Getting a Kick out of Xenon

Rafael F. Lang
Purdue University
rafael@purdue.edu
Oxford, May 2018
Spoiler Alert

We haven’t found Dark Matter yet.

Xenon-based experiments are probing our most popular models.

Creative new ideas cut across theory and experiment, bring discovery science back to universities.
Possible Dark Matter Masses

80 orders of magnitude

10^{-21} eV μeV meV eV MeV GeV TeV M_{Planck} M_{solar}

wavelength

doesn’t fit

in galaxies

excluded by gravitational lensing
Possible Dark Matter Masses

<table>
<thead>
<tr>
<th>Mass Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-21} eV</td>
<td>1/year optical</td>
</tr>
<tr>
<td>µeV to meV</td>
<td>Fermionic / particle astro</td>
</tr>
<tr>
<td>MeV to GeV</td>
<td>Bosonic / field</td>
</tr>
<tr>
<td>TeV to M Planck</td>
<td></td>
</tr>
<tr>
<td>M Solar</td>
<td></td>
</tr>
</tbody>
</table>

Axions
- axion-like particles

WIMPs
- thermal relics

80 orders of magnitude
Possible Dark Matter Masses

<table>
<thead>
<tr>
<th>10^{-21} \text{eV}</th>
<th>\mu \text{eV}</th>
<th>\text{meV}</th>
<th>\text{eV}</th>
<th>\text{MeV}</th>
<th>\text{GeV}</th>
<th>\text{TeV}</th>
<th>M_{\text{Planck}}</th>
<th>M_{\text{solar}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/\text{year}</td>
<td>optical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **bosonic / field**
- **fermionic / particle**
- **astro**

Eöt-Wash
- NEWS-G
- XENON10
- XMASS
- Gaia

MAGIS
- CRESST-II
- Sabre
- XENON100

CASPEr
- CRESST-III
- COSINE
- LUX

DMRadio
- DAMIC
- LBECa
- PandaX
- DarkSide-50

ABRACADABRA
- SENSEI
- PICO
- XENON1T
- Deap3600

ADMX
- SF-He
- SuperCDMS
- XENONnT
- LZ
- DarkSide-20k

HAYSTAC
- GaAs/Al_{2}O_{3}
- Gen3/DARWIN
- Argo
Available Mass Space

Dark Matter only has 80 orders of magnitude to hide
WIMP Direct Detection 101

- coherent scattering
 \[\frac{\lambda_{\text{deBroglie}}}{2\pi} = \frac{\hbar}{p} = \frac{\hbar c}{mc^2 v/c} \sim \frac{197 \text{ MeV fm}}{100 \text{ GeV} \times 10^{-3}} \approx \text{fm} \approx r_{\text{nucleus}} \]

- rate prefers high-A (high-J) targets
 \[N = n_{\text{target}} \Phi \sigma_{\chi,N} A^2 \quad \text{or} \quad \propto \sigma_{\chi,N} J(J + 1) \]

- recoil spectrum: falling exponential at low energies
 \[E_{r,\text{max}} \sim \frac{p_X^2}{2m_N} \sim \left(\frac{100 \text{ GeV}/c^2 \times 10^{-3}c}{2 \times 100 \text{ GeV}/c^2} \right)^2 = 50 \text{ keV} \]
WIMP Detection: Target

Plot Cross Section versus WIMP mass

fill with your own prior

e.g. Z-mediation through a box, or Higgs-mediated, or Z-mediation at 10^{-10} abundance

Rafael F. Lang: Getting a Kick out of Xenon
WIMP Detection: Status

Best limits all from xenon experiments

Low masses: fight threshold

High masses: number density decreases as mass density is fixed

Rafael F. Lang: Getting a Kick out of Xenon
WIMP Detection

Simple non-relativistic scattering

Push deeper, lighter, and heavier
Dual-Phase TPC: e.g. XENON1T

3D position information
S2 hit pattern: $\delta r < 2\,\text{cm}$
drift time: $\delta z < 500\,\mu\text{m}$
Redundant event information: can fight detector artefacts
(collect ~2.5MB per event)
Self-Shielding in Xenon

Reduce background with \(\exp(-\text{diameter}/\lambda_\gamma) \)

Rafael F. Lang: Getting a Kick out of Xenon
ER/NR Discrimination

(a) ^{220}Rn calibration

Corrected S1 [PE]

Corrected S2 bottom [PE]

keV$_{ee}$

β,γ

β,γ

e$^-$

electronic recoils
ER/NR Discrimination

Corrected S2 bottom [PE]

Corrected S1 [PE]

(b) 241AmBe calibration

keV_{nr}

keV_{nr}

$\text{electronic recoils}$

nuclear recoils

Xe

n

n
Dark Matter Search

First science data, 34 live days:

- WIMPs, SI & SD!
- iDM and other EFT
- GeV DM
Ample Science from "Background"

First science data, 34 live days:

- leptophilic/axial-vector WIMPs, MeV DM
- Migdal & Bremsstrahlung
- inelastic scatter, miDM
- ALPs, dark photons, SuperWIMPs, solar axions, luminous DM, mirror DM
- sterile ν
- DEC on 124Xe

- WIMPs, SI & SD!
- iDM and other EFT
- GeV DM

Rafael F. Lang: Getting a Kick out of Xenon
Migdal Effect

Scatter inelastically off entire atom

Eject Auger electron at higher energy, at expense of lower rate

Rafael F. Lang: Getting a Kick out of Xenon
Liquid TPCs

Technology of choice for WIMPs: monolithic, scalable, cheap, redundant event information.
Rafael F. Lang: Getting a Kick out of Xenon
Uhmm... We can take pretty pictures too?
Excellent Data Taking & Stability

279 live days of dark matter data on tape:

- ScienceRun0
- ScienceRun1
XENON1T Science Run 1

recently unblinded

unsalted last week

public this month

Rafael F. Lang: Getting a Kick out of Xenon
Very Near Future

Scattering Cross Section in cm^2

WIMP Mass in GeV/c^2

ruled out

PandaX, LUX, XENON1T 2017

XENON1T

ruled out

WIMP Mass in GeV/c^2

XENON1T with improved sensitivity soon
overall, $2\nu2\beta$ important ($t_{1/2} \sim 10^{21}$ years!)

^{222}Rn a technological challenge

some sensitivity at low energies to pp solar ν
Veto Dominant ^{222}Rn Background

map convection, match decay chain, veto ^{214}Pb

^{214}Po
164μs

^{214}Bi
20min

^{214}Pb
27min

^{210}Pb
22y

^{222}Rn
3.8d

^{220}Rn in XENON100:

XENON1T Simulation
Upgrade: XENONnT

- Rapid upgrade:
 8t total
 6t active
 4t fiducial
 start 2019

- Re-use most sub-systems

- Xenon in hand,
 PMTs tested,
 fixing design
Near Future

Scattering Cross Section in cm2

Ruled out

PandaX, LUX, XENON1T 2017

XENONnT, LZ

WIMP Mass in GeV/c2

XENONnT and LZ start 2019

Rafael F. Lang: Getting a Kick out of Xenon
XENON1T and Beyond

Results from 1 year with 1300kg coming anytime now

Starting 2019, XENONnT & LZ dig another order of magnitude deeper
Seriously, Neutrinos!

- BOREXINO, 17m, 280t
- Super-K, 40m, 50kt
- IceCube, 1km³, 1Gt
- XENON1T, 1m³, 2t

Low (keV) energies: coherent neutrino-nucleus scattering

\[\sigma \propto A^2 \]
Simple scattering kinematics: degenerate in momentum → put on same plot
Solar 8B neutrinos ~2023

simulation: 1000 days LZ

electronic recoil background

dark matter nuclear recoils

~ 36 8B solar neutrino nuclear recoils
Supernova Neutrinos

few second burst $\nu_x + N \rightarrow \nu_x + N$

flavor-independent: complementary information

XENON1T sensitive across entire Milky Way:

![Graph showing detection significance vs. SN distance](image)
Measuring Neutrinos

Direct dark matter experiments become sensitive to solar and supernova neutrinos.
Direct Detection: Status

Scattering Cross Section in cm^2

- 10^{-42}
- 10^{-43}
- 10^{-44}
- 10^{-45}
- 10^{-46}
- 10^{-47}
- 10^{-48}

WIMP Mass in GeV/c2

- 1
- 3
- 10
- 30
- 100
- 300
- 1000
- 3000
- 10000

PandaX, LUX, XENON1T 2017

ruled out

Coherent Neutrino Signal

x1000

neutrino floor far, far away

Rafael F. Lang: Getting a Kick out of Xenon
Direct Detection: Outlook

Ruled out

10^{-42} - 10^{-49} (Scattering Cross Section in cm^2)

1 - 10^5 (WIMP Mass in GeV/c^2)

PandaX, LUX, XENON1T 2017

Coherent Neutrino Signal

ruled out

x1000

x10

neutrino floor far, far away

strong program to improve factor 100
Rafael F. Lang: Getting a Kick out of Xenon

neutrino floor far, far away

strong program to improve factor 100

current program leaves a WIMP gap
136Xe 0ν2β With nat Xe Target

136Xe → 136Ba + 2e⁻ (abundance 8.9%)
Requires large dynamic range of detector

Rafael F. Lang: Getting a Kick out of Xenon
Physics with 60t LXe

Dark Matter:
- **spin-independent WIMPs**
- **spin-dependent WIMPs**
 - EFT couplings and inelastic WIMPs
 - GeV and MeV WIMPs (“S2-only”)
 - Planck mass dark matter
 - Migdal & Bremsstrahlung searches
 - Annual modulation searches
 - Magnetic Inelastic WIMPs
 - inelastic scattering
 - axial-vector coupling
 - Mirror & luminous DM
 - Axion-like particles
 - SuperWIMPs
 - Dark photons

Neutrinos:
- solar pp neutrinos
- coherent neutrino-nucleus scattering
- 8B solar neutrinos
- galactic supernovae
- neutrino oscillations
- sterile neutrinos
- neutrino magnetic moment
- $2\nu\beta\beta$ decay of 136Xe
- $0\nu\beta\beta$ decay of 136Xe
- double-EC on 124Xe

Other:
- solar axions
- fractionally charged particles
Not There Yet

Signal from atmospheric neutrinos far, far away

Need Generation-3 experiments to cover WIMP space
Extrapolating to High Masses

Which assumption breaks down?
Direct Detection at High Mass

![Graph showing cross-section vs. WIMP mass]

- Saturated Overburden Scattering
- DAMA
- XENONIT, WIMP 1-year
- XENONIT σ_{MFP}
- DARWIN σ_{MFP}
- DARWIN, WIMP 10-year
- DARWIN, WIMP 10-year flux limit
- XENONIT, 1-year flux limit
- DARWIN, 10-year flux limit
- Planck mass

Rafael F. Lang: Getting a Kick out of Xenon
Probing Planck Mass

Generation-3 experiment can do it. Neutrino experiments too.
Extreme Low-Energy Sensitivity

Detect even individual electrons liberated anywhere in 2000kg of Xenon:

Build dedicated detector to tackle backgrounds and probe Dark Matter
Backgrounds: Photoionization

Xenon light 175nm=7eV
• Photoionizes metals & impurities

[Diagrams showing rate of small S2 signals vs. time difference and rate of small S2 signals vs. concentration of impurities]
Backgrounds: Extraction

Xenon light 175nm=7eV
- Photoionizes metals & impurities
- Delayed extraction:

![Graph showing signal strength over time with max drift at 0.3ms](image-url)
LBEC A Project

- Critical Xe expertise, multiple R&D setups
- Understand & reduce single e^-
- Build dedicated search

A. Bernstein, J. Xu, P. Sorensen, K. Ni, R. Essig, M. Fernandez-Serra, Rafael
Swiftly build dedicated, conventional xenon detector:

LBECA Project

Rafael F. Lang: Getting a Kick out of Xenon
LBECa

Promising for fast results even below 10MeV

Bringing discovery-level science back to the universities
Much more than just a WIMP search

Dark Matter
- spin-independent WIMPs
- EFT couplings and inelastic WIMPs
- GeV and MeV WIMPs (“S2-only”)
- Magnetic Inelastic WIMPs
- inelastic scattering
- axial-vector coupling
- Mirror & luminous DM
- Axion-like particles
- SuperWIMPs
- Dark photons
- annual modulation searches

Astrophysics
- solar pp ν
- normalization of 8B solar rate
- galactic supernovae

Double-Beta
- 2ν and 0ν decay of 136Xe
- double-EC on 124Xe

Particle Physics
- coherent neutrino-nucleus scattering
- neutrino oscillations
- sterile neutrinos
- solar axions
- fractionally charged particles

Liquid Noble Physics
- light and charge yield
- properties of xenon
- radioactivity assays
- particle interaction modeling
- technology R&D for other applications
Conclusions

- Liquid Xe TPCs became versatile science machines
- Generation-3 detectors required to cover WIMPs
- Ample opportunities for creative phenomenology and impactful involvement in experiment