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General Details

12 lectures
Notes will be available to download every 1-2 weeks.
These will NOT be complete, so pay attention in the lectures

Unintentional mistakes may occur — please let me know in lectures
or via email if you spot anything

3 problem sheets will be distributed. These are inherited from
previous lecturers of this course — many thanks to them

Material will be posted on
https://www?2.physics.ox.ac.uk/contacts/people/jarvis

(under “Teaching”)

Thanks also to Guy Wilkinson for his lecture notes on this course



Text Books

Vibrations & Waves, A.P. French, MIT
Introductory Physics Series

Vibrations and waves in Physics, |.G.
Main, CUP

Waves, C.A. Coulson & A. Jeffrey,
Longman Mathematical Texts



Vibrations & Waves in Physics

* Although we will only use specific
examples during this course, the physics
of waves and vibrations underpin many
different areas of physics that you will
comes across over the next 3-4 years.

 For example:
* Electromagnetism
« Quantum Mechanics
 Cosmology



Coupled Pendula
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Equations of Motion
for each pendulum...




How to solve?

Equations of Motion:

(1)

(2)

Two equations and two unknowns, x and y
First we will use the so-called "decoupling method’

Which involves decoupling the equations from each
other and solving the decoupled equations individually.



Decoupling Method

Equations of Motion: (1)

(2)

Adding (1) and (2)

Looks very similar to the standard wave equation... define g1 =X —+ y

g1 = —(D%ql with (l)% — %

A, & ¢, are constants set by
boundary conditions
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Decoupling Method

Equations of Motion: (1)

(2)

Subtracting (2) from (1)

Thistime 2 =X — Y
. k
qdr — —(D%QQ with 0)% — g e ) —
[ m

A, & ¢, are constants set by
boundary conditions




Normal Modes of Coupled Pendulum

 The first normal mode: centre-of-mass motion

= A cos(mf + 1) of =
* The second normal mode: relative motion

gy =Arcos(f +02) o} = §+25
m

g2 =X—Y



Normal Modes of Coupled Pendulum

The variables q,and q, are called the mode, or normal, coordinates

In any normal mode only one of these coordinates is active at any one time
(i.e. either q, is vibrating harmonically and g, is zero or vice versa)

It is more common to define the mode coordinates with a normalising factor in
front (in this case 1/72)

1
q1 = \@(X -y)
1

q>2 ﬁ(X—Y)

This means that the vector defined by (g,,9,) has same length as that defined by (x,y),
i.e. g,2 +q,?=x?+ y2 This factor changes none of results we obtained.



General Solution for a Coupled Pendulum

The General Solution is a sum of the two normal modes

The constants are just set by the initial conditions



Coupled Pendulum: Different Initial Conditions

Example 1 Plugging these initial Fondi_tions
x(0)=y(0)=a .
%(0) = y(0) = Ar=a; A,=0; 01=0
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Coupled Pendulum: Different Initial Conditions

Example 2 Gives.. V
_ _ A1 =0; Ay =——; =T/2
x(0) =y(0) =a 1 2 o, 0, =T/
x(0)=—v; y(0)=v
viw, E
-v/u>u<2
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Coupled Pendulum: Different Initial Conditions




Coupled Pendulum: Different Initial Conditions

y = —asinSsinD




Coupled Pendulum: Different Initial Conditions

T =21/

Envelope has period T¢,y =

‘Beats’ — energy is being transferred between pendula



Coupled Pendulum: Energy

Calculate total energy of the system U=KE+PE=T+V

Kinetic Energy T =

Potential Energy V
sSpring —

Vgravity —




Coupled Pendulum: Energy

Can also calculate Potential Energy using

oV aV

Fr=———and F,= ——

’ ox d dy

_ VX v

F, o = mi= mgl—l—k(y X) F, e
2 2

Neglecting the constant, C, which is an arbitrary offset

p




Coupled Pendulum: Energy

This is a bit unwieldy.
Why don’t we go back to the normal coordinates and see what it looks like?

1 1 k
%Zﬁ(X‘H’) 0)%:% qz:ﬁ(x—)’) OJ%:§—I—2—

m

The cross-term in V has now disappeared

Energy in mode 1 Energy in mode 2

U= +

Total energy in the system = sum of energies in each mode



Solving with matrix method

mx =—mg§+k(y—x)

y —

my = —mg > ~k(y~x)

Expecting an oscillatory solution, X X X&Yare
so let’s try substituting one in, = = Re e’ complex

making use of complex notation constants

eigenvector

We obtain: .
equation

With —w being the eigenvalues



Solving with matrix method

We have an homogeneous matrix equation of the sort A\ = (0

0 eigenvector
- 0 equation

The non-trivial solution requires the matrix is singular, i.e. has no inverse

=  det[4]=0

So here: 0




Solving with matrix method

=0
2 _ 8
W ==
eigenvalue (_0)2+§+£):+£ . b
equation I m) m
0)22=§+2£
[ m

Substitute back into eigenvector equation to learn

« when w=w, then X=Y, call it 4, =

* when w=w, then X=-Y, call it Aze""’2 =

Same normal modes & frequencies as before!




Unequal coupled pendula

* Up until now we have only considered the
case where the 2 pendula were of the same
length

* Now we will find the equations of motion for
pendula of unequal length



Unequal coupled pendula
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Equations of motion:




Unequal coupled pendula

Attack problem with matrix method:

and so we must
find solutions of




Unequal coupled pendula

Requiring

k k k2 )
yields (_0)2"1_[3%4_%) (_032+B%+—) — (—) =0 oy :lé

m m 1,2

Expanding this and then solving for w? gives

W, =

I=1,=1
»_8 and w, ,% reduce to equal length solutions
[

Sanity check: )
=B =5



Unequal coupled pendula

Substitute { Y with ,
“’w*i{w o ﬂzz)”(;)] AT

o9

2

\
into (a) 2 8. Kk _k
_k EPLIE LA O AR\
\ m [, m)
to yield

In the case /,=/, then B,?=B,% and one recovers the same length pendulum
solutions X/Y=+1 and -1. Itis also interesting to note that one can show

Yy __[X]|andso
X ) X ), | we define




Unequal coupled pendula: a specific solution

General solution

y

Now consider the initial conditions
x=a;y=0;x=y=0
=4 =al(l+r*); 4, =—ral(l+r"); ¢ =¢, =0
Hence
x(t) = a[cos wt+7’ cos a)?_t]/(l +7%)
Y(t) = arfcos wt — cos wyt|/(1+r?)

which can be written

0.75 F

(xJ _ (IJAI cos(at + @) + (‘1” ) A, cos(w,t + @,) of)z'g
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‘Beats’ solution as before, but now
with r< 1 there is incomplete transfer

of energy between pendula




