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Universality in thermal equilibrium

Example: Schematic phase diagram of

 strong interaction matter (QCD) 

Universal critical exponents: e.g.    

order parameter  (Tc – T)β

Ising universality class (d=3)Quark chemical potential [GeV]

 typical liquid-gas system

 Fine-tuning of critical parameter(s) to observe universal behavior

(relevant operators for renormalization group fixed points) 



Universality far from equilibrium

Example: Schematic thermalization for isolated quantum systems

 No fine-tuning to observe far-from-equilibrium universal behavior

(irrelevant operators for nonthermal renormalization group fixed points) 



Extreme conditions

Dimensionless combination of

coupling strength
field2 expectation value (vacuum/

thermal equilibrium/nonequilibrium)

characteristic energy/momentum2

 Extreme conditions can enhance the loss of details about 

microscopic properties (coupling strengths, initial conditions, …)



Relativistic heavy-ion collision experiments

Early-universe inflaton dynamics

Table-top experiments with ultracold atoms

Preheating after inflation (~1016 GeV)

Quark-Gluon Plasma (~100 MeV ~1012 K)

Strong quenches at nanokelvins

WMAP Science Team

TU Vienna

Isolated quantum systems in extreme conditions



Inflation

Quantum

fluctuations

WMAP Science Team



nonequilibrium

instability



Macroscopic fields, condensates and fluctuations

 In a quantum theory the field amplitude corresponds to the expectation

value of a (here relativistic, real) Heisenberg field operator

density operator at some

`initial´ time t = 0

time-dependent

expectation value

occupation

number

distribution
dispersion

 Fluctuations derive from correlation functions, e.g. spatially homogeneous: 

volume:
`quantum-half´

condensate2

0



Preheating: Insensitivity to initial condition details

Example: `Inflaton´ 4 theory ( 1),
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instability

1. Large initial field: 2. High occupancy: 
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occupation

large initial field

1. 

2.  

classical-statistical simulation

(weak-coupling limit)

 approach to

nonthermal fixed point



Nonthermal fixed point: Insensitivity to coupling strength

Universal scaling behavior

for wide range of couplings!

E.g. scalar N-component 4 quantum theory (1/N to NLO 2PI):

= 0.1

= 1

= 0.01

f

 p-5

 p-5

 p-5

Berges, Wallisch, arXiv:1607.02160

Occupation number distribution:   

momentum

(similar results for strong-

field initial conditions)   

N = 4



Schematic behavior near nonthermal fixed point: dual cascade



number conservation: energy conservation:



Particles are transported towards lower scales, energy towards higher scales

Particle versus energy transport



Self-similarity



Scaling exponents  and  determine rate and direction of transport:



Time-independent scaling function:

e.g.   0,   0: particle transport towards lower momentum scales



Self-similar dynamics: infrared scaling
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Mass scale separating non-relativistic infrared regime

 non-relativistic infrared dynamics expected because of the

generation of a mass gap (condensate + medium)

 relativistic & non-relativstic field theories have same infrared scaling

Piñeiro Orioli, Boguslavski, Berges, PRD 92 (2015) 025041



 E.g. Gross-Pitaevskii equation for dilute Bose gas:  

Non-relativistic system: Dilute quantum gases

 Interacting bosons with s-wave scattering length a, 

interatomic distance

`diluteness‘ parameter:



`inverse coherence length‘:



 E.g. in the mean-field approximation for a spatially homogeneous system

without condensate the interaction term leads to a constant energy shift:   

occupation number

Dilute bose gas in extreme conditions

 For the overoccupied Bose gas with

the mean-field shift in energy is of the same order as the relevant 

kinetic energy                irrespective of the coupling g, since 



Universal scaling form of the distribution function


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Estimating scaling properties

Use

Time-independent fixed point equation:  

+ scaling relation:  

`collision integral´

Micha, Tkachev, PRD 70 

(2004) 043538



Conservation laws







Perturbative estimate (Gross-Pitaevskii)



Using: 

gives scaling relation:  

Negative perturbative exponents do not account for inverse particle cascade!   



Beyond perturbation theory: large-N expansion to NLO

based on Berges Nucl. Phys. A 699 (2002) 847; Aarts et al. Phys. Rev. D 66 (2002) 045008



Vertex correction (NLO 1/N)

scaling behavior:  



, in the infrared:

one-loop retarded self-energy:  



gives scaling relation:  

Scaling solution at NLO 1/N

Positive nonperturbative exponents can describe inverse cascade!   

Piñeiro Orioli, Boguslavski, Berges, PRD 92 (2015) 025041



NLO result in good agreement with full numerical simulation



Self-similar dynamics from classical-statistical simulations
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Condensation far from equilibrium

volume:



Condensation time

Analytic estimates

agree well with

simulations!



,





Small initial (vacuum) fluctuations: 

Large initial gauge fields: 

CGC: Lappi, McLerran, Dusling, Gelis, Venugopalan, Epelbaum…

 plasma instabilities

Mrowczynski; Rebhan, Romatschke, Strickland; Arnold, Moore, Yaffe; Bödecker; Attems, …

Romatschke, Venugopalan; J.B., Scheffler, Schlichting, Sexty; Fukushima, Gelis …

Heavy-ion collisions in the high-energy limit

JB, Schenke, Schlichting, Venugopalan, NPA931 (2014) 348 for initial spectrum from Epelbaum, 

Gelis, PRD88 (2013) 085015. Plasma instabilities from wide range of initial conditions:  



Overoccupied non-Abelian plasma

(controls “prolateness” or “oblateness” 

of initial momentum distribution)

p

occupancy parameter

anisotropy parameter

• To discuss attractor: Initial overoccupation described by family of distributions at τ0

(read-out in Coulomb gauge)

~1/g2

Q

S

J.B., Boguslavski, Schlichting, Venugopalan,  PRD89 (2014) 074011; 114007; PRL114 (2015) 061601



Nonthermal fixed point

`Bottom-up´* scaling emerges as a consequence of the fixed point!

Evolution in the `anisotropy-occupancy plane´

Lattice data

*Baier et al, PLB 502 (2001) 51 
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Self-similar evolution

Scaling exponents:

and scaling distribution function fS:

stationary fixed-point distribution

τ/τ0 = 7.5 – 30



Comparing gauge and scalar field theories
with longitudinal expansion

 1/pT

 For gauge & scalar fields: Inertial range of thermal-like transverse

spectrum ~1/pT even as longitudinal distribution is being `squeezed´

 p-5

 1/pT

 Strongly enhanced infrared regime for scalars: inverse particle cascade

leading to Bose condensation,              as in isotropic superfluid turbulence

scalar 4

 At latest available times for scalars a flat distribution for emerges

J.B., Boguslavski, Schlichting, Venugopalan, Phys. Rev. Lett. 114 (2015) 6, 061601

‘Coulomb gauge‘



Universality far from equilibrium

 Same universal exponents and scaling function in 1/pT inertial range

gluon distribution: scalar 4:

u
n

iv
e
rs

a
l 

s
c
a
li
n

g
fu

n
c
ti

o
n

:

rescaled momentum:

 Remarkably large universality class far from equilibrium!



Some puzzles and challenges 

 The scaling solution seems well understood for the gauge theory (BMSS)

– but the corresponding kinetic theory arguments fail for the scalar theory

However: No dominance for small angle scattering in scalar theory! 

Much more general principle underlying nonthermal fixed point?

for gauge theory



 In the weak-coupling limit, kinetic theory is expected to have an 

overlapping range of validity with classical-statistical simulations

f(p) ~ 1/g2 1/g2 > f(p) > 1 f(p) < 1

kinetic theory

classical-statistical lattice gauge theory

(quantum)(classical particle)(‘overoccupied‘)

However, kinetic theory cannot reproduce important quantities such as

PL / PT characterizing isotropization of the longitudinally expanding plasma:

 Scaling behavior of PL / PT

the same for scalar and

gauge field simulations! 

 In scalar theory behavior

of PL / PT known to arise

from infrared contributions

(Bose condensation)

 Nonperturbative despite 

(weak) coupling parameter



 Perturbative estimates extrapolated beyond the weak-coupling

regime suggest the absence of transient universal scaling behavior

Gauge: Kurkela, Zhu, PRL 115 (2015) 182301; Scalar: Epelbaum, Gelis, Jeon, 

Moore, Wu, JHEP 09 (2015) 117

However, no such indications (yet no expansion) from nonperturbative

estimates in scalar quantum field theory

(and holographic superfluids?) 

JB, Wallisch, arXiv:1607.02160

Ewerz et al., JHEP 18 (2015) 1505 (cf. also 

Adams, Chesler, Liu, Science 341 (2013) 368)

 By now, detailed understanding of the dynamics of Bose condensation in 

scalar quantum field theory (NLO-1/N)/vertex-resummed kinetic equation

However, no such understanding in gauge theories – despite indications

for infrared contributions to gauge invariant quantities (PL / PT)

 Holography / functional renormalization group / solving QFTs by

ultracold quantum gas measurements / …



Universality far from equilibrium

extreme conditions, e.g. large fields: 

f(t,p)  et  overoccupation self-similar evolution/

condensation: 

relaxation:

f(t,p) - fT(p)  e-t                                                                                                                            

f(t,p)  tα fS(tβp)


