Non-equilibrium dynamics of quantum gases in optical lattices

Ludwig-Maximilian Universität München Max-Planck Institut für Quantenoptik University of Cambridge ultracold quantum matter

www.manybody.phy.cam.ac.uk

LMU Munich

Philipp Ronzheimer Simon Braun Michael Schreiber Pranjal Bordia Henrik Lüschen Sean Hodgman

Immanuel Bloch U.S.

LMU & MPQ München

Stephan Mandt David Rasch

Achim Rosch

Universität zu Köln

Stephan Langer (now Pittsburgh) Ian McCulloch

Fabian Heidrich-Meisner

LMU München

Mathis Friesdorf A. Riera M. del Rey

Jens Eisert

Freie Universität Berlin

3D optical lattice

Optical lattices

Dipole potential:

Interaction of atoms with **far-detuned light**, e.g. optical tweezer, dipole trap

$$U_{
m dip} \propto lpha(\omega) I(ec{r})$$

Overlapping two counterpropagating laser beams produce a standing wave:

$$\underbrace{V=0}{\bigvee_{=0}}$$

Why lattices?

- Realizes important model Hamiltonians from solid-state physics:
 - → e.g. Hubbard models

💓 : Atoms

Potential created by standing light wave

Understand and Design Quantum Materials

- High temperature superconductivity
- Quantum Magnetism

Emergent many-body phenomena

Hubbard Models

No thermal environment – no external temperature! (closed quantum system)

Why lattices ? – Enhances Interactions

- Lattice strongly reduces kinetic energy
 - \rightarrow enhances interaction effects

 \rightarrow strongly interacting phases become available at moderate interactions

Why lattices? - Non-Equilibrium physics **/~1 - 1000 Hz** $\tau = \frac{\hbar}{I} \sim 0.1 \text{ms} - 1\text{s}$

Can control and observe real-time dynamics

Why lattices? - variable dimensionality

OD

- 3D deep lattice
- isolated wells
- no hopping

1D

2D deep lattice+1D weaker lattice- 1D hopping

Why lattices? – Topological band strucres

 \rightarrow Topological invariants

Discrete values, e.g. ± 1 , \mathbb{Z}

Example: Chern numbers

- Integer Quantum Hall
- Topological insulators

Aharonov-Bohm interferometry & Wilson lines

L. Duca *et al.* Science **347**, 288 (2015) T. Li *et al.* Science **352**, 1094 (2016)

Mass transport

Fermionic Expansion

band insulator: two spin states

Dynamics within lattice

Sudden Quench

→All energies contribute

 \rightarrow Far from equilibrium

Non-interacting atoms

Ballistic Expansion

Nat. Phys. 8, 213 (2012)

Interaction

Density distribution after 25ms of expansion

Nat. Phys. 8, 213 (2012)

1) non-interacting: no collisions

→ ballistic expansion

- 2) interacting:
 - Iow density limit: no collisions

ballistic expansion

- no thermalisation
- non-isotropic expansion
- higher density: many collisions

non-linear diffusive expansion

- local thermalisation
- isotropic hydrodynamic expansion

Fermionic Expansion velocity in 2D

Quantum dynamics is more complex:

- Bound states / correlated tunneling
- Creation of Many-body entanglement
- Quantum distillation (1D) (F. Heidrich-Meisner et.al.)

Nat. Phys. 8, 213 (2012)

approximation

(A. Rosch *et.al.*)

Fermionic Expansion velocity in 2D

Quantum distillation (1D) (F. Heidrich-Meisner et.al.)

Nat. Phys. 8, 213 (2012)

The diffusive picture

Separation between local & global timescales

frequent scattering

→ fast local relaxation or fast local thermalization (in higher dimension)

→ system can be described by $\mu(\vec{r},t), T(\vec{r},t) \forall t > t_{local}$

slower global dynamics driven by gradients in temperature & chemical potential See also: Lux *et al.* PRA, 2014

> ► $U \leftrightarrow -U$ symmetry requires thermalization to $T \leftrightarrow -T$

Can we see negative Temperatures?

Bose gas at pos. and negative Temperature

Science 339, 52 (2013)

Bosonic Expansion:

n=1 Mott Insulator

Dynamics within lattice

Bosonic Expansion in 2D

PRL 110, 205301 (2013)

Dynamics in different dimensions

Thermalization? In low dimensions?

What can be different in 1D?

Classically: Two-body collisions can only exchange momentum, but not redistribute it! n(k,t) = const. w.r.t. t

Repulsive 1D Bosons with point-like interaction without a lattice are **integrable** in homogeneous case!

→Lieb-Liniger model

Thermalization constrained by conserved quantities.

Fineprint: Trap, 3-body collisions, quasi 1D

1D Bosons on a lattice

- additional process Umklapp scattering + lattice dispersion
- ID Bose-Hubbard model is (in general) not integrable! classically chaotic for intermediate U and intermediate energy M. Hiller et al. PRA 79, 023621 (2009)
- Integrable limits:
 - Non-interacting
 - Hard-core Bosons: $U \gg J$, $n \in \{0, 1\}$

i.e. no higher occupancies

equivalent to non-interacting spinless Fermions

(Jordan-Wigner transformation)

Bosonic Expansion velocities

PRL 110, 205301 (2013)

PRL 110, 205301 (2013)

Alternatives to local thermalization

Many-body localization

Stability of (disorder induced) Anderson localization in the presence of interactions (and finite energy density)

So what?

Non-ergodic behaviour!

No thermalization, no standard statistical mechanics

→ Potential for novel long-time dynamics

Challenge: MBL requires perfect isolation from environment (coupling to reservoir \rightarrow thermalization)

Ergodicity breaking in Many-body localization

Science 349,842 (2015)

Phase diagram

Ground states

Ground states of Bose-Hubbard model

$$H = -\mathbf{J}\sum_{\langle i,j\rangle} a_i^+ a_j + \frac{\mathbf{U}}{2}\sum_i n_i(n_i - 1)$$

$J \gg U$: Superfluid

Shallow lattice

- Long-range order
- Phase coherent
- Gapless excitations

Cubic Lattice: 3D: $U_c \approx 29.3 J$ at unity filling 1D: $U_c \approx 3.3 J$ "

First observation: Greiner *et al.* Nature **415**,39 (2002)

 $J \ll U$: Mott Insulator

Deep lattice

- No Phase coherence
- Gapped

Absorption imaging after time-of-flight

Absorption creates shadow that can be recorded by a CCD camera

Position

How fast can order form?

Bose-Hubbard model at n=1

Information spread in BHM

Information spreads via
 quasiparticles at finite velocity
 (almost) Lieb-Robinson bound

- NOW: Continuous quench
- Quasi-particles are continuously created
- Many quasi-particles \rightarrow Interactions?

(M. Cheneau et al Nature 481, 484 (2012))

Mott Insulator to Superfluid transition in BHM

Emergence of Coherence: 2D

duration of final lattice ramp

Observe identical timescales for U>0 and U<0! → See generic behavior of phase transition

Coherence length vs quench time: 1D

Kibble Zurek mechanism

- What can we say about this if we don't have a dynamical theory?
- Adiabatic evolution far away from phase transition + dynamics frozen out at phase transition (critical slowing down)
- Kibble-Zurek approximation: adiabatic impulse adiabatic (+variants)

Within Kibble-Zurek approximation:

- Only need to know the *transition point* from adiabatic to sudden
- Correlation length at the beginning of impulse stage:

$$\xi \propto \epsilon^{-\nu} \propto \tau_Q^{\frac{\nu}{1+\nu z}}$$

Scaling governed by critical exponents: v, z

 \rightarrow Assumes that transition points lie in quantum critical region!

1D Exponents

▶ 1D: Tip of Mott Lobe: $z = 1 \nu \to \infty$ → $\xi \propto \tau_Q$

Caveat: Kosterlitz-Thouless transition, expect $\nu \rightarrow \infty$ only for extremly slow ramps

▶ 1D: side of Mott Lobe: $z = 2 v = \frac{1}{2}$ → $\xi \propto \tau_Q^{\frac{1}{4}}$

- Same qualitative behaviour independent of dimension
- No Kosterlitz-Thouless transition

 \rightarrow KZM predicts pure power law with fixed exponent

Loose adiabaticity already outside of critical region!

Full complexity goes beyond critical behaviour!

Department of Physics Cavendish Laboratory

Many-body Quantum Dynamics group

Dr. Ulrich Schneider

Master, PhD- and PostDoc positions available!

www.manybody.cam.ac.uk

Analog Quantum simulations

duration of final lattice ramp

Ulrich Schneider

www.manybody.phy.cam.ac.uk