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Keble College - Hillary 2010
B2: Condensed Matter Physics and Photonics

Tutorial 6 - Tight Binding Model and Semiconductors

Please leave your work in my Keble pigeon hole by 5pm on Wednesday of 3rd week.
Suggested reading: Hook & Hall 4, 5; Kittel 8; Ashcroft/Mermin 28.

1 The Tight Binding Model

In the last tutorial we saw how band theory emerges from a nearly free electron model with a small
crystal potential. The other extreme is the tight binding model, where we begin by assuming electrons
are tightly bound to their ‘parent atoms’, and then examine the effects of introducing neighbours.
First we consider the properties of one electron in the presence of two atoms.

1. Consider a single electron interacting with two protons at the fixed positions Rn and Rm. The
Hamiltonian for such an electron is

H = −h̄2

2m ∇2 − e2

4πǫ0
1

|r−Rn| −
e2

4πǫ0
1

|r−Rm| .

Without doing any calculations explain what you expect for the eigenfunctions and eigenvalues
in the limits (a) |Rn − Rm| ≫ aB, and (b) |Rn − Rm| ≪ aB, where aB is the Bohr radius.

We will now consider an intermediate regime. Let |n〉 denote the state in which the electron is
bound to atom n with the isolated atom eigenstate φ(r − Rn) (eigenvalue E0), and similarly
for |m〉. Show that if we use the trial orthogonal eigenstates:

|E±〉 =
1√
A±

(|n〉 ± |m〉), (1)

Our energies are:

E± ≈ 1

A±

(

2E0 − 〈n| e2

4πǫ0
1

|r−Rm| |n〉 − 〈m| e2

4πǫ0
1

|r−Rn| |m〉 ±
{

〈n|H|m〉 + 〈m|H|n〉
}

)

. (2)

Where A± is a normalization constant. Why is the term in braces is called a hopping integral?

2. We now extend these ideas to the many body case, limiting our attention to a particularly
simple example of the tight binding model. Considering a one dimensional monoatomic chain
and a single atomic orbital, the Hamiltonian for a single electron is given by:

H =
N
∑

n

(

ε|n〉〈n| − t|n + 1〉〈n| − t|n − 1〉〈n|
)

. (3)

Here, N is the number of atoms in the system, ε is the energy of the atomic orbital and t is a
hopping integral, with the simplifying assumption 〈n|m〉 = δn,m.

Define |k〉 states by

|n〉 = 1√
N

∑

k

e−ikna|k〉 , 〈n| = 1√
N

∑

k

eikna〈k| (4)

with a as the lattice parameter. By substituting Eqn. 4 into Eqn. 3, show that the Hamiltonian
diagonalises to

H =
∑

k

(

ε − 2t cos(ka)
)

| k〉〈k | .

Sketch the dispersion relation and illustrate the filling in the monovalent case (assuming the
electrons do not interact with each other).
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2 Electrons, Holes and Semiconductors

3. Please attempt question C5 from Prof. Robin Nicholas’s problem set.

4. Please attempt question C6 from Prof. Robin Nicholas’s problem set.

5. Explain the terms group velocity and effective mass as applied to an electron in a crystal. How
can a negative effective mass be reconciled with the fact that the mass of a free electron is
positive? [5]

Consider an electron in a one dimensional energy band E(kx), where kx is the wavevector along
the x-direction. An electric field F is applied along the x-direction. Show that the equation
describing the motion of the electron along the x-direction is

h̄
dkx

dt
= −eF (5)

Derive an expression for the effective mass in terms of the band structure E(kx). [8]

An electron with wavevector k = (kx, 0, 0) has energy

E(kx) = A
[

1 − cos(kxa) + 1

8
cos(2kxa)

]

where a is the lattice period and A > 0. Obtain expressions for the electron group velocity and
effective mass along the x-direction. Sketch the variation of these two quantities as kx varies
from 0 to π

a . Estimate the value of kx at which the effective mass becomes infinite. [9]

By considering equation (5), or otherwise, describe the motion of an electron in this energy band
under the influence of an external electric field along the x-direction. (Neglect any scattering
effects.) [3]

[1998 A4 question 5 (old course)]

6. Explain the principle of doping a semiconductor with impurities to produce an excess of elec-
trons or holes. Give an example of a suitable material with which to dope silicon to produce
an excess of electrons. [7]

Give expressions for the density of free electrons (n) and holes (p) in a semiconductor in terms
of the density of states in the conduction and valence bands and the Fermi-Dirac distribution
function. [4]

Using the free-electron form of the density of states and approximating the Fermi-Dirac distri-
bution function in each case by an exponential, derive an expression for the hole and electron
densities as a function of temperature and Fermi energy in a semiconductor with a band gap
Eg and electron and hole effective masses of m∗

e and m∗
h. Show that the results give a product

np which is independent of the Fermi energy EF . [9]

A material with Eg = 1 eV and m∗
e = m∗

h = 0.1me is doped with 1 × 1023m−3 shallow donor
impurities. Calculate the density of holes present at room temperature. [5]

[
∫ ∞

0

dx x1/2 e−x =

√
π

2

]

[1996 A4 question 5 (old course)]
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7. Explain what the terms direct gap and indirect gap mean when used to describe semiconductors.
[5]

Show that the number of electrons per unit volume in the conduction band of an intrinsic gap
semiconductor at a temperature T is given by

n = AT 3/2exp

( −Eg

2kBT

)

where Eg is the energy gap and A is a constant which need not be evaluated. [10]

The Hall coefficient RH for a sample of undoped silicon is measured to be 625 m3C−1 at 300K
and 0.016 m3C−1 at 500K. Assuming only one type of carrier contributes to RH deduce a
value for Eg from these data. [6]

The optical absorption of silicon as a function of photon energy exhibits large increases at 1.2
eV and 3.3 eV . Comment on your value for Eg in relation to these optical data. [4]

[2000 A4 question 4 (old course)]
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