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1. Boltzmann vs. Loschmidt: Irreversible vs. reversible dynamics

How to reconcile the second law of thermodynamics/the arrow of time
with microscopic time-reversal invariance?

* Thomson (1874):

If we allowed this equalization to proceed
for a certain time, and then reversed the
motions of all the molecules, we would
observe a disequalization. However, if the
number of molecules is very large, as it is

in a gas, any slight deviation from absolute
precision in the reversal will greatly shorten
the time during which disequalization occurs.

D. Levesque and
L. Verlet, J. Stat.
Phys. 72, 519 (1993)

* In modern language:

Classical chaotic system

- Positive Lyapunov exponent

- Mixing and exponential sensitivity to
initial conditions

- Time-reversal operation requires
exponentially increasing accuracy
with waiting time
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Integer arithmetics!

Goal: Understand irreversibility in qguantum many-body systems




2. Thermalization of closed quantum many-body systems

Goal: Dynamical justification of equilibrium statistical
mechanics for closed quantum systems

Key questions:

* What s the intrinsic time scale of a
closed system to thermalize?

* What are the conditions for a closed Weak coupling l
system to thermalize? to environment

* What do we really mean by 1 o BH
thermalization? P= 7

Unitary time evqutionI
from initial state




The Fermi-Pasta-Ulam-Tsingou problem
E. Fermi, J. Pasta, S. Ulam; Los Alamos Report (1955)

Closed classical system: Harmonic chain with anharmonic perturbations
(weakly nonlinearly coupled harmonic oscillators)

d*x,
i (Xps1 — 2%, + X0 1) O |:(xn+1 —xn)2 — (X _xn—l)z} +B [(xn+1 —xn)3 — (% —xn_1)3

n-1 n n+1

Goal: Dynamical justification of the
assumptions of classical
equilibrium statistical mechanics

Initial state: Mode k=1 excited

= Recurrences

=> Violation of equipartiation theorem

t IN THOUSANDS OF CYCLES

= No thermalization (?!)



Basic issues in closed quantum systems

* A pure state always remains pure:

W(t» = e_th |¢(O)> never becomes a Gibbs state p= =€

* Definition of thermalization:

For “all” physically relevant observablesO  } ...
Jim (¢ (8)|0[9(t)) = Tr(p O)

- time evolved pure state in practise
indistinguishable from thermal or
generalized Gibbs state

Possibilities:

- Observables in local subsystem
(system acts as its own heat bath)
- Few-body operators

* Quantum quench:

~———

= Egs |1(0))

- Prepare system in ground state of H, : Hy |¢(0)

- Time evolve with H :



Eigenstate thermalization hypothesis (ETH)
Time evolution: |(1)) = e “*|ay)

= Y emirle,|E,) with ¢ S (Blvo)

= A@t) = @@®)AlY@)
= ¢t epe BBt (B AR,

n,m

Thermalization: Initial states with the same total energy
E... + O(many-body level spacing)

should have the same long-time limit for physically “relevant”/few body operators A

lim A(t) = AEtot
t— 00

How is this possible for different realizations of {c,} ?



How is this possible for different realizations of {c} ?

Eigenstate thermalization <Em‘A|En> _ 5nmAEn 4+ O((dim?—[)_l)

hypothesis (ETH): ;
= tlifcr)lo A(t) — Z |Cn| AEtot
N

— 1 x AEtot \% ‘¢0>

Eigenstate thermalization hypothesis (ETH): J. M. Deutsch 1991, M. Srednicki 1994

In a non-integrable quantum many-body system the expectation value of
physically relevant observables does not depend on the specific eigenstate
with energy E of the Hamiltonian

—> a single eigenstate is typical, no need for thickened microcanonical ensemble
and hypothesis of equal probabilities / Jaynes approach

- physical observables (few body operators) cannot distinguish nearby
many-body eigenstates



M. Rigol et al., Nature 452 (2008)

&, E, > Thermal

a b ‘70 o
@ Thermal | O
E.
Thermal state < Thermal state
@)

Classical AN\ Therma' N\ Quantum thermalization (ETH):
thermalization: g E - Every eigenstate of the
Thermal state = Dephasing Hamiltonian is thermal
does not resemble  Chacs - Thermal nature initially
initial state hidden due to coherences

- Dephasing leads to

Initial state ~ effectively incoherent
superposition of thermal
states, weights of these
states unimportant

Coherence

@ Initial state

Source: M. Rigol et al., Nature 452 (2008)

| Eigenstate thermalization




Integrable models

Integrability: Existence of infinitely many conserved quantities I,

[H,I;] =0, [Ix, ;] =0

—> constrain dynamics

(Ti(t)) = (P (0) k|9 (t)) = ($(0)[1k[1(0)) = (1x(0))

Describe asymptotic state [1)(t = 00)) (¢ (t = 00)]
as “generalized Gibbs ensemble (GGE)” (Rigol et al., 2007)

1
_ —BH-S"ApIp
£ Z6

with additional Lagrange multipliers A,
(1x(0)) = Tr(p I)

* Very successful for describing integrable non-equilibrium systems
for local observables (Essler et al.)
e ETH-like picture holds when observable expectation values are considered
as functions of all conserved quantities (not only energy) [ Cassidy et al., PRL (2011) ]



3. Definitions of irreversibility in quantum many-body systems

a) Loschmidt echo [ Peres, 1984 ]
b) OTO correlations functions [ Kitaev, 2014; Maldacena et al., 2014 ]

c) Echo dynamics



a) Loschmidt echo for characterizing quantum chaos & irreversibility (Peres, 1984)
Loschmidt echo  L(t) = | (1| e?HHZ)t g=iHE 1y, )12

r 1

backward forward
time evolution

— — —I't
Few-body systems: le= ([T TTITTT T e AL e
10y Systelm = g\}\lmtlal transient 2 T
(classically chaotic) E - . :
0.1 o5 | A il Chaotic Dephasing
= 3 symptotic decay = d :
S ynamics
= -2 | N
~ 00l = 1 . =
s - g I Saturation =
- = : at = N e ( Dimension of
it] 0.001 3 = Hilbert space )*
Jacquod, Petitjean, = | = P
Adv. Phys. 58 (2009) m | , —
e 250 500 750

t (arbitray units)

Few-body systems (non chaotic): Algebraic decay of L(t)



Quantum many-body systems:

ETH : “Physical” observables O cannot distinguish between nearby
many-body eigenstates

VO (¢o|Olypg) = (¥1|0|¢1) + O(dimH_l)
but - (¢g[1p1) = 0

- Orthogonality of states no useful criterion for “physically different”

- Loschmidt echo not useful for characterizing irreversibility

Note: Large deviation form of Loschmidt echo L(t) = e~V 1)

—> generic exponential decay



b) Out-of-time-order (OTO) correlators

A. Kitaev, “Hidden Correlations in the Hawking Radiation and Thermal
Noise,” talk given at Fundamental Physics Prize Symposium, Nov. 10, 2014

http://online.kitp.ucsb.edu/online/joint98/kitaev/rm/jwvideo.html

J. Maldacena, S. Shenker, D. Stanford, “A bound on chaos”, arXiv:1503.01409

P. Hosur, X.-L. Qi, D. Roberts, B. Yoshida, “Chaos in quantum channels”,
arXiv:1511.04021, JHEP (2016)



Quantum chaos (Maldacena et al., 2015)

C(t) = —([B(t), A(0)]*)

~ .
1‘ thermal expectation value

commutator: effect of perturbation A
on later measurement of B

Definition of quantum chaos:

C(t) becomes large (of order 2 (B B) (A A) )

for all physically relevant observables A,B

Motivation:

* Semiclassical billiard, A=p, B(t)=q(t) [ Larkin, Ovchinnikov, JETP 28 (1969) ]
- commutator gives dependence of final position on small changes
of the initial position

C(t) ~ h2 et

* C(t) measures degree of non-commutativity of time-evolved observables



C(t) contains the out-of-time order (OTO) correlator

F(t) = (1B(t) A(0), B(t) A(0)})
= (B(t) A(0) B(t) A(0)) + (A(0) B(t) A(0) B(%))

Equivalent definition of guantum chaos:

F(t) decays and becomes small

F(t)

- Initial decay 2(B?) (A2) = go — g1 et

- For large-N CFT holographically described by Einstein gravity (t>>)

1 N, 2T
go = 0(1) , g1 X m , I = F [ Shenker, Stanford (2014) ]
- Conjecture [ Maldacena et al. (2015) |:
27

Universal bound )\L < —

B



Quantum information [ Hosur et al. (2016) ]

Decay of OTO correlator F(t) = mutual information between small subsystem
in input and any partition of output is small
(scrambling)

time
input A 5
NN
Unitary operator U(t) : H — H U
Ut =2 us )0 TTTTTTTT]
2 < > >
mapped to vector |U(t)) € H Q@ H oot C N
1 A 4
U(¢)) =

(dim?’-{)l/2 Z uij (t) 17)in @ [1)out Source: Hosur et al. (2016)
i,J



Measure for scrambling:

Amount of information about A hidden non-locally over Cand D
I(A:CD)—1(A:C)—I1(A:D)

Tripartite information
Is(A:C:D)=1(A:C)+1I(A:D)—-1(A:CD)
=S54+ 5S¢ +Sp —Sac —Sap — Scp +Sacp

must become negative with large magnitude for system to scramble

Hosur et al. (2015):
Qubits, infinite temperature, [A, Dj] =0

OTO average F(t) tﬁo €

> I3(A:C: D) :—ZCL—I—Qlog2L

€min
-2



c) Echo dynamics

NMR spin echo

Source: http://en.wikipedia.org/wiki/Spin_echo



Quantum systems

NMR spin echo (Hahn, 1950):

Time evolution of macroscopic
polarization governed by

H=> HS)
C

local Hamiltonians
with randomness

mt-pulse:

Effectively H; — —H,;

Spin echo:
P 2T

Measure natural linewidth

Limited by many-body interactions

v t
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VIOLATION OF THE SPIN-TEMPERATURE HYPOTHESIS*

W.-K. Rhim, A, Pines,} and J. S. Waugh
Department of Chemistry and Research Laboratory of Electronics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139
(Received 5 May 1970)

A “Loschmidt demon” is exhibited which effectively reverses the spin-spin relaxation
of a system of interacting magnetic dipoles in a strong external field, thereby demon-
strating that this system does not approach internal thermodynamic equilibrium in a
time T, as was implicitly recognized by Philippot.

The coupled nuclear spins in a solid with very
slow spin-lattice relaxation comprise an isolated
system which for many purposes can be treated
by thermodynamic methods. One begins with the
system in equilibrium at the lattice temperature
T, performs various manipulations on the spins,
waits a time T, characteristic of the spin-spin
coupling, during which the spin system is im-
agined to approach internal equilibrium, and cal-
culates a final spin temperature T'; through con-
servation of energy or other constants of the mo- re———————
tion. The purpose of this Letter is to report v,
some experiments for which this simple spin- ‘
temperature picture is not valid.

FIG. 1. Transient NMR of the !°F nuclei in solid
CaF,. Following a normal Bloch decay, an rf burst
of length 260 pusec with H;=95 G (see text) was applied
during the noise-free portion of the trace. Thereupon
an echo occurs at a total delay of 365 psec from the
beginning of the experiment. In other experiments the
initial decay was allowed to disappear fully before
applying the burst.

Back to a fundamental question:

For an isolated system a pure state | ;> remains pure |(t)> for all times t.
Can it be distinguished by some realistic protocol from a density matrix p
even if the system “thermalizes”?



Quantum systems

NMR spin echo (Hahn, 1950):

Time evolution of macroscopic
polarization governed by

H=> HS)
C

local Hamiltonians

Magic echo
(Rhim et al. 1970, Zhang et al. 1992):

Dipolar coupled spins

1
+ Het = ) d;; (2stf - 5(5{FSI +57:_S;F))

(2] T

spin diffusion

with random )
Loschmidt daemon . _
n-pulse: agic echo pulse sequence:

Effectively H; — —H,;

Spin echo:

Measure natural linewidth

Limited by many-body interactions

T+ 3t

= 1

Heﬂ' % _§Heff - E
undoes
spin diffusion

Spin echo

vt What is the effect of 2 ?




Other recent application of echo dynamics:

- ldentification of many-body localized phases [Serbyn et al., PRL (2014) ]



Definition of irreversibility:

Echos in physical observables decay exponentially or faster
as function of waiting time 1t for realistic echo protocols

Note: Depends on observables, protocol & initial state (similar to def. of thermalization)

U(T) ’¢ini>
V(t =7)U(7T) [thini)
Expectation value of observable OS déf <77b(3) ‘ @) | ¢(3)>
Ot T Ooo
ormalised echo peak hei E* O p— -
Normalised echo peak height " |O)] m?Xt> 00— 0.

echo peak at t=2t \
(and usually not exactly at t=21)

Forward time evolution w (7_)>

Backward ti luti
(ta;)war me evolution w(t»

contrast



A echo peak

E710O] = max;s,

Op — O

Ot—OOO|

Irreversible dynamics means E_"[O] decays exponentially or faster,
otherwise the dynamics is reversible.




4) Echos in the transverse field Ising model

M. Schmitt, S. Kehrein, arXiv: 1607.02272

A LATTICE
HIGHT
N-—-1 N T, ____
. z _z T N d
H(h) = g o7 0i 1+ h g o; . !
/
i=1 i=1 “.  CONTINUUM 7
. . . \ HIGHT /
Ising interaction transverse LOW T \ , LOW T
. . AN /
magnetic field Magnetic lopg-range order™ ~ Quantum paramagnet
0 * \ ’ 2 %

h h

C

* Quantum phase transitionath_ =1
S. Sachdev, Quantum Phase Transitions

* Integrable model: (Cambridge Univ. Press, 2011)
Quadratic in fermions after Jordan-

Wigner transformation

Thermalization to “generalized Gibbs ensemble” (GGE) for all quenches h, = h

Fagotti and Essler, Phys. Rev. B 87 (2013)

Reduced density matrix for n spin ,
subsystem from time evolved initial state tliglo WZ (t)> <¢Z (t) ’n — PGGE,n



Echo protocols:

a) Initial state: Ground state of H(h,)

b) Forward time evolution (quench dynamics hzh): U(T) — o tH ()T

c) Backward time evolution:

1) Sign change with perturbation V(s) — eiH(h+5h)S

2) Loschmidt pulse V(S) — U]Ta €_iH(h>S UP(\ el
approx. particle-

hole trf. (equiv. to

: _ _—tH(—h)s
3) Generalised Hahn echo V(S) — e velocity reversal)

d) Observables:

. . T
transverse magnetization O-’I,

. . . . . . . z Z
longitudinal spin-spin correlation function (distanced) 9 Uz’+d

Methods:

- Numerical evaluation of Toeplitz determinants in the thermodynamic limit
- Stationary phase approximation for large waiting times (analytical result)



Sign change with perturbation,
transverse magnetization
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Fig. 1: Time evolution of the transverse magnetisation (mg):
(red curves), the longitudinal spin-spin correlation (S7S7, ;)
(blue curves), and the rate function of the fidelity I(t) =
Iimy o0 In({(¥0|¥0(t)))/N (green curves) for the three differ-
ent echo protocols: (a) by explicit sign change, (b) generalised
Hahn echo, (c) by pulse.



Decay of normalised echo peak height E;'f [O] — maX¢>r

Ot—Ooo|

OO_OOO

Stationary phase approximation
predicts algebraic decay
for all protocols

EX[0O] ox 771/2

- with known prefactor (for transverse
magnetization and protocol sign
change with perturbation)

E*[o®] ~ 6h~ Y2772 for + > 6h71

B [(mg)]

- full lines show predictions R
Q
*
- Exception Loschmidt pulse: 7 0.01
the transverse magnetization :
does not decay 0.001 i

0 1000 2000 3000 4000
JT

- essentially dephasing dynamics



Entanglement entropy

30 .
- Analytical calculation of the entanglement ho = 5.0
. 25 Fh=1.1
entropy after guenches in the transverse
field Ising model: Calabrese, Cardy (2005) 20 t
subsystem A § 15 + d =100
subsystem B subsystem B gz - 8?? .
5 6h=055 —s— T
oh =1.10
0 . . ' . . Ifwd. eyol. ~+
- Echo protocol: 0 20 40 60 80 100 120 140 160 180
Sign change with perturbation 6h t
1
.
- Measure entanglement entropy S¢,(t) for -::Z::::"-., o 712
subsystem with d spins o
Algebraic decay of normalised echo peak &
height of the entanglement entropy
d=10 -«
*1qd —1/2 1230 -
E’T [Sent] X T 0.4 4=50

200 400 600 800 1000

=



Conclusion

Based on our definition the transverse field Ising model
shows reversible dynamics (algebraic decay of echo peaks)

Note: The transverse field Ising model is
- integrable
- quadratic in suitable degrees of freedom

Question

What about models that are

- integrable but not quadratic?
- non-integrable?



5. Echos in interacting models

Coll.: Markus Schmitt

Ising model with transverse and longitudinal fields:
H(hm, h U Oi1+1 + ha: 0; - hz 0,

Non-integrable for h,, h, # 0 (Wigner-Dyson level statistics)
Method: infinite time-evolving block decimation (iTEBD)

Note: Numerically challenging problem since entanglement entropy
also decreases during time evolution
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Interacting model h,=0.1
(Gaussian decay)

Non-interacting model h, =0
(Slow algebraic decay)
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Decay law well approximated by Gaussian: €

Prefactor ¢ X 5h2

- not independent from perturbation like Lyapunov exponent in classical chaos



6. Conclusions & Outlook

Definition of irreversibility for guantum many-body systems

based on decay of echoes in observables

Non-interacting model (transverse field Ising model):

Algebraic decay of echoes due to dephasing

— Reversible dynamics

Non-integrable model (transverse field Ising model with longitudinal field):
Exponential decay of echoes

- Irreversible dynamics

Integrable interacting models (XXZ spin chain):
Decay faster than algebraic, but not clearly Gaussian

Outlook:

Prefactor of Gaussian decay law determined by unperturbed Hamiltonian
(like Lyapunov exponent) or by perturbation

Analytical understanding of irreversibility

Connection to OTO-correlator definition of quantum chaos



