cu peak in xray absorption measurements, which is to be expected considering the system in more detail. We show that the experimental data reported by Langner et al. does not support their interpretation and discuss alternative origins of the peak splitting. In particular, we find that for magnetic field directions deviating from the major cubic axes, a multidomain skyrmion lattice state is obtained, which consistently explains the splitting of the magnetic spots into two—and more—peaks.


Magnetic proximity-enhanced Curie temperature of Cr-doped Bi2Se3 thin films

PHYSICAL REVIEW B 92 (2015) ARTN 094420

AA Baker, AI Figueroa, K Kummer, LJ Collins-McIntyre, T Hesjedal, G van der Laan


Topological computation based on direct magnetic logic communication.

Scientific reports 5 (2015) 15773-

S Zhang, AA Baker, S Komineas, T Hesjedal

Non-uniform magnetic domains with non-trivial topology, such as vortices and skyrmions, are proposed as superior state variables for nonvolatile information storage. So far, the possibility of logic operations using topological objects has not been considered. Here, we demonstrate numerically that the topology of the system plays a significant role for its dynamics, using the example of vortex-antivortex pairs in a planar ferromagnetic film. Utilising the dynamical properties and geometrical confinement, direct logic communication between the topological memory carriers is realised. This way, no additional magnetic-to-electrical conversion is required. More importantly, the information carriers can spontaneously travel up to ~300 nm, for which no spin-polarised current is required. The derived logic scheme enables topological spintronics, which can be integrated into large-scale memory and logic networks capable of complex computations.


Spin pumping in ferromagnet-topological insulator-ferromagnet heterostructures.

Scientific reports 5 (2015) 7907-

AA Baker, AI Figueroa, LJ Collins-McIntyre, G van der Laan, T Hesjedal

Topological insulators (TIs) are enticing prospects for the future of spintronics due to their large spin-orbit coupling and dissipationless, counter-propagating conduction channels in the surface state. However, a means to interact with and exploit the topological surface state remains elusive. Here, we report a study of spin pumping at the TI-ferromagnet interface, investigating spin transfer dynamics in a spin-valve like structure using element specific time-resolved x-ray magnetic circular dichroism, and ferromagnetic resonance. Gilbert damping increases approximately linearly with increasing TI thickness, indicating efficient behaviour as a spin sink. However, layer-resolved measurements suggest that a dynamic coupling is limited. These results shed new light on the spin dynamics of this novel material class, and suggest great potential for TIs in spintronic devices, through their novel magnetodynamics that persist even up to room temperature.


Massive Dirac Fermion Observed in Lanthanide-Doped Topological Insulator Thin Films.

Scientific reports 5 (2015) 15767-

SE Harrison, LJ Collins-McIntyre, P Schönherr, A Vailionis, V Srot, PA van Aken, AJ Kellock, A Pushp, SS Parkin, JS Harris, B Zhou, YL Chen, T Hesjedal

The breaking of time reversal symmetry (TRS) in three-dimensional (3D) topological insulators (TIs), and thus the opening of a 'Dirac-mass gap' in the linearly dispersed Dirac surface state, is a prerequisite for unlocking exotic physical states. Introducing ferromagnetic long-range order by transition metal doping has been shown to break TRS. Here, we present the study of lanthanide (Ln) doped Bi2Te3, where the magnetic doping with high-moment lanthanides promises large energy gaps. Using molecular beam epitaxy, single-crystalline, rhombohedral thin films with Ln concentrations of up to ~35%, substituting on Bi sites, were achieved for Dy, Gd, and Ho doping. Angle-resolved photoemission spectroscopy shows the characteristic Dirac cone for Gd and Ho doping. In contrast, for Dy doping above a critical doping concentration, a gap opening is observed via the decreased spectral intensity at the Dirac point, indicating a topological quantum phase transition persisting up to room-temperature.


A new topological insulator built from quasi one-dimensional atomic ribbons

Physica Status Solidi - Rapid Research Letters 9 (2015) 130-135

P Schönherr, S Zhang, Y Liu, P Kusch, S Reich, T Giles, D Daisenberger, D Prabhakaran, Y Chen, T Hesjedal

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. A novel topological insulator with orthorhombic crystal structure is demonstrated. It is characterized by quasi one-dimensional, conducting atomic chains instead of the layered, two-dimensional sheets known from the established Bi2(Se,Te)3 system. The Sb-doped Bi2Se3 nanowires are grown in a TiO2-catalyzed process by chemical vapor deposition. The binary Bi2Se3 is transformed from rhombohedral to orthorhombic by substituting Sb on ∼38% of the Bi sites. Pure Sb2Se3 is a topologically trivial band insulator with an orthorhombic crystal structure at ambient conditions, and it is known to transform into a topological insulator at high pressure. Angle-resolved photoemission spectroscopy shows a topological surface state, while Sb doping also tunes the Fermi level to reside in the bandgap.


Structural properties and growth mechanism of Cd3As2 nanowires

APPLIED PHYSICS LETTERS 106 (2015) ARTN 013115

P Schoenherr, T Hesjedal


Exchange spring switching in Er-doped DyFe2/YFe2 magnetic thin films

PHYSICAL REVIEW B 92 (2015) ARTN 104404

GBG Stenning, GJ Bowden, PAJ de Groot, G van der Laan, AI Figueroa, P Bencok, P Steadman, T Hesjedal


A new topological insulator built from quasi one-dimensional atomic ribbons

PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS 9 (2015) 130-135

P Schoenherr, S Zhang, Y Liu, P Kusch, S Reich, T Giles, D Daisenberger, D Prabhakaran, Y Chen, T Hesjedal