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Confidence Intervals for Physicists

• At the heart of the activities of experimental physicists is what we 
call measurement
point estimation + interval estimation

• Point estimation can be awfully complicated, but it is almost always 
non-controversial 

• Interval estimation is way more complex – and it is what we really 
care about
– experimental design: minimize expected uncertainties on parameters 

of interest
– BSM searches: "does it agree with the SM?"

• The core question we should always be asking ourselves is "do my 
uncertainty bars cover at the stated confidence level ?"



What's Coverage ?

Suppose we use N data {x}, distributed as f(x,θ), to measure a parameter θ. 
An estimator based on {x} is used for this. 
The value q*+- s*

q* is finally reported. What does this mean ?

• It means that in repeated estimates based on the same number N of 
observations of x, q* would distribute according to a pdf G(q*) centered 
around the true value q with a true standard deviation sq*, respectively 
estimated by q* and s*

q*

• In the large sample limit G() is a (multi-dimensional) Gaussian function

Unfortunately, in most interesting cases for physics G() is not Gaussian, the 
large sample limit does not hold, 1-sigma intervals do not cover 68.3% of the 
time the true parameter, and we have better be a bit more tidy in 
constructing intervals. 

But we need to have a hunch of the pdf f(x;q) to start with!



Coverage, or the Lack Thereof

Let us consider a typical HEP graph: event 
counts in a mass histogram, with sqrt(N) bars

(Note: statisticians never plot their data this 
way...)

What are those uncertainty bars supposed to 
mean? They report central intervals that 
"cover" at 68.3%. Do they ?
Alas, usually they don't, as the Gaussian 
approximation for the Poisson distribution 
breaks down quite miserably for small N

Suppose somebody says x is in [a,b] with 
68.3% confidence, but in fact the way a,b 
were determined makes the confidence level 
of [a,b] to be, e.g., only 50%. 
 That would be a quite significant 
misrepresentation of the information content 
of the measurement !

Of course, a solution exists: it was 
obtained in the fifites by Garwood, who 
used Neyman's construction for the 
Poisson distribution –see next slide



Neyman’s Confidence Interval Recipe

1 - Specify a model p(x|μ) 
2 - Choose a Type-I error rate a (e.g. 31.7%, or 5%)
3 - For each m, draw a horizontal acceptance interval 
[x1,x2] such that p (x∈[x1,x2] | μ) = 1 ‐ α. 

There are infinitely many ways of doing this !
- for UL, integrate the pdf from x to infinity
- for LL, do the opposite
- or choose central intervals, or shortest intervals...

In general: an ordering principle is needed to 
well‐define.
4 - Upon performing an experiment, you measure
x=x*. You can then draw a vertical line through it. 

 The vertical confidence interval [m1,m2]  (with 
Confidence Level C.L. = 1 ‐α) is the union of all 
values of μ for which the corresponding 
acceptance interval is intercepted by the vertical 
line.

Note: the recipe is designed to 
cover correctly. Thus, one could not, 
on average, win money by betting 
that the result of a measurement 
does not contain the true value, by 
using payoff odds inverse to
the stated type-I error rate
(eg. 5%  19:1)



Where It Gets Murky
If the parameter you are measuring is 
bounded (e.g. a mass or a process rate, 
which are >0) Neyman's recipe needs a fix.
Take e.g. μ>0 measured by P(x|μ) = N(μ,1):

The classical method for α=0.05 produces 
upper limit μ<x+1.64σ

– for x<-1.64 this results in the empty set!, 
in violation of one of Neyman’s own 
demands (confidence set does not 
contains empty sets)

Can it be fixed ? Yes !
Is there general agreement on how to deal 
with it ? No !



Bounded μ Problem: Proposed Solutions

The graph illustrates 
various choices for 
confidence belts one 
can construct for the 
bounded parameter 
problem

The most principled 
among classical 
constructions is the 
one provided by 
Feldman and 
Cousins[1] in 1998
Bayesians have their 
own solution too

(1) Neyman’s recipe for 90% upper limits: μUL=x+1.28.
(4) Bayesian solution: step-function prior
(6) Mc Farlane's "loss of confidence"



Food for Thought: Relevant Subsets

Neyman’s method applied to Gaussian measurement with known σ of a parameter 
with unknown positive mean μ yields upper limits at 95% CL in the form 
μUL=x+1.64σ . The procedure guarantees coverage, and yet...

• Yet one can devise a betting strategy against it at 19:1 odds, using no more 
information than the observed x, and be guaranteed to win in the long run!

– How ? Just choose a real constant k: bet that the interval does not cover 
when x<k, pass otherwise.

– For k<-1.64 this wins EVERY bet! For larger k, advantage is smaller but is still 
>0.

Surely then, the procedure is not making the best inference on 
the data ? 



Conditioning and Ancillary Statistics

In the bounded parameter problem, the flaw of being subject to winning bet strategies can be 
amended by adding a horizontal line or interval (such that any c.i. will contain that value of μ), 
but it feels like a hack

In other cases one can identify ancillary statistics and use them to partition the space into 
relevant subsets. 

• “Ancillary statistic”: f(data) yielding information about the precision of the estimate of the 
parameter of interest, but no information about the parameter’s value.

• Most typical case in HEP: branching fraction measurement. With NA, NB event counts in two 
channels one finds that 

P(NA,NB)      = Poisson (NA) x Poisson (NB) = 
= Poisson (NA+NB) x Binomial (NA|NA+NB)

By using the second expression, one may ignore the ancillary statistic NA+NB, since all the 
information on the BR is in the conditional binomial factor 

 by restricting the sample space, the problem is simplified. 



Cox Weighting Procedure
Things get even more intriguing in the famous example by B. Cox[2]: 

Flip a coin to decide whether to use a 10% scale (if you get tails) or a 1% scale (if you get 
heads) to measure an object's weight. Which error do you quote for your measurement, 
upon getting heads ?

Of course the knowledge of your device allows you to estimate that your precision is 1% -
but a full NP construction (which is unconditional on the outcomes) would require you to 
include the coin flipping in the procedure!



Locating the Box

• Another example: 
Find μ using x1, x2 sampled from 
p(x|μ) = Uniform [μ-1/2, μ+1/2]

Suppose e.g. that μ=1, and take the two datasets, 
A: {0.99,1.01} ; B: {0.6,1.4}.

– NP procedures maximizing power in the unconditional space 
yield the same confidence interval for both data sets A and B; 
however, B restricts the set of possible μ to [0.9,1.1] while A 
only restricts it to [0.51,1.49] !

– There exists in fact an ancillary statistics |x1-x2| which carries 
no information on μ, yet it can be used to divide the sample 
space in subsets where inference can be different. 

– See R. Cousins[3] for more discussion

μ-1/2       μ μ+1/2

p(x|μ)

x

x1 x2

1



Relevant Subsets: Take-Away Bit

Point made: The quality of your inference depends 
on the breadth of the “whole space” you are 
considering. The more you can restrict it, the better 
(i.e. the more relevant) your inference becomes

• Ancillary statistics are not easy to find, but they 
are quite useful!

Look for ancillary statistics in your everyday 
measurements!



Hypothesis Testing in Three Slides



Statistical Significance: What It Is
Statistical significance reports the probability that an experiment obtains data at 
least as discrepant as those actually observed, under a given "null hypothesis“ H0

– In physics H0 usually describes the currently accepted and established theory 

• Given data X and a test statistic T (a function of X), one may obtain a p-value as 
the probability of obtaining a value of T at least as extreme as the one observed, 
if H0 is true. 

p can then be converted into the corresponding number of "sigma," i.e. standard 
deviation units from a Gaussian mean. This is done by finding x such that the integral 
from x to infinity of a unit Gaussian equals p:

According to the above recipe, a 15.9% probability is a one-standard-deviation 
effect; a 0.135% probability is a three-standard-deviation effect; and a 0.0000285%
probability corresponds to five standard deviations - "five sigma" in jargon.
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The convention is to use a “one-tailed” Gaussian: we do not care about departures 
of x from the mean in the un-interesting direction

The conversion of p into σ is independent of experimental detail. Using Νσ rather 
than p is just a shortcut, nothing more ! 

In particular, using “sigma” units does in no way mean 
we are operating some kind of Gaussian approximation
anywhere in the problem

Notes

The whole construction rests on a proper 
definition of the p-value. Any shortcoming of 
the properties of p (e.g. a tiny non-flatness of 
its PDF under the null hypothesis) totally 
invalidates the meaning of the derived Nσ

Empirical PDF of p|H0

0                                      1    p

GOOD

BAD – don't even
think of converting
ill-defined p into Z !!



Type-I and Type-II  Errors

In the context of hypothesis testing the type-I error rate α is 
the probability of rejecting the null hypothesis when it is true.

Strictly connected to α is the concept of “power” (1-β), where 
β is the type-2 error rate, defined as the probability of 
accepting the null when the alternative is instead true.

A stricter  requirement for α (i.e. a smaller type-I 
error rate) implies a higher chance of accepting a 
false null (yellow region), i.e. smaller power.

Once the test statistic is defined, by choosing 
α (e.g. to decide a criterion for a discovery 
claim, or to set a confidence interval) one is 
automatically also choosing β. There is no 
formal recipe to guide this choice.

T.S.

T.S.

H0

H0

H1

H1



The Birth of the Five-Sigma Criterion

Arthur H. Rosenfeld (Univ. Berkeley)



Far-Out Hadrons
• In 1968 Rosenfeld wrote a paper titled "Are There Any Far-out Mesons 

or Baryons?“[4], where he demonstrated that the number of 
published claims of discovery of exotic particles agreed with the 
number of statistical fluctuations that one would expect in the 
analyzed datasets.

• The issue: large trial factors coming into play due to the massive use 
of combinations of observed particles in deriving mass spectra 
containing potential resonances

“[...] This reasoning on multiplicities, extended to all combinations of all 
outgoing particles and to all countries, leads to an estimate of 35 million 
mass combinations calculated per year. How many histograms are plotted 
from these 35 million combinations? A glance through the journals shows 
that a typical mass histogram has about 2,500 entries, so the number we 
were looking for, h is then 15,000 histograms per year […]"



More Rosenfeld

“[...] Our typical 2,500 entry histogram seems to average 40 bins. This means 
that therein a physicist could observe 40 different fluctuations one bin wide, 
39 two bins wide, 38 three bins wide...”

“[...] I conclude that each of our 150,000 annual histograms is capable of 
generating somewhere between 10 and 100 deceptive upward fluctuations”.

That was indeed a problem ! Rosenfeld concluded:

“[...] To the theorist or phenomenologist the moral is simple: wait for nearly 5σ
effects. For the experimental group who has spent a year of their time and 
perhaps a million dollars, the problem is harder... go ahead and publish... but they
should realize that any bump less than about 5σ calls for a repeat of the 
experiment.”



Gerry Lynch and GAME

• Rosenfeld’s article also cites the half-joking, half-didactical effort of his 
colleague Gerry Lynch at Berkeley:

“My colleague Gerry Lynch has instead tried to study this problem 
‘experimentally’ using a ‘Las Vegas’ computer program called Game […]

When a friend comes showing his latest 4-sigma peak,

You draw a smooth curve […] (based on the hypothesis that the peak is just a 
fluctuation) [and] call for 100 Las Vegas histograms […]

You and your friend then go around the halls, asking physicists to pick out the 
most surprising histogram in the printout. Often it is one of the 100 phoneys, 
rather than the real ‘4-sigma’ peak.”

• The proposal to raise to 5-sigma of the threshold above which a signal 
could be claimed was an earnest attempt at reducing the flow of claimed 
discoveries, which distracted theorists and caused confusion.



What 5σ May Do For You

• Setting the bar at 5σ for a discovery claim undoubtedly removes the large 
majority of spurious signals due to statistical fluctuations

• Nowadays we call this “LEE”, for “look-elsewhere effect”. 

• The other reason at the roots of the establishment of a high threshold for 
significance has been the ubiquitous presence in our measurements of 
unknown, or ill-modeled, systematic uncertainties
– To some extent, a 5σ threshold protects systematics-dominated results from 

being published as discoveries

Protection from trials factor and unknown or ill-modeled systematics 
is the rationale behind the 5σ criterion

Still, the criterion has no basis in professional statistics literature, and is 
considered totally arbitrary by statisticians, no less than the 5% threshold 
often used for the type-I error rate of research in medicine, biology, social 
sciences, et cetera. 

d



How 5σ Became a Standard in HEP: 
1 - the Seventies

In the seventies the gradual consolidation of the SM 
shifted the focus from random bump hunting to more 
targeted searches
Let us check a few important searches to understand how 
the 5σ criterion gradually became a standard
– The J/ψ discovery (1974): no question of significance – the 

bumps were too big to fiddle with stat tests

– The τ discovery (1975-1977): no mention of significances for 
the excesses of (eμ) events; rather a very long debate on 
hadron backgrounds. 

– The Oops-Leon(1976):  “Clusters of events as observed 
occurring  anywhere from 5.5 to 10.0 GeV appeared less than 
2% of the time8. Thus the statistical case for a narrow (<100 
MeV) resonance is strong although we are aware of the need  
for a confirmation.”[5]

In footnote 8 they add: “An equivalent but cruder check is made by noting 
that the “continuum” background near 6 GeV and within the cluster width is 
4 events. The probability of observing 12 events is again <=2%” 
Note that P(μ=4;N>=12)  =  0.00091, so this does include a x20 trials factor. 



The Real Upsilon

• The Upsilon discovery (1977): burned by the 
Oops-Leon, the E288 scientists waited more 
patiently for more data after seeing a 
promising 3σ peak at 9.5 GeV
– They did many statistical tests to account for 

the trials factor
– Even after obtaining a peak with very large 

significance (>>5σ) they continued to 
investigate systematical effects

– Final announcement claims discovery but
does not quote significance, noting however
that the signal is “statistically significant”[6]

June 6th 1977

Nov 21st 1976

Nov 19th 1976



The W and Z Bosons

The 1983 W discovery was announced based on 6 
electron events with missing energy and no jets. 

• No statistical analysis is discussed in the discovery 
paper[7], which however tidily rules out 
backgrounds as a source of the signal
– There was no trials factor to account for: the 

signature was unique and predetermined; theory 
prediction for W mass (82+-2 GeV) was matched 
well by the measurement (81+-5 GeV).

The Z was discovered shortly thereafter, with an 
official CERN announcement based on 4 events

– Also for the Z no trials factor was applicable
– No mention of statistical checks in the paper[8], 

except notes that backgrounds were negligible



The Top Quark Discovery

• In 1994 the CDF experiment had a serious counting 
excess (2.7σ) in b-tagged single-lepton and dilepton 
datasets, plus a mass peak at a value compatible 
with theory predictions
– the mass peak, or corresponding kinematic evidence, 

was over 3σ by itself; M = 174 +- 10+13
-12 GeV        

The paper describing the analysis (120-pages long) 
spoke of “evidence” for top quark production[9]

• One year later CDF and DZERO[10] both presented 
5σ significances based on their counting 
experiments, obtained  by analyzing 3x more data

The top quark was thus the first particle discovered 
by a willful application of the “5σ” criterion



Following the Top Quark...

• Since 1995, the requirement of a p-value below
3*10-7 slowly but steadily became a standard.

• Striking examples of searches that diligently waited
for a 5-sigma effect before claiming discovery:

1) Single top quark production: harder to detect than
strong pair-production processes; it took 14 more years
to be seen. CDF and DZERO claimed observation in 
2009 [11], over clear 5-sigma effects

2) In 2012 the Higgs boson was claimed by ATLAS and 
CMS [12]. Note that the two experiments had mass-
coincident >3σ evidence in their data 6 months earlier, 
but the 5σ recipe was followed diligently. 

It is precisely the search for the Higgs 
what brought the five-sigma criterion
to the attention of media



A Look Into the Look-Elsewhere Effect

The discussion above clarifies that a compelling reason for enforcing a small 
test size as a prerequisite for discovery claims is the presence of large trials 
factors, a.k.a. LEE

• The LEE was a concern 50 years ago, but nowadays we have enormously 
more CPU power. Still, the complexity of our analyses has also grown 
considerably
– Take the Higgs discovery as an example: hundreds of nuisances, many final 

states
 we still occasionally cannot compute the trials factor by brute force!

– A further complication is that in reality the trials factor also depends on the 
significance of the local fluctuation, adding dimensionality to the problem.

• A study by E. Gross and O. Vitells[13] demonstrated in 2010 how it is 
possible to estimate the trials factor in most experimental situations, 
without resorting to simulations



Trials Factors
In Statistics trials factors arise in a hypothesis test when a nuisance parameter is present
only under the alternative hypothesis (a simple-vs-composite test). 

Let us consider a particle search when the mass x is unknown. 

The null hypothesis is that the data follow the background-only model b(x), and the 
alternative hypothesis is that they follow the model b(x)+ μs(x|mH), with μ a signal strength 
parameter and mH the particle’s true mass (the nuisance parameter!)

μ=0 corresponds to the null, μ>0 to the alternative.

One then defines a test statistic summarizing all possible mass values,

This could e.g. be the maximum of the likelihood ratio b/w models b(x) and b(x)+μs(x|m).
The problem is assigning a p-value to the maximum of q(mH) given the wide search range.

One can use an asymptotic “regularity” of the distribution of the above q to get a global p-
value by using the technique of Gross and Vitells.



Local Minima and Upcrossings

One counts the number of “upcrossings” of the distribution of the test statistic, as 
a function of mass. Its wiggling tells how many independent places one has been 
searching in.

The number of times that the test statistic (below, the likelihood ratio between H1
and H0) crosses some reference line can be used to estimate the trials factor:

The number of upcrossings can be best estimated
using the data themselves at a low value of 
significance, as it has been shown that the
dependence on Z is a simple 
negative exponential:



Notes About the LEE Estimation

Even if we can usually compute the trials factor by brute force or estimate with 
asymptotic approximations, there is a degree of uncertainty in how to define it

If I look at a mass histogram and I do not know where I try to fit a bump, I may consider:
1. the location parameter and its freedom to be anywhere in the spectrum
2. the width of the peak: is that really fixed a priori ?
3. have I tried different selections before settling on the one I actually ended up with? 
4. Have I been looking at several possible final states and mass distributions?
5. My colleagues in the experiment can be doing similar things with different datasets; 

should I count that in ?
 There is ambiguity on the LEE depending who you are (grad student, experiment 
spokesperson, lab director...)

In fact, Rosenfeld considered the whole world’s database of bubble chamber 
images in deriving a trials factor

The bottomline is that while we can always compute a local significance,  it may 
not always be clear what the true global significance is.



Systematic Uncertainties

Systematic uncertainties affect any physical measurement and it is sometimes 
quite hard to correctly assess their impact. 

Often one sizes up the typical variation of an observable due to the imprecise 
knowledge of a nuisance parameter at the 1-sigma level; then one assumes 
that the probability density function of the nuisance be Gaussian. 
 if however the PDF has larger tails, it makes the odd large bias much more 
frequent than estimated

The potential harm of large non-Gaussian tails of systematic effects is one 
arguable reason for sticking to a 5σ significance level even when the LEE is not a 
concern. However, the safeguard that the criterion provides to mistaken 
systematics is not always sufficient.

• One quick example: if a 5σ effect has uncertainty dominated by systematics, 
and the latter are underestimated by a factor of 2, the 5σ effect is actually a 
2.5σ one (a p=0.006 effect): in p-value terms this means that the size of the 
effect is overestimated by a factor 20,000!



A Study of Residuals
A study of the residuals of particle properties in the RPP in 
1975 revealed that they were not Gaussian. Matts Roos et al. 
[14] considered residuals in kaon and hyperon mean life and 
mass measurements, and concluded that these are well 
described by a Student distribution S10(h/1.11):

One should not extrapolate to 5-sigma the behaviour found 
by Roos and collaborators in the bulk of the distribution; yet it 
is evidence that the uncertainties evaluated in experimental 
HEP may have a significant non-Gaussian component

Black: a unit Gaussian; 
red: the S10(x/1.11) function

Left: 1-integral distributions of the two functions. 
Right: ratio of the 1-integral values as a function of z
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A Bigger, Meaner Study of Residuals

• David Bailey (U. Toronto) recently 
published an article[15] where 
use of large datasets is made (all 
of RPP, Cochrane medical and 
health database, Table of 
Radionuclides)

• 41,000 measurements of 3200 
quantities studied

• The methodology is similar to 
that of Roos et al., but some 
shortcuts are made, and data 
input automation prevents more 
vetting (e.g. correlations not 
properly accounted for)

Results are quite striking - we seem to have ubiquitous Student-t 
distributions in our Z values, with large tails – almost Cauchy-like.



Going Bayesian:
The Jeffreys-Lindley Paradox

So what happens if one tries to move to Bayesian territory ?

Consider a null hypothesis, H0, on which we base a strong belief. In physics we do 
believe in our “point null” – a theory valid for a specific value θ0 of a parameter θ (say 
the photon mass being 0); in other sciences a true “point null” hardly exists

Comparing a point null θ=θ0 to an alternative which has a continuous support for θ, we 
need to suitably encode this in a prior belief. Bayesians use a “probability mass” at θ=θ0
for H0.

The use of probability masses to encode priors for a simple-vs-composite test throws a 
monkey wrench in the Bayesian paradigm, as it can be proven that no matter how large 
and precise is the data, Bayesian inference strongly depends on the scale over which the 
prior is non-null – that is, on the prior belief of the experimenter.

The Jeffreys-Lindley paradox[16] arises as frequentists and Bayesians draw opposite 
conclusions on some data when comparing a point null to a composite alternative. This 
fact bears relevance to the kind of tests we are discussing, so let us give it a look.



The Paradox

where zα/2 is the significance corresponding to test size α for a 
two-tailed normal distribution

The paradox is that the posterior probability that H0
is true, conditional on seeing data in the critical 
region (i.e. ones which exclude H0 in a classical α-
sized test) approaches 1 (not α, NB!)  as the sample 
size becomes arbitrarily large.

θ

θ0

π(H0)

π(H1)

θ0-I/2 θ0+I/2

Take X1...Xn i.i.d. as Xi|θ ~ N(θ,σ2), and a prior belief on θ constituted by a mixture of a point 
mass p at θ0 and (1-p) uniformly distributed in [θ0-I/2, θ0+I/2].

In classical hypothesis testing the “critical values” of the sample mean delimiting the rejection 
region of H0: θ = θ0 in favor of H1: θ <> θ0 at significance level α are

As evidenced by R. Cousins[17], the paradox arises 
if there are three independent scales in the problem, 
ε << σ/sqrt(n) << I, i.e. the width of the point mass, 
the measurement uncertainty, and the scale I of the 
prior for the alternative hypothesis

Common situation in HEP!!

X

ε

σ/sqrt(n)
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JLP Example: Charge Bias of a Tracker
Imagine you want to investigate whether your detector has a bias in reconstructing positive 
versus negative curvature, say at a lepton collider (e+e-). You take a unbiased set of collisions, 
and count positives and negatives in a set of n=1,000,000.

• You get n+=498,800, n-=501,200. You want to test the hypothesis that the fraction of 
positive tracks, say, is R=0.5 with a size a=0.05.

• Bayesians will need a prior π(R): a typical choice would be to assign equal probability to 
the chance that R=0.5 and to it being different (R<>0.5): a “point mass” of p=1/2 at R=0.5, 
and a uniform distribution of the remaining p=1/2 in [0,1]

• We are in high-statistics regime and away from 0 or 1, so Gaussian approximation holds 
for the Binomial. The probability to observe a number of positive tracks n+ can then be 
written, with x=n+/n, as N(x,s) with s2=x(1-x)/n. 

The posterior probability that R=0.5 is then
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from which a Bayesian concludes that there is no evidence against R=0.5, 
and actually the data strongly supports the null hypothesis (P>>a)

0.5

R

π(R)



JLP Charge Bias: Frequentist Solution

Frequentists calculate how often a result “at least as extreme” as the one 
observed arises by chance, if the underlying distribution is N(R,s) with R=1/2 and 
s2=x(1-x)/n 

One then has 

(we multiplied by two since we would be just as surprised to observe an excess of positives as a deficit). 

From this, frequentists conclude that the tracker is biased, since there is a less-
than 5% probability, P’<a, that a result as the one observed could arise by 
chance! 

A frequentist thus draws the opposite conclusion of a Bayesian from the same 
(large body of) data !
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Notes on the JL Paradox
• The paradox has been used by Bayesians to criticize the way inference is 

drawn by frequentists: 
– Jeffreys: “What the use of [the p-value] implies, therefore, is that a 

hypothesis that may be true may be rejected because it has not predicted 
observable results that have not occurred” [18]

• Still, the Bayesian approach offers no effective substitute to the p-value 
– Bayes factors, which describe by how much prior odds are modified by the 

data, do not factor out the subjectivity of the prior when the JLP applies: even 
asymptotically, they retain a dependence on the scale of the prior of H1.

• In JLP debates, Bayesians have blamed the concept of a “point mass”, or 
suggested n-dependent priors. Their final line of defence is to argue that 
“the precise null” is never true.
– However, we do believe our point nulls in HEP and astro-HEP!!

There is a large body of literature on the subject. The issue is an active 
research topic and is not resolved. 
 The trouble of picking α in classical hypothesis testing is not 
automatically solved by moving to Bayesian territory.



So What to Do With 5σ ?

To summarize:
– the LEE can be estimated; experiments now routinely produce “global” and 

“local” p-values and Z-values
• What is then the point of protecting from large LEE ?
• Trial factor can be anything from 1 to enormous; a one-size-fits-all is hardly justified –

it is illogical to penalize an experiment for the LEE of others

– Impact of systematic uncertainties varies widely; sometimes one has control 
samples (e.g. particle searches), others one does not (e.g. OPERA's ν speed)

– The cost of a wrong claim, as backfiring of media hype, can vary dramatically
– Some claims are intrinsically less likely to be true, and deep within we have a 

subconscious Bayes factor at work. 

So why a fixed discovery threshold ?
– Any claim is anyway subject to criticism and independent verification, and 

the latter is always more rigorous when the claim is steeper and/or more 
important

– It is good to just have a “reference value” for the level of significance of the 
data – a «tradition», a useful standard



Conclusions
• 50 years after the first suggestion of a 5-sigma threshold for discovery claims, and 25 years 

after the start of its consistent application, the criterion appears inadequate
– It does not protect  from steep claims that later peter out
– It delays acceptance of uncontroversial finds
– It is arbitrary and illogical in many aspects

• Bayesian hypothesis testing does not offer a robust replacement, due to hard-to-
circumvent prior dependence of conclusions

• A single number never summarizes the situation of a measurement
– experiments have started to publish their likelihoods, so combinations and interpretation get easier

• My suggestion is that for each considered (relevant) search the community should seek a 
consensus on what could be an acceptable significance level for a media-hitting claim

• For searches of unknown effects and fishing expeditions, the global p-value is the only real 
weapon – but in most cases the trials factor is hard to quantify

• Probably 5-sigma are insufficient for unpredicted effects, as large experiments look at 
thousands of distributions, multiple times, and the experiment-wide trials factor is 
extremely high



Thank you for your attention!
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