Black Hole Collapse in Large-C CFT

Julian Sonner

Oxford
13 July 2016

Tarek Anous (MIT)

Thomas Hartman (Cornell)

Antonin Rovai (Geneva)

Introduction

The black hole as movie star: Gargantua

'Gargantua', C. Nolan \& K. Thorne

The black hole as news sensation: GW150914

'Ligo Black Hole Binary' R. Drever, R. Weiss, K. Thorne et mult. al.

$$
S=\frac{k_{B} c^{3} A}{4 G_{N} \hbar}
$$

black holes are thermodynamic systems

their entropy is proportional to the area of the event horizon

information loss paradox: a BH formed from a pure state will evolve into a mixed state (of Hawking radiation)
holography:
a theory of quantum gravity should have information ~ area

General Plan

AdS/CFT relates gravity (often in AdS) to unitary field theory (often CFT)

Lots of progress gravity \rightarrow CFT (my favorite: AdS/CMT)

Less known about CFT \rightarrow (quantum) gravity
\rightarrow despite developments in CFT, CMT:

- time evolution and spread of entanglement
- thermalization of closed quantum systems (e.g. via eigenstates)
- non-perturbative methods (e.g. bootstrap)

Thermalization \rightarrow BH formation (\& evaporation)

Outline

1. Reminder about black holes
2. CFT implosions
3. Thermalization @ large c
4. Conclusions
"the trouble with black holes"

- outgoing Hawking radiation is thermal $\rho_{\text {Gibbs }}\left(T_{H}\right)$
- a horizon \mathcal{H} cloaks the singularity

black holes evaporate

The Paradox

- gravity as an EFT implies pure to mixed evolution
- fundamentally incompatible with a unitary S-matrix

1. quantum gravity is non-unitary
2. gravity EFT makes no sense
3. (subtle) corrections to Hawking result

Holography:

quantum gravity $=\quad$ quantum field theory

hence AdS/CFT only allows for options $2 \& 3$.
the anti-information loss paradox: how does an obviously unitary theory lose information?

The Plan

(of a first-principles calculation in holographic CFT)

1. define an initial state in CFT which forms a black hole
\rightarrow "quantum quench"
2. understand time evolution in strong-coupling regime
\rightarrow non-equilibrium CFT (monodromy method / CFT_{2})
3. analyze suitable observables (e.g. correlations \& EE)
\rightarrow strongly-coupled CFT thermalization
4. diagnose signs of information loss \& recovery
\rightarrow unitarity constraints on correlations

Unitarity vs Thermalization

(constraints on long-time correlations from unitarity)

Correlations in a closed quantum system, e.g.

$$
G(t)=\operatorname{tr} \rho \mathcal{O}(t) \mathcal{O}(0)
$$

Time average over a large time T cannot vanish by unitarity

$$
\lim _{T \rightarrow \infty} \overline{|G(t)|^{2}} \neq 0
$$

Need to assume spectrum is generic (no specific ordering principle)
\rightarrow can appeal e.g. to ETH so estimate $G(t) \sim e^{-S}$ at late times

Unitarity vs Thermalization

(constraints on long-time correlations from unitarity)

$$
\rho=e^{-\beta H}
$$

CFT implosions

Looking for the Right Place

OD matrix models(IOP,...): connection to geometry?
2D black hole (CGHS): solvable but very different

3D story shares salient features of 4D (and higher)
in fact central to micro-state counting success (D1-D5)
the trouble: no local degrees of freedom (Achucarro \& Townsend):

$$
S_{3 \mathrm{D}}=S_{\mathrm{CS}}[A]-S_{\mathrm{CS}}[\bar{A}]
$$

other side of the coin: CFT_{2} puts powerful tools at our disposal

3D Gravity + Matter

\rightarrow add matter: get local dof. BUT need new tools
focus on a universal sector, by defining a 1/c expansion:
\rightarrow any microscopic theory in this class defines some 3D quantum gravity theory (sparse spectrum)

3D gravity + matter non-trivial, but solvable \rightarrow ideal place to study BH puzzles!

From bulk point of view this is G_{N} expansion
CFT_{2} gives a non-perturbative definition of quantum gravity.

The Black Hole in the Tin Can

global AdSd+1

Throw in a shell of n dust particles
smooth limit: $n \rightarrow \infty$

BH collapse: Vaidya metric

Use light operators \mathcal{Q} to probe geometry as function of t
remark: certain quantities such as entanglement entropy are sensitive to behind horizon physics (away from equilibrium)

Translating to the CFT

Interrogating the CFT

Start probing the physics via $2 n+p$ correlations

$$
G(1,2, \ldots p)=\langle\mathcal{V}| \mathcal{Q}_{1}, \ldots \mathcal{Q}_{p}|\mathcal{V}\rangle
$$

we want to approach smooth, semi-classical gravity

$$
\begin{gathered}
c \rightarrow \infty \\
n \rightarrow \infty \\
\sigma \rightarrow 0 \\
E \sim n h_{\psi} / \sigma \rightarrow \mathcal{O}(c)
\end{gathered}
$$

infinite-point correlations in strongly-coupled CFT!

Benefits of 2D CFT

in the semi-classical limit (large c), get sum of exponentials

$$
G(1,2, \ldots p)=\sum_{\text {blocks }} a_{k} e^{-\frac{c}{6} f_{k}^{(n)}(1,2, \ldots p)}
$$

correlator approximated by largest term, the identity block

"it from id"

the dominant contribution comes from the identity Virasoro block, that is the unit operator id and all its descendants T, $\partial T, T^{2} T \partial T \ldots$, (multi-graviton exchange in bulk)
still need to calculate the semi-classical block:

CONFORMAL SCALAR FIELD ON THE HYPERELLIPTIC CURVE AND CRITICAL ASHKIN-TELLER MULTIPOINT CORRELATION FUNCTIONS

Al.B. ZAMOLODCHIKOV
Scientific Council of "Cybernetics", Academy of Sciences, USSR

Received 3 December 1986

A multipoint conformal block of Ramond states of the two-dimensional free scalar field is calculated. This function is related to the free energy of the scalar field on the hyperelliptic Riemann surface under a particular choice of boundary conditions. Being compactified on the

The Monodromy Method

each contraction of operators in the plane defines a cycle

fix monodromies of $y^{\prime \prime}(z)+T y(z)=0 \xrightarrow{c_{k}} f_{k}^{(n)}(1,2, \ldots p)$

Taking the smooth Limit

generally a hard problem, big simplification occurs for $n \longrightarrow \infty$

defines

stress tensor \longmapsto distribution on $\Sigma_{(\infty)}$
continuum monodromy method

$$
f_{0}^{\infty}(1,2, \ldots, p)
$$

3D semi-classical gravity
$\mathcal{L}_{\text {geo }}(1,2, \ldots p)$

Two-point Autocorrelation

let us now return to the black hole and compute

$$
G(t)=\operatorname{tr} \rho \mathcal{O}(t) \mathcal{O}(0)
$$

in the collapse state $|\mathcal{V}\rangle$

$$
G(1,2)=
$$

can be done analytically:

$G\left(t_{1}, t_{2}\right)=\left(\frac{1}{\pi T} \cos \left(\frac{t_{1}}{2}\right) \sinh \left(\pi T t_{2}\right)-2 \sin \left(\frac{t_{1}}{2}\right) \cosh \left(\pi T t_{2}\right)\right)^{-2 \Delta^{\mathcal{Q}}}$

General two-point function

we are also interested in the general case

$$
G(t, x)=\operatorname{tr} \rho \mathcal{O}(t, x) \mathcal{O}(0)
$$

some illustrative results:

$\operatorname{Re} G(\pi / 2, \theta)$

$$
G(t, x) \sim e^{-2 \pi T \Delta^{\mathcal{Q}} x}[\text { on line }]
$$

Physical Consequences

not (yet) known from gravity (but matches known limits)
\Longrightarrow CFT prediction for 3D gravity

The correlation function decays without bound at large time

$$
G\left(t_{1}, t_{2}\right) \sim \exp \left(-\frac{2 \pi \Delta^{\mathcal{Q}} t}{\beta}\right)
$$

Manifestly in conflict with unitarity: CFT loses information!

Can also compute entanglement entropy of interval A

$$
S(A) \rightarrow S_{\mathrm{Gibbs}}(A ; T) \longrightarrow \rho(A)=\rho_{\mathrm{Gibbs}}(A ; T)
$$

Restoring Unitarity

This is the anti-information paradox: what happened to unitarity?

$$
\left.|G(t)|=\left|\sum_{n, k} e^{i\left(E_{n}-E_{k}\right) t} \Psi_{n}^{*}(\mathcal{V})\langle n| \mathcal{Q}\right| k\right\rangle\langle k| \mathcal{Q}|\mathcal{V}\rangle \mid \neq 0
$$

\rightarrow correlations cannot become arbitrarily small in $|\mathcal{V}\rangle$
Neglected contributions exponentially suppressed at $\mathrm{t}=0$ (must be present due to crossing symmetry, e.g.)

$$
\sum_{k \neq \mathrm{vac}} a_{k} e^{-\frac{c}{6} f_{k}^{\infty}(1,2, \ldots p)} \sim e^{-S}
$$

restore unitary at large time \rightarrow non-perturbative effects in $1 / G_{N}$

Conclusions

time-dependent 3D quantum gravity with matter in 1/c expansion 'it from id' \rightarrow ideal arena to think about quantum BHs
translates to detailed questions about thermalization in stongly-coupled CFT. New approach using monodromy (conformal blocks...)
correlation functions seemingly violate unitarity (naïve). non-perturbative corrections in c restore unitarity
on gravity side these correspond to non-perturbative effects in G_{N}. geometric interpretation? bulk interpretation?

AdS/CMT: quantum gravity in the lab

AdS/CMT: quam gravity in the lab

AdS/CMT: condensed matter in the Universe!
thank you!

entanglement entropy

Q-type operators \rightarrow twist insertions: $G_{q}(t)=\langle\mathcal{V}| \sigma_{q}\left(t, \ell_{1}\right) \tilde{\sigma}_{q}\left(t, \ell_{2}\right)|\mathcal{V}\rangle$

$$
S(A)=\lim _{q \rightarrow 1} \frac{1}{1-q} G_{q}(t)
$$

crossing points $\mathrm{Z}_{\mathrm{c} 1} \& \mathrm{Z}_{\mathrm{c} 2} \leftrightarrow$ refraction at bulk shell
it from id \rightarrow require trivial monodromy on smile contour write $z_{1}=e^{i \theta_{1}}, z_{2}=e^{i\left(\theta_{1}+L\right)}$ \& continue to Lorentzian time $\theta_{1}=t$ maximize $S(A)$ over crossing points \rightarrow parametric equation for $S(t)$

entanglement entropy

Implicit formula for growth of entanglement entropy:

$$
\begin{aligned}
t & =\frac{\beta}{2 \pi} \cosh ^{-1}\left\{\cosh (2 \pi T q)+2 \pi T \tan \left(\frac{L}{2}-q\right) \sinh (2 \pi T q)\right\} \\
S_{E E} & =\frac{c}{3} \log \left\{\frac{\sin \left(\frac{L}{2}-q\right) \cosh (2 \pi T q)+\frac{1}{2 \pi T}\left[1+\frac{1}{2}\left\{1+4 \pi^{2} T^{2}\right\} \tan ^{2}\left(\frac{L}{2}-q\right)\right] \cos \left(\frac{L}{2}-q\right) \sinh (2 \pi T q)}{\epsilon_{U V} / 2}\right\}
\end{aligned}
$$

matches exactly global AdS_{3} Vaidya:

- thermal at late time
- EE growth = change of channel
- sees beyond horizon

CFT calculation shows that purity of state is preserved: $S(A)=S\left(A^{c}\right)$

alternative picture: IN-IN computation

2.) evolve in Lorentzian time until Q-operator insertion point(s)
1.) prepare initial state by Euclidean evolution for time σ

