Spring-mass systems

Now consider a horizontal system in the form
of masses on springs

* Again solve via decoupling and matrix
methods

* (Obtain the energy within the system
* Find specific solutions



Horizontal spring-mass system

Consider two masses moving without friction, between three springs,
two with spring constants ak, one with spring constant k

ak ak

Equations of motion:



Solutions of horizontal spring-mass system
Equations of motion:

(1)

(2)

Solve by decoupling method (add 1 and 2 and subtract 2 from 1). As before, we
can write down the normal coordinates, call them q, and q,

1 1

A \@(ul + u2) which means... : \/E(ql Q2)
1 1

q2 = ﬁ(ul—uz) Uy = \ﬁ(%—%)

Substituting gives:

Gives normal
frequencies of:

Centre of Mass Relative



Cross-checking with matrix method

Write equations of motion as
homogenous matrix equation

(& ok k
dt? m m
_k
\_ m

dt?

k 3\

d2

m m)

- w)
ak k \u,
+—+—

Demand that the resulting operator
matrix is singular, i.e. Det{matrix}=0

ak k
+_ —_

m m
_E

m

We obtain same

_k

m
, ok k
—0 +—+—
m m

solutions as before

.

Substitute in the
below trial solution

Qo

Hence get eigenvalue equation

ak k k

v a) -

W +—+



Energy of horizontal spring-mass system

Kinetic Energy Potential Energy
1 1 1 1 2
K — Em(u% + i) V= 50‘]‘”1 + Ek(uz —up)”+ Eocku2
1 1 1
K = -m(q; +d3) V = Jakq; + 5 (o +2)kg;

1 1
V = Ema)%q% + Em(o%q%

Total Energy:

Sum of energies in each normal mode



Specific Solutions for horizontal spring-
mass system

General solution is the sum of the two normal modes

u; = Ay cos(if+ ;) + Az cos(wyt + 0,)
uy = A1 cos(mif + ¢1) — Ay cos(mot + 07)

Initial conditions: U1 = A , UY = 0 . ul — uz = ()

These give: A1:A2:g ; (])1:(])2:0

Both normal modes excited. The "beats’ solution.
Completely analagous to the coupled pendulum



Vertical spring-mass system

x and y are displacements
from equilibrium positions

k
2m
x|
k * Find the normal frequencies
of the system
m * Find the ratio of the amplitudes
yl for each normal mode

Decoupling method only works for limited cases with a sufficient amount of
symmetry. You cannot solve this with decoupling, so have to go to matrix method
and have a guess!



Solving with matrix method

Write equations of motion as
homogenous matrix equation

\

(d*
dt?

k

m
k

m

k 3\
2m
d> k

> my

o)l

Demand that the resulting operator
matrix is singular, i.e. Det{matrix}=0

From this we obtain the
normal frequencies

Substitute in the
below trial solution

G

Hence get eigenvalue equation

2 2
ROROE
m 2\m



Normal modes of vertical spring-mass system

Normal mode 1

, : k & X
Sgbstltute back |nt9 (_ o, 22 " _jX B (—)Y —0 \%
eigenvector equation ’

to yield X/Y=-1/2

Normal mode 2

correspondsto | X /Y = 1/~2




Coupled Oscillators with a driving force

* So the last physical system we are going
to look at in this first part of the course is

the forced coupled pendula, along with a
damping factor

1. Finding the Complementary Function
2. Finding the particular integral

* Then do the same for a horizontal spring-
mass system



Damped driven coupled pendula

6. "\
Fcosat k .
- Img ; |mg
e | >
X Y

Both pendula experience a retarding force of y x velocity

Equations of motion:



Damped driven coupled pendula

X
Let’s arrange equations of motion in form A( J = whatever
We have: d

and so

Contrary to before, this equation is inhomogeneous, in that RHS#0.
To solve it we need to find both the complementary function (CF), which
is solution to the homogeneous equivalent, and the particular integral (Pl)



Damped driven coupled pendula: finding CF

To find CF write down homogenous equation and solve as previously

X X)) .
Try ( j = Re(Yje"‘” and find solution when operator matrix is singular
y



Damped driven coupled pendula: finding CF

To find CF write down homogenous equation and solve as previously

=0
' K| (kY ' kY
:[—w2+zw+(§+—ﬂ —~ —) =0 :{—a)z+zw+(§+—)
m [ m m m [ m)]
: . . \
glves'fhe _lz_zw_gzo and 522_Za,_ §+2£
equations m [ m m)
2_&
. a)l -
W'fht_ where ! L
solutions
=425
) m

which are
the results
from the
undamped

_scenario

There is no physical difference between +/- variants. Just use + from now on.



Damped driven coupled pendula: finding CF

Substitute eigenvalues into the below:

X X
to deduce one mode has X=Y, & the other X=-Y. Since ( ]= Re(y}exp(iwl,zt)
We get the CF:

Note the exponential decay factor.



Finding CF with decoupling method

The equations of motion

1
q —ﬁ(x"'y)

can be decoupled with the normal coordinates 1
q, = T(x—y)
2
to yield the 2" order homogeneous differential equations g
6012 o 7
. V. 2 . V. 2 :
G+—¢+0°q,=0 ¢+—q,+w,q,=0 with k
2 m

that can be solved through trial solution g=Re( e '“t) to give same results



Damped driven coupled pendula: finding Pl

We have the CF. Now we need to find the PI, i.e. a solution to the full equation

\
(le(ljRe[em(mt)]
y) m\O

x P) .
Try this ansatz [ j = RGKQ}B””} which means solving the following
Y

/

\




Damped driven coupled pendula: finding Pl

We have matrix equation of the sort: MU=V

I\(I U "4

_—

\ e )

P 1
andso U=M1V ,i.e. (QJZM_lE( J



Damped driven coupled pendula: finding Pl

(’ i ‘ \
Need to find the inverse of M =

| |
M= deth adj(M) /

( ’ 2
[ ot vial s £+£H _H
m \[ m m
= —a2+ia7+(§+kJ i}{ a2+ia1+(§+£)+£}
i m m I m) m

=|-a +§+za }[ a +(

-6 -6
:Ble 1 'Bze e

det M

|0Q
¥_/

+

Q
;1

1
2\ .
where B, = ((a)12 a2)2+(%j ] and tand, = ay/m



Damped driven coupled pendula: finding Pl

( 3\
Now adjM =
\ y,
and we can write
-«f+ﬁla+§+£~=l-ﬂf+ﬁla+§-+l-1f+ﬁla+§+zg]
m [ m 2 m / 2 m I m
— %:Ble 61+Bze 02]
4
k_1 —a2+zla+§+2—)——(—a2+ila+§j
m 2\ m [ m m
Ir,. _ _
= E-B?‘e % —Ble 01]

and so

8.
<
Il
N | —
~———



Damped driven coupled pendula: finding Pl

1
det M

M=

adj(M)

X
— [yj = - we have it |

1
2\2 _ /
with B1,2=((w1,22—a2)2+(ﬂ]J and tanf,, = 0?/ "
(@, —a”)




Finding Pl with decoupling method

Inhomogeneous equations written in terms of normal coordinates

Q1+l%+w12% =—cosat (1) 1
m m -

1 — —
ql—ﬁ(ﬁy) qz—ﬁ(x ¥)

9, +1Q2 +w22Q2 =—cosat (2)
m m
Trial ansatz for (1) g, = Re[4, exp(ioz)] o (F / m)exp(i6),)
- - @ -a?f +(@r/myy”
:(—a2+ia1+§JAl =— with
m 1 m tan g — —@r/m)
' 1 (0)12 -a’)

Hence

Same procedure for (2) gives entirely analogous expression for g.,.

From these same expressions are obtained for x and y as before. »



Damped driven coupled pendula: full solution

Solution = CF + PI

N | —

. 2 N2 ay 2 —a}’/m 2 8 2 _ g ) k
with B,=|(0, —a’)" +| — ’ tanHLz = > — @ =7 & o, —7+ ;
m (v, —a’)

The CF part is the ‘transient solution’ determined by the initial conditions;
the Pl part is the ‘steady state solution’ determined by the driving force.




Horizontal spring-mass system
with driving term

Consider two masses moving without friction, with two springs of spring

constants 2k and k respectively, connected to wall which is driven X
by an external force to have time-dependent displacement x(¢) = Asin(wf t]
m

AMIWWV\MMAMMIW‘WWWVWWWVWVW\‘

kt] > U —> U,

x(t) = Asm(

m

Equations of motion:



Horizontal spring-mass system
with driving term — find the CF

Write down the homogeneous case
and find CF using matrix method

Try (ulJ:Re(Ul)e"“" gives (
U, U,

Requiring determinant = 0 yields

Substitute back in to eigenvector equ”

and




Horizontal spring-mass system
with driving term — find the PI

p

We have the CF. Now we 4k (2
need to find the Pl, i.e. j ( }Re[exp(z\/:t)]
a solution to the full equation m \0
\
hich ( 2k k
whic — -
Try ansatz means m m (PJ — @(2]
k 0] m\0
solving —— 0
\ m
Inverse of (0 ﬁ\
1 m(0 -1
LHS 2x2 m | and so
matrixis —k/m)’| kK 2k | k(-1 -2
\m  m)




Horizontal spring-mass system
with driving term — full solution

Solution = CF + PI




