Waves \& Normal Modes

Prof. Matt Jarvis

matt.jarvis@astro.ox.ac.uk
Hilary Term 2015

General Details

- 12 lectures
- Notes will be available to download every 1-2 weeks.
- These will NOT be complete, so pay attention in the lectures
- Unintentional mistakes may occur - please let me know in lectures or via email if you spot anything
- 3 problem sheets will be distributed. These are inherited from previous lecturers of this course - many thanks to them
- Material will be posted on https://www2.physics.ox.ac.uk/contacts/people/jarvis (under "Teaching")
- Thanks also to Guy Wilkinson for his lecture notes on this course

Text Books

- Vibrations \& Waves, A.P. French, MIT Introductory Physics Series
- Vibrations and waves in Physics, I.G. Main, CUP
- Waves, C.A. Coulson \& A. Jeffrey, Longman Mathematical Texts

Vibrations \& Waves in Physics

- Although we will only use specific examples during this course, the physics of waves and vibrations underpin many different areas of physics that you will comes across over the next 3-4 years.
- For example:
- Electromagnetism
- Quantum Mechanics
- Cosmology

Coupled Pendula

Equations of Motion for each pendulum...

How to solve?

Equations of Motion:
(1)
(2)

Two equations and two unknowns, x and y
First we will use the so-called 'decoupling method'
Which involves decoupling the equations from each other and solving the decoupled equations individually.

Decoupling Method

Looks very similar to the standard wave equation... define $\quad q_{1} \equiv x+y$

$$
\ddot{q}_{1}=-\omega_{1}^{2} q_{1} \quad \text { with } \quad \omega_{1}^{2}=\frac{g}{l}
$$

$A_{1} \& \phi_{1}$ are constants set by boundary conditions

Decoupling Method

Subtracting (2) from (1)

This time $q_{2} \equiv x-y$

$$
\ddot{q}_{2}=-\omega_{2}^{2} q_{2} \quad \text { with } \quad \omega_{2}^{2}=\frac{g}{l}+2 \frac{k}{m}
$$

$A_{2} \& \phi_{2}$ are constants set by boundary conditions

Normal Modes of Coupled Pendulum

- The first normal mode: centre-of-mass motion

- The second normal mode: relative motion
$q_{2}=A_{2} \cos \left(\omega_{2} t+\phi_{2}\right) \quad \omega_{2}^{2}=\frac{g}{l}+2 \frac{k}{m}$

$$
q_{2} \equiv x-y
$$

Normal Modes of Coupled Pendulum

The variables q_{1} and q_{2} are called the mode, or normal, coordinates
In any normal mode only one of these coordinates is active at any one time (i.e. either q_{1} is vibrating harmonically and q_{2} is zero or vice versa)

It is more common to define the mode coordinates with a normalising factor in front (in this case $1 / \sqrt{ } 2$)

$$
\begin{aligned}
& q_{1}=\frac{1}{\sqrt{2}}(x+y) \\
& q_{2}=\frac{1}{\sqrt{2}}(x-y)
\end{aligned}
$$

This means that the vector defined by $\left(q_{1}, q_{2}\right)$ has same length as that defined by (x, y), i.e. $q_{1}{ }^{2}+q_{2}{ }^{2}=x^{2}+y^{2}$. This factor changes none of results we obtained.

General Solution for a Coupled Pendulum

The General Solution is a sum of the two normal modes

The constants are just set by the initial conditions

Coupled Pendulum: Different Initial Conditions

Example 1
$x(0)=y(0)=a$

$$
\dot{x}(0)=\dot{y}(0)=0 \quad A_{1}=a ; A_{2}=0 ; \phi_{1}=0
$$

Time

Coupled Pendulum: Different Initial Conditions

$$
\begin{aligned}
& \text { Example } 2 \\
& x(0)=y(0)=a \\
& \text { Gives.. } \\
& A_{1}=0 ; A_{2}=-\frac{v}{\omega_{2}} ; \phi_{2}=\pi / 2 \\
& \dot{x}(0)=-v ; \dot{y}(0)=v \\
& \text { Time }
\end{aligned}
$$

Coupled Pendulum: Different Initial Conditions

$$
\begin{aligned}
& \text { Example } 3 \\
& \text { Gives... } A_{1}=A_{2}=\frac{a}{2} ; \phi_{1}=\phi_{2}=0 \\
& x(0)=a ; y(0)=0 \\
& \dot{x}(0)=\dot{y}(0)=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Time }
\end{aligned}
$$

Coupled Pendulum: Different Initial Conditions

Example 3

$$
\begin{aligned}
& x=\frac{a}{2}\left[\cos \omega_{1} t+\cos \omega_{2} t\right] \\
& y=\frac{a}{2}\left[\cos \omega_{1} t-\cos \omega_{2} t\right]
\end{aligned}
$$

Let... $S=\frac{\omega_{1}+\omega_{2}}{2} t$ and $D=\frac{\omega_{1}-\omega_{2}}{2} t$

$$
x=\frac{a}{2}[\cos (S+D)+\cos (S-D)]
$$

$x=\frac{a}{2}[\cos S \cos D-\sin S \sin D+\cos S \cos D+\sin S \sin D]$

$$
x=a \cos S \cos D
$$

$$
y=\frac{a}{2}[\cos (S+D)-\cos (S-D)]
$$

$$
y=\frac{a}{2}[\cos S \cos D-\sin S \sin D-\cos S \cos D-\sin S \sin D]
$$

$y=-a \sin S \sin D$

Coupled Pendulum: Different Initial Conditions

Example 3

$$
\begin{aligned}
& T=2 \pi / \omega \\
& \text { Envelope has period } T_{\text {env }}=\frac{4 \pi}{\omega_{1}-\omega_{2}}
\end{aligned}
$$

In this example both of the normal modes are excited

'Beats' - energy is being transferred between pendula

Coupled Pendulum: Energy

Calculate total energy of the system $\quad \boldsymbol{U}=\boldsymbol{K E}+\mathbf{P E}=\boldsymbol{T}+\boldsymbol{V}$

Coupled Pendulum: Energy

Can also calculate Potential Energy using

$$
F_{x}=-\frac{\partial V}{\partial x} \text { and } F_{y}=-\frac{\partial V}{\partial y}
$$

$F_{x}=-\frac{\partial V}{\partial x}=m \ddot{x}=-m g \frac{x}{l}+k(y-x)$
$F_{y}=-\frac{\partial V}{\partial y}=m \ddot{y}=-m g \frac{y}{l}-k(y-x)$
$\Rightarrow V(x, y)=m g \frac{x^{2}}{2 l}+\frac{1}{2} k x^{2}-k x y+f(y)+C$
$\Rightarrow V(x, y)=m g \frac{y^{2}}{2 l}+\frac{1}{2} k y^{2}-k x y+f(x)+C$

Neglecting the constant, C, which is an arbitrary offset

Coupled Pendulum: Energy

\square
This is a bit unwieldy.
Why don't we go back to the normal coordinates and see what it looks like?

$$
q_{1}=\frac{1}{\sqrt{2}}(x+y) \quad \omega_{1}^{2}=\frac{g}{l} \quad q_{2}=\frac{1}{\sqrt{2}}(x-y) \quad \omega_{2}^{2}=\frac{g}{l}+2 \frac{k}{m}
$$

The cross-term in V has now disappeared

Total energy in the system = sum of energies in each mode

Solving with matrix method

$$
\begin{aligned}
& m \ddot{x}=-m g \frac{x}{l}+k(y-x) \\
& m \ddot{y}=-m g \frac{y}{l}-k(y-x)
\end{aligned}
$$

Expecting an oscillatory solution, so let's try substituting one in, making use of complex notation

$$
\binom{x}{y}=\operatorname{Re}\binom{X}{Y} e^{i \omega t}
$$

X \& Y are complex constants

eigenvector equation

With -w being the eigenvalues

Solving with matrix method

We have an homogeneous matrix equation of the sort $A \Psi=0$

The non-trivial solution requires the matrix is singular, i.e. has no inverse

$$
\Rightarrow \quad \operatorname{det}[A]=0
$$

Solving with matrix method

$$
\begin{aligned}
& \text { eigenvalue } \\
& \text { equation }
\end{aligned} \quad\left(-\omega^{2}+\frac{g}{l}+\frac{k}{m}\right)= \pm \frac{k}{m}
$$

$$
\begin{aligned}
& \omega_{1}^{2}=\frac{g}{l} \\
& \omega_{2}^{2}=\frac{g}{l}+2 \frac{k}{m}
\end{aligned}
$$

Substitute back into eigenvector equation to learn

- when $\omega=\omega_{1}$ then $\mathrm{X}=\mathrm{Y}$, call it $A_{1} e^{i \phi_{1}}$
- when $\omega=\omega_{2}$ then $\mathrm{X}=-\mathrm{Y}$, call it $A_{2} e^{i \phi_{2}} \quad \Rightarrow$ Same normal modes \& frequencies as before!

Unequal coupled pendula

- Up until now we have only considered the case where the 2 pendula were of the same length
- Now we will find the equations of motion for pendula of unequal length

Unequal coupled pendula

Equations of motion:

Unequal coupled pendula

Attack problem with matrix method:

Unequal coupled pendula

Requiring

yields $\quad\left(-\omega^{2}+\beta_{1}^{2}+\frac{k}{m}\right)\left(-\omega^{2}+\beta_{2}^{2}+\frac{k}{m}\right)-\left(\frac{k}{m}\right)^{2}=0 \quad \beta_{1,2}{ }^{2}=\frac{g}{l_{1,2}}$

Expanding this and then solving for ω^{2} gives

$$
l_{1}=l_{2}=l
$$

Sanity check: $\Rightarrow \beta_{1}^{2}=\beta_{2}{ }^{2}=\frac{g}{l}$ and $\omega_{1,2}{ }^{2}$ reduce to equal length solutions

Unequal coupled pendula

Substitute

$$
\omega_{1,2}{ }^{2}=\frac{1}{2}\left[\left(\beta_{1}^{2}+\beta_{2}{ }^{2}\right)+\frac{2 k}{m} \pm \sqrt{\left(\beta_{1}^{2}-\beta_{2}{ }^{2}\right)^{2}+\left(\frac{2 k}{m}\right)^{2}}\right] \quad \text { with } \quad \beta_{1,2}{ }^{2}=\frac{g}{l_{1,2}}
$$

into

$$
\left(\begin{array}{cc}
-\omega_{1,2}{ }^{2}+\frac{g}{l_{1}}+\frac{k}{m} & -\frac{k}{m} \\
-\frac{k}{m} & -\omega_{1,2}{ }^{2}+\frac{g}{l_{2}}+\frac{k}{m}
\end{array}\right)\binom{X}{Y}=\binom{0}{0}
$$

to yield

In the case $I_{1}=I_{2}$ then $\beta_{1}{ }^{2}=\beta_{2}{ }^{2}$ and one recovers the same length pendulum solutions $X / Y=+1$ and -1 . It is also interesting to note that one can show

$$
\left(\frac{Y}{X}\right)_{1}=-1 /\left(\frac{Y}{X}\right)_{2} \text { and so } \begin{aligned}
& \text { we define }
\end{aligned}
$$

Unequal coupled pendula: a specific solution

General solution

$$
\binom{x}{y}=\binom{1}{r} A_{1} \cos \left(\omega_{1} t+\phi_{1}\right)+\binom{-r}{1} A_{2} \cos \left(\omega_{2} t+\phi_{2}\right)
$$

Now consider the initial conditions

$$
\begin{gathered}
x=a ; y=0 ; \dot{x}=\dot{y}=0 \\
\Rightarrow A_{1}=a /\left(1+r^{2}\right) ; A_{2}=-r a /\left(1+r^{2}\right) ; \phi_{1}=\phi_{2}=0
\end{gathered}
$$

Hence

$$
\begin{aligned}
& x(t)=a\left[\cos \omega_{1} t+r^{2} \cos \omega_{2} t\right] /\left(1+r^{2}\right) \\
& y(t)=a r\left[\cos \omega_{1} t-\cos \omega_{2} t\right] /\left(1+r^{2}\right)
\end{aligned}
$$

which can be written

'Beats' solution as before, but now with $r<1$ there is incomplete transfer of energy between pendula

