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Recommended Texts
Hobson, M. P., Efstathiou, G., and Lasenby, A. N. 2006, General Relativity: An Introduction
for Physicists, (Cambridge: Cambridge University Press) Referenced as HEL06.

A very clear, very well-blended book, admirably covering the mathematics, physics, and
astrophysics of GR. Excellent presentation of black holes and gravitational radiation. The
explanation of the geodesic equation and the affine connection is very clear and enlightening.
Not so much on cosmology, though a nice introduction to the physics of inflation. Overall, my
favourite text on this topic. (The metric has a different sign convention in HEL06 compared
with Weinberg 1972 & MTW [see below], as well as these notes. Be careful.)

Weinberg, S. 1972, Gravitation and Cosmology. Principles and Applications of the General
Theory of Relativity, (New York: John Wiley) Referenced as W72.

What is now the classic reference by the great man, but lacking any discussion whatsoever
of black holes, and almost nothing on the geometrical interpretation of the equations. The
author is explicit in his aversion to anything geometrical: gravity is a field theory with a
mere geometrical “analogy” according to Weinberg. But there is no way to make sense of the
equations, in any profound sense, without immersing onself in geometry. More suprisingly,
given the author’s skill set, I find that many calculations are often performed awkwardly,
with far more effort and baggage than is required. The detailed sections on classical physical
cosmology are its main strength. Weinberg also has a more recent graduate text on cosmology
per se, (Cosmology 2007, Oxford: Oxford University Press). This is very complete but at an
advanced level.

Misner, C. W., Thorne, K. S., and Wheeler, J. A. 1973, Gravitation, (New York: Freeman)
Referenced as MTW.

At 1280 pages, don’t drop this on your toe, not even the paperback version. MTW, as it is
known, is often criticised for its sheer bulk, its seemingly endless meanderings, its cuteness,
and its laboured strivings at building mathematical and physical intuition at every possible
step. But look. I must say, in the end, there really is a lot of very good material in here,
much that is difficult to find anywhere else. It is a monumental achievement. It is also the
opposite of Weinberg: geometry is front and centre from start to finish, and there is lots and
lots of black hole and gravitational radiation physics, 40+ years on more timely than ever.
I very much recommend its insightful discussion on gravitational radiation, now part of the
course syllabus. There is a “Track 1” and “Track 2” for aid in navigation; Track 1 contains
the essentials.

Hartle, J. B. 2003, Gravity: An Introduction to Einstein’s General Theory of Relativity, (San
Francisco: Addison-Wesley)

This is GR Lite, at a very different level from the previous three texts. But for what it is
meant to be, it succeeds very well. Coming into the subject cold, this is not a bad place to
start to get the lay of the land, to understand the issues in their broadest context, and to be
treated to a very accessible presentation. This is a difficult subject. There will be times in
your study of GR when it will be difficult to see the forest for the trees, when you will feel
overwhelmed with the calculations, drowning in a sea of indices and Riemannian formalism.
Everything will be all right: just spend some time with this text.
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Ryden, Barbara 2017, Introduction to Cosmology, (Cambridge: Cambridge University Press)

Very recent and therefore up-to-date second edition of an award-winning text. The style is
clear and lucid, the level is right, and the choice of topics is excellent. Less GR and more
astrophysical in content but with a blend appropriate to the subject matter. Ryden is always
very careful in her writing, making this a real pleasure to read. Warmly recommended.

A few other texts of interest:

Binney J, and Temaine, S. 2008, Galactic Dynamics, (Princeton: Princeton University Press)
Masterful text on galaxies with an excellent cosmology treatment in the appendix. Very
readable, given the high level of mathematics.

Longair, M., 2006, The Cosmic Century, (Cambridge: Cambridge University Press) Excel-
lent blend of observations, theory and history of cosmology, as part of a more general study.
Good general reference for anyone interested in astrophysics.

Landau, L., and Lifschitz, E. M. 1962, Classical Theory of Fields, (Oxford: Pergamon)
Classic advanced text; original and interesting treatment of gavitational radiation. Dedicated
students only!

Peebles, P. J. E. 1993, Principles of Physical Cosmology, (Princeton: Princeton University
Press) Authoritative advanced treatment by the leading cosmologist of the 20th century, but
in my view a difficult and sometimes frustrating read.

Shapiro, S., and Teukolsky S. 1983, Black Holes, White Dwarfs, and Neutron Stars, (Wiley:
New York) Very clear text with a nice summary of applications of GR to compact objects
and good physical discussions. Level is appropriate to this course.
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Notational Conventions & Miscellany

Spacetime dimensions are labelled 0, 1, 2, 3 or (Cartesian) ct, x, y, z or (spherical) ct, r, θ, φ.
Time is always the 0-component. Beware of extraneous factors of c in 0-index quantities,
present in e.g. T 00 = ρc2, dx0= cdt, but absent in e.g. g00 = −1. (That is one reason why
some like to set c = 1 from the start.)

Repeated indices are summed over, unless otherwise specified. (Einstein summation conven-
tion.)

The Greek indices κ, λ, µ, ν etc. are used to represent arbitrary spacetime components in all
general relativity calculations.

The Greek indices α, β, etc. are used to represent arbitrary spacetime components in special
relativity calculations (Minkowski spacetime).

The Roman indices i, j, k are used to represent purely spatial components in any spacetime.

The Roman indices a, b, c, d are used to represent fiducial spacetime components for mnemonic
aids, and in discussions of how to perform index-manipulations and/or permutations, where
Greek indices may cause confusion.

∗ is used to denote a generic dummy index, always summed over with another ∗.
The tensor ηαβ is numerically identical to ηαβ with−1, 1, 1, 1 corresponding to the 00, 11, 22, 33
diagonal elements.

Viewed as matrices, the metric tensors gµν and gµν are always inverses. The respective
diagonal elements of diagonal gµν and gµν metric tensors are therefore reciprocals.

c almost always denotes the speed of light. It is occasionally used as an (obvious) tensor
index. c as the velocity of light is only rarely set to unity in these notes, and if so it is
explicitly stated. (Relativity texts often set c = 1 to avoid clutter.) Newton’s G is never
unity, no matter what. And don’t you even think of setting 2π to unity.

Notice that it is “Lorentz invariance,” but “Lorenz gauge.” Not a typo, two different blokes.
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Really Useful Numbers

c = 2.99792458× 108 m s−1 (Exact speed of light.)

c2 = 8.9875517873681764× 1016 m2 s−2 (Exact!)

a = 7.565723× 10−16 J m−3 K−4 (Blackbody radiation constant.)

G = 6.67384× 10−11 m3 kg−1 s−2 (Newton’s G.)

M� = 1.98855× 1030 kg (Mass of the Sun.)

r� = 6.955× 108 m (Radius of the Sun.)

GM� = 1.32712440018 × 1020 m3 s−2 (Solar gravitational parameter; much more accurate
than either G or M� separately.)

2GM�/c
2 = 2.9532500765× 103 m (Solar Schwarzschild radius.)

GM�/c
2r� = 2.1231× 10−6 (Solar relativity parameter.)

M⊕ = 5.97219× 1024 kg (Mass of the Earth)

r⊕ = 6.371× 106 m (Mean Earth radius.)

GM⊕ = 3.986004418× 1014 m3 s−2(Earth gravitational parameter.)

2GM⊕/c
2 = 8.87005608× 10−3 m (Earth Schwarzschild radius.)

GM⊕/c
2r⊕ = 6.961× 10−10 (Earth relativity parameter.)

1 AU = 1.495978707 × 1011m (1 Astronomical Unit by definition.)

1pc = 3.085678× 1016 m (1 parsec.)

H0 = 100h km s−1 Mpc−1 (Hubble constant. h ' 0.7. H−10 = 3.085678h−1 × 1017s=
9.778h−1 × 109 yr.)

For diagonal gab,

Γaba = Γaab =
1

2gaa

∂gaa
∂xb

(a = b permitted, NO SUM)

Γabb = − 1

2gaa

∂gbb
∂xa

(a 6= b, NO SUM)

Γabc = 0, (a, b, c distinct)

Ricci tensor:

Rµκ =
1

2

∂2 ln |g|
∂xκ∂xµ

−
∂Γλµκ
∂xλ

+ ΓηµλΓ
λ
κη −

Γηµκ
2

∂ ln |g|
∂xη

FULL SUMMATION, g = det gµν
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Most of the fundamental ideas of

science are essentially simple, and

may, as a rule, be expressed in a

language comprehensible to everyone.

— Albert Einstein

1 An overview

1.1 The legacy of Maxwell

We are told by the historians that the greatest Roman generals would have their most
important victories celebrated with a triumph. The streets would line with adoring crowds,
cheering wildly in support of their hero as he passed by in a grand procession. But the
Romans astutely realised the need for a counterpoise, so a slave would ride with the general,
whispering in his ear, “All glory is fleeting.”

All glory is fleeting. And never more so than in theoretical physics. No sooner is a triumph
hailed, but unforseen puzzles emerge that couldn’t possibly have been anticipated before the
breakthrough. The mid-nineteenth century reduction of all electromagnetic phenomena to
four equations, the “Maxwell Equations,” is very much a case in point.

Maxwell’s equations united electricity, magnetism, and optics, showing them to be differ-
ent manifestations of the same field. The theory accounted for the existence of electromag-
netic waves, explained how they propagate, and that the propagation velocity is 1/

√
ε0µ0 (ε0

is the permitivity, and µ0 the permeability, of free space). This combination is numerically
precisely equal to the speed of light. Light is electromagnetic radiation! The existence of
electromagnetic raditation was then verified by brilliant experiments carried out by Heinrich
Hertz in 1887, in which the radiation was directly generated and detected.

But Maxwell’s theory, for all its success, had disquieting features when one probed. For
one, there seemed to be no provision in the theory for allowing the velocity of light to change
with the observer’s velocity. The speed of light is aways 1/

√
ε0µ0. A related point was

that simple Galilean invariance was not obeyed, i.e. absolute velocities seemed to affect the
physics, something that had not been seen before. Lorentz and Larmor in the late nineteenth
century discovered that Maxwell’s equations did have a simple mathematical velocity trans-
formation that left them invariant, but it was not Galilean, and most bizarrely, it involved
changing the time. The non-Galilean character of the transformation equation relative to
the “aetherial medium” hosting the waves was put down, a bit vaguely, to electromagnetic
interactions between charged particles that truly changed the length of the object. In other
words, the non-Galilean transformation were somehow electrodynamical in origin. As to the
time change...well, one would just have to put up with it as an aetherial formality.

All was resolved in 1905 when Einstein showed how, by adopting as a postulates (i)
that the speed of light was constant in all frames (as had already been indicated by a body
of irrefutable experiments, including the famous Michelson-Morley investigation); (ii) the
abandonment of the increasingly problematic aether medium that supposedly hosted these
waves; and (iii) reinstating the truly essential Galilean notion that relative uniform velocity
cannot be detected by any physical experiment, that the “Lorentz transformations” (as
they had become known) must follow. All equations of physics, not just electromagnetic
phenomena, had to be invariant in form under these Lorentz transformations, even with
its peculiar relative time variable. The non-Galilean transformations were purely kinematic
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in this view, having nothing in particular to do with electrodynamics: they were much
more general. These ideas and the consequences that ensued collectively became known as
relativity theory, in reference to the invariance of form with respect to relative velocities.
The relativity theory stemming from Maxwell’s equations is rightly regarded as one of the
crown jewels of 20th century physics. In other words, a triumph.

1.2 The legacy of Newton

Another triumph, another problem. If indeed, all of physics had to be compatible with
relativity, what of Newtonian gravity? It works incredibly well, yet it is manifestly not
compatible with relativity, because Poisson’s equation

∇2Φ = 4πGρ (1)

implies instantaneous transmission of changes in the gravitational field from source to poten-
tial. (Here Φ is the Newtonian potential function, G the Newtonian gravitational constant,
and ρ the mass density.) Wiggle the density locally, and throughout all of space there must
instantaneously be a wiggle in Φ, as given by equaton (1).

In Maxwell’s theory, the electrostatic potential satisfies its own Poisson equation, but the
appropriate time-dependent potential obeys a wave equation:

∇2Φ− 1

c2
∂2Φ

∂t2
= − ρ

ε0
, (2)

and solutions of this equation propagate signals at the speed of light c. In retrospect, this is
rather simple. Mightn’t it be the same for gravity?

No. The problem is that the source of the signals for the electric potential field, i.e. the
charge density, behaves differently from the source for the gravity potential field, i.e. the mass
density. The electrical charge of an individual bit of matter does not change when the matter
is viewed in motion, but the mass does: the mass increases with velocity. This seemingly
simple detail complicates everything. Moreover, in a relativisitic theory, energy, like matter,
is a source of a gravitational field, including the distributed energy of the gravitational field
itself! A relativisitic theory of gravity would have to be nonlinear. In such a time-dependent
theory of gravity, it is not even clear a priori what the appropriate mathematical objects
should be on either the right side or the left side of the wave equation. Come to think of it,
should we be using a wave equation at all?

1.3 The need for a geometrical framework

In 1908, the mathematician Hermann Minkowski came along and argued that one should
view the Lorentz transformations not merely as a set of rules for how coordinates (including a
time coordinate) change from one constant-velocity reference frame to another, but that these
coordinates should be regarded as living in their own sort of pseudo-Euclidian geometry—a
spacetime, if you will: Minkowski spacetime.

To understand the motivation for this, start simply. We know that in ordinary Euclidian
space we are free to choose any coordinates we like, and it can make no difference to the
description of the space itself, for example, in measuring how far apart objects are. If (x, y)
is a set of Cartesian coordinates for the plane, and (x′, y′) another coordinate set related to
the first by a rotation, then

dx2 + dy2 = dx′2 + dy′2 (3)
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i.e., the distance between two closely spaced points is the same number, regardless of the
coordinates used. dx2 + dy2 is said to be an “invariant.”

Now, an abstraction. There is nothing special from a mathematical viewpoint about
the use of dx2 + dy2 as our so-called metric. Imagine a space in which the metric invariant
was dy2 − dx2. From a purely mathematical point of view, we needn’t worry about the
plus/minus sign. An invariant is an invariant. However, with dy2 − dx2 as our invariant, we
are describing a Minkowski space, with dy = cdt and dx an ordinary space interval, just as
before. The fact that c2dt2−dx2 is an invariant quantity is precisely what we need in order to
guarantee that the speed of light is always constant—an invariant! In this case, c2dt2 − dx2
is always zero for light propagation along x, whatever coordinates (read “observers”) are
involved, and more generally,

c2dt2 − dx2 − dy2 − dz2 = 0 (4)

will guarantee the same in any direction. We have thus taken a kinematical requirement—
that the speed of light be a universal constant—and given it a geometrical interpretation in
terms of an invariant quantity (a “quadratic form” as it is sometimes called) in Minkowski
space. Rather, Minkowski’s spacetime.

Pause. As the French would say, “Bof.” And so what? Call it whatever you like. Who
needs obfuscating mathematical pretence? Eschew obfuscation! The Lorentz transform
stands on its own! That was very much Einstein’s initial take on Minkowski’s pesky little
meddling with his theory.

However, it is the geometrical viewpoint that is the more fundamental. In Minkowski’s
1908 paper, we find the first mention of 4-vectors, of relativistic tensors, of the Maxwell
equations in manifestly covariant form, and the realisation that the magnetic and vector
potentials combine to form a 4-vector. This is more than “überflüssige Gelehrsamkeit”
(superfluous erudition), Einstein’s dismissive term for the whole business. In 1912, Einstein
changed his opinion. His great revelation, his big idea, was that gravity arises because
the effect of the presence of matter in the universe is to distort Minkowski’s spacetime.
Minkowski spacetime is physical, and embedded spacetime distortions manifest themselves
as what we view as the force of gravity. These same distortions must therefore become, in
the limit of weak gravity, familiar Newtonian theory. Gravity itself is a purely geometrical
phenomenon.

Now that is one big idea. It is an idea that will take the rest of this course—and beyond—
to explain. How did Einstein make this leap? Why did he change his mind? Where did this
notion of geometry come from?

From a simple observation. In a freely falling elevator, or more safely in an aircraft
executing a ballistic parabolic arch, one feels “weightless.” That is, the effect of gravity can
be made to locally disappear in the appropriate reference frame—the right coordinates. This
is because gravity has exactly the same effect on all types mass, regardless of composition,
which is precisely what we would expect if objects were responding to background geometrical
distortions instead of an applied force. In the effective absence of gravity, we locally return
to the environment of undistorted (“flat,” in mathematical parlance) Minkowski spacetime,
much as a flat Euclidian tangent plane is an excellent local approximation to the surface
of a curved sphere. This is why it is easy to be fooled into thinking that the earth is
flat, if your view is local. “Tangent plane coordinates” on small scale road maps locally
eliminate spherical geometry complications, but if we are flying to Hong Kong, the earth’s
curvature is important. Einstein’s notion that the effect of gravity is to cause a geometrical
distortion of an otherwise flat Minkowski spacetime, and therefore that it is always possible
to find coordinates in which these local distortions may be eliminated to leading order, is
the foundational insight of general relativity. It is known as the Equivalence Principle. We
will have more to say on this topic.
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Spacetime. Spacetime. Bringing in time, you see, is everything. Who would have thought
of it? Non-Euclidean geometry as developed by the great mathematician Bernhard Riemann
begins with just the notion we’ve been discussing, that any space looks locally flat. Rieman-
nian geometry is the natural language of gravitational theory, and Riemann himself had the
notion that gravity might arise from a non-Euclidian curvature in three-dimensional space.
He got nowhere, because time was not part of his geometry. It was the (underrated) genius
of Minkowski to incorporate time into a purely geometrical theory that allowed Einstein to
take the crucial next step, freeing himself to think of gravity in geometrical terms, without
having to ponder over whether it made any sense to have time as part of a geometrical
framework. In fact, the Newtonian limit is reached not from the leading order curvature
terms in the spatial part of the geometry, but from the leading order “curvature” (if that is
the word) of the time dimension.

Riemann created the mathematics of non-Euclidian geometry. Minkoswki realised that
natural language of the Lorentz transformations was neither electrodynamical, nor even
really kinematic, it was geometrical. But you need to include time as a component of the
geometrical interpretation! Einstein took the great leap of realising that gravity arises from
the distortions of Minkowski’s flat spacetime created by the existence of matter.

Well done. You now understand the conceptual framework of general relativity, and that
is itself a giant leap. From here on, it is just a matter of the technical details. But then, you
and I also can paint like Leonardo da Vinci. It is just a matter of the technical details.
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From henceforth, space by itself and

time by itself, have vanished into the

merest shadows, and only a blend of

the two exists in its own right.

— Hermann Minkowski

2 The toolbox of geometrical theory: special relativity

In what sense is general relativity “general?” In the sense that since we are dealing with
an abstract spacetime geometry, the essential mathematical description must be the same
in any coordinate system at all, not just those related by constant velocity reference frame
shifts, nor even just those coordinate transformations that make tangible physical sense
as belonging to some observer or another. Any mathematically proper coordinates at all,
however unusual. Full stop.

We need the coordinates for our description of the structure of spacetime, but somehow
the essential physics (and other mathematical properties) must not depend on which coordi-
nates we use, and it is no easy business to formulate a theory which satisfies this restriction.
We owe a great deal to Bernhard Riemann for coming up with a complete mathematical
theory for these non-Euclidian geometries. The sort of geometry in which it is always pos-
sible to find coordinates in which the space looks locally smooth is known as a Riemannian
manifold. Mathematicians would say that an n-dimensional manifold is homeomorphic to n-
dimensional Euclidian space. Actually, since our invariant interval c2dt2−dx2 is not a simple
sum of squares, but contains a minus sign, the manifold is said to be pseudo-Riemannian.
Pseudo or no, the descriptive mathematical machinery is the same.

The objects that geometrical theories work with are scalars, vectors, and higher order
tensors. You have certainly seen scalars and vectors before in your other physics courses,
and you may have encountered tensors as well. We will need to be very careful how we define
these objects, and very careful to distinguish them from objects that look like vectors and
tensors (because they have the appropriate number of components) but actually are not.

To set the stage, we begin with the simplest geometrical objects of Minkowski spacetime
that are not just simple scalars: the 4-vectors.

2.1 The 4-vector formalism

In their most elementary form, the familiar Lorentz transformations from “fixed” laboratory
coordinates (t, x, y, z) to moving frame coordinates (t′, x′, y′, z′) take the form

ct′ = γ(ct− vx/c) = γ(ct− βx) (5)

x′ = γ(x− vt) = γ(x− βct) (6)

y′ = y (7)

z′ = z (8)

where v is the relative velocity (taken along the x axis), c the speed of light, β = v/c and

γ ≡ 1√
1− v2/c2

≡ 1√
1− β2

(9)
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is the Lorentz factor. The primed frame can be thought of as the frame moving with an
object we are studying, that is to say the object’s rest frame. To go backwards to find (x, t)
as a function (x′, t′), just interchange the primed and unprimed coordinates in the above
equations, and then flip the sign of v. Do you understand why this works?

Exercise. Show that in a coordinate free representation, the Lorentz transformations are

ct′ = γ(ct− β · x) (10)

x′ = x+
(γ − 1)

β2
(β · x)β − γctβ (11)

where cβ = v is the vector velocity and boldface x’s are spatial vectors. (Hint: This is not nearly
as scary as it looks! Note that β/β is just a unit vector in the direction of the velocity and sort
out the components of the equation.)

Exercise. The Lorentz transformation can be made to look more rotation-like by using hyperbolic
trigonometry. The idea is to place equations (5)–(8) on the same footing as the transformation of
Cartesian position vector components under a simple rotation, say about the z axis:

x′ = x cos θ + y sin θ (12)

y′ = −x sin θ + y cos θ (13)

z′ = z (14)

Show that if we define
β ≡ tanh ζ, (15)

then
γ = cosh ζ, γβ = sinh ζ, (16)

and
ct′ = ct cosh ζ − x sinh ζ, (17)

x′ = −ct sinh ζ + x cosh ζ. (18)

What happens if we apply this transformation twice, once with “angle” ζ from (x, t) to (x′, t′), then
with angle ξ from (x′, t′) to (x′′, t′′)? How is (x, t) related to (x′′, t′′)?

Following on, rotations can be made to look more Lorentz-like by introducing

α ≡ tan θ, Γ ≡ 1√
1 + α2

(19)

Then show that (12) and (13) become

x′ = Γ(x+ αy) (20)

y′ = Γ(y − αx) (21)

Thus, while a having a different appearance, the Lorentz and rotational transformations have
mathematical structures that are similar.

Of course lots of quantities besides position are vectors, and it is possible (indeed de-
sirable) just to define a quantity as a vector if its individual components satisfy equations
(12)–(14). Likewise, we find that many quantities in physics obey the transformation laws of
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equations (5–8), and it is therefore natural to give them a name and to probe their proper-
ties more deeply. We call these quantities 4-vectors. They consist of an ordinary vector V ,
together with an extra component —a “time-like” component we will designate as V 0. (We
use superscripts for a reason that will become clear later.) The“space-like” components are
then V 1, V 2, V 3. The generic form for a 4-vector is written V α, with α taking on the values
0 through 3. Symbolically,

V α = (V 0,V ) (22)

We have seen that (ct,x) is one 4-vector. Another, you may recall, is the 4-momentum,

pα = (E/c,p) (23)

where p is the ordinary momentum vector and E is the total energy. Of course, we speak of
relativisitic momentum and energy:

p = γmv, E = γmc2 (24)

where m is a particle’s rest mass. Just as

(ct)2 − x2 (25)

is an invariant quantity under Lorentz transformations, so too is

E2 − (pc)2 = m2c4 (26)

A rather plain 4-vector is pα without the coefficient of m. This is the 4-velocity Uα,

Uα = γ(c,v) (27)

Note that in the rest frame of a particle, U0 = c (a constant) and the ordinary 3-velocity
components U = 0. To get to any other frame, just use (“boost with”) the Lorentz trans-
formation. (Be careful with the sign of v). We don’t have to worry that we boost along one
axis only, whereas the velocity has three components. If you wish, just rotate the axes, after
we’ve boosted. This sorts out all the 3-vector components the way you’d like, and leaves the
time (“0”) component untouched.

Humble in appearance, the 4-velocity is a most important 4-vector. Via the simple trick
of boosting, the 4-velocity may be used as the starting point for constructing many other
important physical 4-vectors. Consider, for example, a charge density ρ0 which is at rest.
We may create a 4-vector which, in the rest frame, has only one component: ρ0c is the lonely
time component and the ordinary spatial vector components are all zero. It is just like Uα,
only with a different normalisation constant. Now boost! The resulting 4-vector is denoted

Jα = γ(cρ0,vρ0) (28)

The time component gives the charge density in any frame, and the 3- vector components are
the corresponding standard current density J ! This 4-current is the fundamental 4-vector
of Maxwell’s theory. As the source of the fields, this 4-vector source current is the basis for
Maxwell’s electrodynamics being a fully relativistic theory. J0 is the source of the electric
field potential function Φ, and J is the source of the magnetic field vector potential A.
Moreover, as we will shortly see,

Aα = (Φ,A/c) (29)

is itself a 4-vector! From here, we can generate the electromagnetic fields themselves from
the potentials by constructing a tensor...well, we are getting a bit ahead of ourselves.
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2.2 More on 4-vectors

2.2.1 Transformation of gradients

We have seen how the Lorentz transformation express x′α as a function of the x coordinates.
It is a simple linear transformation, and the question naturally arises of how the partial
derivatives, ∂/∂t, ∂/∂x transform, and whether a 4-vector can be constructed from these
components. This is a simple exercise. Using

ct = γ(ct′ + βx′) (30)

x = γ(x′ + βct′) (31)

we find
∂

∂t′
=
∂t

∂t′
∂

∂t
+
∂x

∂t′
∂

∂x
= γ

∂

∂t
+ γβc

∂

∂x
(32)

∂

∂x′
=
∂x

∂x′
∂

∂x
+

∂t

∂x′
∂

∂t
= γ

∂

∂x
+ γβ

1

c

∂

∂t
(33)

In other words,
1

c

∂

∂t′
= γ

(
1

c

∂

∂t
+ β

∂

∂x

)
(34)

∂

∂x′
= γ

(
∂

∂x
+ β

1

c

∂

∂t

)
(35)

and for completeness,
∂

∂y′
=
∂

∂y
(36)

∂

∂z′
=
∂

∂z
. (37)

This is not the Lorentz transformation (5)–(8); it differs by the sign of v. By contrast,
coordinate differentials dxα transform, of course, just like xα:

cdt′ = γ(cdt− βdx), (38)

dx′ = γ(dx− βcdt), (39)

dy′ = dy, (40)

dz′ = dz. (41)

This has a very important consequence:

dt′
∂

∂t′
+ dx′

∂

∂x′
= γ2

[
(dt− βdx

c
)

(
∂

∂t
+ βc

∂

∂x

)
+ (dx− βcdt)

(
∂

∂x
+ β

1

c

∂

∂t

)]
, (42)

or simplifying,

dt′
∂

∂t′
+ dx′

∂

∂x′
= γ2(1− β2)

(
dt
∂

∂t
+ dx

∂

∂x

)
= dt

∂

∂t
+ dx

∂

∂x
(43)

Adding y and z into the mixture changes nothing. Thus, a scalar product exists between dxα

and ∂/∂xα that yields a Lorentz scalar, much as dx · ∇, the ordinary complete differential, is
a rotational scalar. It is the fact that only certain combinations of 4-vectors and 4-gradients
appear in the equations of physics that allows these equations to remain invariant in form
from one reference frame to another.

It is time to approach this topic, which is the mathematical foundation on which special
and general relativity is built, on a firmer and more systematic footing.
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2.2.2 Transformation matrix

We begin with a simple but critical notational convention: repeated indices are summed over,
unless otherwise explicitly stated. This is known as the Einstein summation convention,
invented to avoid tedious repeated summation Σ’s. For example:

dxα
∂

∂xα
= dt

∂

∂t
+ dx

∂

∂x
+ dy

∂

∂y
+ dz

∂

∂z
(44)

I will often further shorten this to dxα∂α. This brings us to another important notational
convention. I was careful to write ∂α, not ∂α. Superscripts will be reserved for vectors,
like dxα which transform like (5) through (8) from one frame to another (primed) frame
moving a relative velocity v along the x axis. Subscripts will be used to indicate vectors that
transfrom like the gradient components in equations (34)–(37). Superscipt vectors like dxα

are referred to as contravariant vectors; subscripted vectors as covariant. (The names will
acquire significance later.) The co- contra- difference is an important distinction in general
relativity, and we begin by respecting it here in special relativity.

Notice that we can write equations (38) and (39) as

[−cdt′] = γ([−cdt] + βdx) (45)

dx′ = γ(dx+ β[−cdt]) (46)

so that the 4-vector (−cdt, dx, dy, dz) is covariant, like a gradient! We therefore have

dxα = (cdt, dx, dy, dz) (47)

dxα = (−cdt, dx, dy, dz) (48)

It is easy to go between covariant and contravariant forms by flipping the sign of the time
component. We are motivated to formalise this by introducing a matrix ηαβ defined as

ηαβ =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (49)

Then dxα = ηαβdx
β “lowers the index.” We will write ηαβ to raise the index, though it is a

numerically identical matrix. Note that the invariant spacetime interval may be written

c2dτ 2 ≡ c2dt2 − dx2 − dy2 − dz2 = −ηαβdxαdxβ (50)

The time interval dτ is just the “proper time,” the time shown ticking on the clock in the
rest frame moving with the object of interest (since in this frame all spatial differentials dxi

are zero). Though introduced as a bookkeeping device, ηαβ is an important quantity: it goes
from being a constant matrix in special relativity to a function of coordinates in general
relativity, mathematically embodying the departures of spacetime from simple Minkowski
form when matter is present.

The standard Lorentz transformation may now be written as a matrix equation, dx′α =
Λα

βdx
β, where

Λα
β dx

β =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1




dx0

dx1

dx2

dx3

 (51)
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Λα
β is symmetric in α and β. (A possible notational ambiguity is difficult to avoid here:

β and γ used as subscripts or superscripts are of course never velocity variables!) Direct
matrix multiplication gives:

Λα
βΛε

γηαε = ηβγ (52)

(Do it, and notice that the η matrix must go in the middle...why?) Then, if V α is any
contravariant vector and Wα any covariant vector, V αWα must be an invariant (or “scalar”)
because

V ′αW ′
α = V ′αW ′βηβα = Λα

γV
γΛβ

εW
εηβα = V γW εηγε = V γWγ (53)

For covariant vectors, for example ∂α, the transformation is ∂′α = Λ̃β
α∂β, where Λ̃β

α is
the same as Λβ

α, but the sign of β reversed:

Λ̃α
β =


γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1

 (54)

Note that
Λ̃α

βΛβ
γ = δαγ , (55)

where δαγ is the Kronecker delta function. This leads immediately once again to V ′αW ′
α =

V αWα.

Notice that equation (38) says something rather interesting in terms of 4-vectors. The
right side is just proportional to −dxαUα, where Uα is the (covariant) 4-vector corresponding
to ordinary velocity v. Consider now the case dt′ = 0, a surface in t, x, y, z, spacetime cor-
responding to simultaneity in the frame of an observer moving at velocity v. The equations
of constant time in this frame are given by the requirement that dxα and Uα are orthogonal.

Exercise. Show that the general Lorentz transformation matrix is:

Λαβ =


γ −γβx −γβy −γβz
−γβx 1 + (γ − 1)β2x/β

2 (γ − 1)βxβy/β
2 (γ − 1)βxβz/β

2

−γβy (γ − 1)βxβy/β
2 1 + (γ − 1)β2y/β

2 (γ − 1)βyβz/β
2

−γβz (γ − 1)βxβz/β
2 (γ − 1)βyβz/β

2 1 + (γ − 1)β2z/β
2

 (56)

Hint: Keep calm and use (10) and (11).

2.2.3 Tensors

There is more to relativistic life than vectors and scalars. There are objects called tensors,
with more that one indexed component. But possessing indices isn’t enough! All tensor
components must transform in the appropriate way under a Lorentz transformation. Thus,
a tensor Tαβ transforms according to the rule

T ′αβ = Λα
γΛ

β
εT

γε, (57)

while
T ′αβ = Λ̃γ

αΛ̃ε
βTγε, (58)

and of course
T ′αβ = Λα

γΛ̃
ε
βT

γ
ε , (59)
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You get the idea. Contravariant superscript use Λ, covariant subscript use Λ̃.

Tensors are not hard to find. Remember equation (52)? It works for Λ̃α
β as well, since it

doesn’t depend on the sign of β (or its magnitude for that matter):

Λ̃α
βΛ̃ε

γηαε = ηβγ (60)

So ηαβ is a tensor, with the same components in any frame! The same is true of δαβ , a mixed
tensor (which is the reason for writing its indices as we have), that we must transform as
follows:

Λε
γΛ̃

α
βδ

γ
α = Λε

γΛ̃
γ
β = δεβ. (61)

Here is another tensor, slightly less trivial:

Wαβ = UαUβ (62)

where the U ′s are 4-velocities. This obviously transforms as tensor, since each U obeys its
own vector transformation law. Consider next the tensor

Tαβ = ρr〈uαuβ〉 (63)

where the 〈 〉 notation indicates an average of all the 4-velocity products uαuβ taken over
a whole swarm of little particles, like a gas. (An average of 4-velocities is certainly itself a
4-velocity, and an average of all the little particle tensors is itself a tensor.) ρr is a local rest
density, a scalar number. (Here, r is not an index.)

The component T 00 is just ρc2, the energy density of the swarm, where ρ (without the
r) includes both a rest mass energy and a thermal contribution. (The latter comes from
averaging the γ factors in the u0 = γc.) Moreover, if, as we shall assume, the particle
velocities are isotropic, then Tαβ vanishes if α 6= β. Finally, when α = β 6= 0, then T ii (no
sum!) is by definition the pressure P of the swarm. (Do you see why this works when the
ui are relativistic?) Hence, in the frame in which the swarm has no net bulk motion,

Tαβ =


ρc2 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 (64)

This is, in fact, the most general form for the so-called energy-momentum stress tensor for
an isotropic fluid in the rest frame of the fluid.

To find Tαβ in any frame with 4-velocity Uα we could adopt a brute force method and
apply the Λ matrix twice to the rest frame form, but what a waste of effort that would be!
If we can find any true tensor that reduces to our result in the rest frame, then that tensor
is the unique stress tensor. Proof: if a tensor is zero in any frame, then it is zero in all
frames, as a trivial consequence of the transformation law. Suppose the tensor I construct,
which is designed to match the correct rest frame value, may not be (you claim) correct in all
frames. Hand me your tensor, the one you think is the correct choice. Now, the two tensors
by definition match in the rest frame. I’ll subtract one from the other to form the difference
between my tensor and your tensor. The difference is also a tensor, but it vanishes in the
rest frame by construction. Hence this “difference tensor” must vanish in all frames, so your
tensor and mine are identical after all! Corollary: if you can prove that the two tensors are
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the same in any one particular frame, then they are the same in all frames. This is a very
useful ploy.

The only two tensors we have at our disposal to construct Tαβ are ηαβ and UαUβ, and
there is only one linear superposition that matches the rest frame value and does the trick:

Tαβ = Pηαβ + (ρ+ P/c2)UαUβ (65)

This is the general form of energy-momentum stress tensor appropriate to an ideal fluid.

2.2.4 Conservation of Tαβ

One of the most salient properties of Tαβ is that it is conserved, in the sense of

∂Tαβ

∂xα
= 0 (66)

Since gradients of tensors transform as tensors, this must be true in all frames. What,
exactly, are we conserving?

First, the time-like 0-component of this equation is

∂

∂t

[
γ2
(
ρ+

Pv2

c4

)]
+∇·

[
γ2
(
ρ+

P

c2

)
v

]
= 0 (67)

which is the relativistic version of mass conservation,

∂ρ

∂t
+∇·(ρv) = 0. (68)

Elevated in special relativity, it becomes a statement of energy conservation. So one of the
things we are conserving is energy. (And not just rest mass energy by the way, thermal
energy as well!) This is good.

The spatial part of the conservation equation reads

∂

∂t

[
γ2
(
ρ+

P

c2

)
vi

]
+

(
∂

∂xj

)[
γ2
(
ρ+

P

c2

)
vivj

]
+
∂P

∂xi
= 0 (69)

You may recognise this as Euler’s equation of motion, a statement of momentum conserva-
tion, upgraded to special relativity. Conserving momentum is also good.

What if there are other external forces? The idea is that these are included by expressing
them in terms of the divergence of their own stress tensor. Then it is the total Tαβ including,
say, electromagnetic fields, that comes into play. What about the force of gravity? That, it
will turn out, is on an all-together different footing.

You start now to gain a sense of the difficulty in constructing a theory of gravity com-
patible with relativity. The density ρ is part of the stress tensor, and it is the entire stress
tensor in a relativistic theory that would have to be the source of the gravitational field,
just as the entire 4-current Jα is the source of electromangetic fields. No fair just picking
the component you want. Relativistic theories work with scalars, vectors and tensors to
preserve their invariance properties from one frame to another. This insight is already an
achievement: we can, for example, expect pressure to play a role in generating gravitational
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fields. Would you have guessed that? Our relativistic gravity equation maybe ought to look
something like :

∇2Gµν − 1

c2
∂2Gµν

∂t2
= T µν (70)

where Gµν is some sort of, I don’t know, conserved tensor guy for the...spacetime geome-
try and stuff? In Maxwell’s theory we had a 4-vector (Aα) operated on by the so-called
“d’Alembertian operator” ∇2 − (1/c)2∂2/∂t2 on the left side of the equation and a source
(Jα) on the right. So now we just need to find a Gµν tensor to go with T µν . Right?

Actually, this really is a pretty good guess. It is more-or-less correct for weak fields, and
most of the time gravity is a weak field. But...well...patience. One step at a time.
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Then there occurred to me the

‘glücklichste Gedanke meines Lebens,’

the happiest thought of my life, in the

following form. The gravitational field

has only a relative existence in a way

similar to the electric field generated

by magnetoelectric induction. Because

for an observer falling freely from the

roof of a house there exists—at least

in his immediate surroundings—no

gravitational field.

— Albert Einstein

1

3 The effects of gravity

The central idea of general relativity is that presence of mass (more precisely the presence
of any stress-energy tensor component) causes departures from flat Minkowski spacetime
to appear, and that other matter (or radiation) responds to these distortions in some way.
There are then really two questions: (i) How does the affected matter/radiation move in
the presence of a distorted spacetime?; and (ii) How does the stress-energy tensor distort
the spacetime in the first place? The first question is purely computational, and fairly
straightforward to answer. It lays the groundwork for answering the much more difficult
second question, so let us begin here.

3.1 The Principle of Equivalence

We have discussed the notion that by going into a frame of reference that is in free-fall, the
effects of gravity disappear. In this era in which space travel is common, we are all familiar
with astronauts in free-fall orbits, and the sense of weightlessness that is produced. This
manifestation of the Equivalence Principle is so palpable that hearing total mishmashes
like “In orbit there is no gravity” from an over-eager science correspondent is a common
experience. (Our own BBC correspondent in Oxford Astrophysics, Prof. Christopher Lintott,
would certainly never say such a thing.)

The idea behind the equivalence principle is that the m in F = ma and the m in the
force of gravity Fg = mg are the same m and thus the acceleration caused by gravity, g, is
invariant for any mass. We could imagine, for example, that F = mIa and Fg = mgg, where
mg is some kind of “massy” property that might vary from one type of body to another
with the same mI . In this case, the acceleration a is mgg/mI , i.e., it varies with the ratio of
inertial to gravitational mass from one body to another. How well can we actually measure
this ratio, or what is more to the point, how well do we know that it is truly a universal
constant for all types of matter?

The answer is very, very well indeed. We don’t of course do anything as crude as directly
measure the rate at which objects fall to the ground any more, à la Galileo and the tower
of Pisa. As with all classic precision gravity experiments (including those of Galileo!) we

1With apologies to any readers who may actually have fallen off the roof of a house—safe space statement.
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Figure 1: Schematic diagram of the Eötvös experiment. A barbell shape, the red object
above, is hung from a pendulum on the Earth’s surface (big circle) with two masses of two
different types of material, say copper and lead. Each mass is affected by gravity pulling
it to the centre of the earth (g) with a force proportional to a gravitational mass mg,
and a centrifugal force porportional to the inertial mass mI , due to the earth’s rotation
(c). Forces are shown as blue arrows. Any difference between the inertial to gravitational
mass ratio (in copper and lead here) will produce an unbalanced torque from the g and
c forces about the axis of the suspending fibre of the barbell.

use a pendulum. The first direct measurement of the gravitational to inertial mass actually
predates relativity, the so-called Eötvös experiment (after Baron Lorànd Eötvös, 1848-1919).

The idea is shown in schematic form in figure [1]. Hang a pendulum from a string, but
instead of hanging a big mass, hang a rod, and put two masses of two different types of
material at either end. There is a force of gravity toward the center of the earth (g in the
figure), and a centrifugal force (c) due to the earth’s rotation. The net force is the vector
sum of these two, and if the components of the acceleration perpendicular to the string
of each mass do not precisely balance, and they won’t if mg/mI is not the same for both
masses, there will be a net torque twisting the masses about the string (a quartz fibre in the
actual experiment). The fact that no such twist is measured is an indication that the ratio
mg/mI does not, in fact, vary. In practise, to achieve high accuracy, the pendulum rotates
with a tightly controlled period, so that the masses would be sometimes hindered by any
putative torque, sometimes pushed forward by this torque. This would imprint a frequency
dependence onto the motion, and by using fourier signal processing, the resulting signal at
a particular frequency can be tightly constrained. Experiment shows that the ratio between
any difference in the twisting accelerations on either mass and the average acceleration must
be less than a few parts in 1012 (Su et al. 1994, Phys Rev D, 50, 3614). With direct laser
ranging experiments to track the Moon’s orbit, it is possible, in effect, to use the Moon and
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Earth as the masses on the pendulum as they rotate around the Sun! This gives an accuracy
an order of magnitude better, a part in 1013 (Williams et al. 2012, Class. Quantum Grav.,
29, 184004), an accuracy comparable to measuring the distance to the Sun to within the size
of your thumbnail.

There are two senses in which the Equivalence Principle may be used, a strong sense and
weak sense. The weak sense is that it is not possible to detect the effects of gravity locally in
a freely falling coordinate system, that all matter behaves identically in a gravitational field
independent of its composition. Experiments can test this form of the Principle directly.
The strong, much more powerful sense, is that all physical laws, gravitational or not, behave
in a freely falling coordinate system just as they do in Minkowski spacetime. In this sense,
the Principle is a postulate which appears to be true.

If going into a freely falling frame eliminates gravity locally, then going from an inertial
frame to an accelerating frame reverses the process and mimics the effect of gravity—again,
locally. After all, if in an inertial frame

d2x

dt2
= 0, (71)

and we transform to the accelerating frame x′ by x = x′+ gt2/2, where g is a constant, then

d2x′

dt2
= −g, (72)

which looks an awful lot like motion in a gravitational field.

One immediate consequence of this realisation is of profound importance: gravity affects
light. In particular, if we are in an elevator of height h in a gravitational field of local
strength g, locally the physics is exactly the same as if we were accelerating upwards at g.
But the effect of this on light is then easily analysed: a photon released upwards reaches a
detector at height h in a time h/c, at which point the detector is moving at a velocity gh/c
relative to the bottom of the elevator (at the time of release). The photon is measured to
be redshifted by an amount gh/c2, or Φ/c2 with Φ being the gravitational potential per unit
mass at h. This is the classical gravitational redshift, the simplest nontrivial prediction of
general relativity. The gravitational redshift has been measured accurately using changes in
gamma ray energies (RV Pound & JL Snider 1965, Phys. Rev., 140 B, 788).

The gravitational redshift is the critical link between Newtonian theory and general
relativity. It is not, after all, a distortion of space that gives rise to Newtonian gravity at
the level we are familiar with, it is a distortion of the flow of time.

3.2 The geodesic equation

We denote by ξα our freely falling inertial coordinate frame in which the effects of gravity
are locally absent. In this frame, the equation of motion for a particle is

d2ξα

dτ 2
= 0 (73)

with
c2dτ 2 = −ηαβdξαdξβ (74)

being the invariant time interval. (If we are doing light, then dτ = 0, but ultimately it
doesn’t really matter. Either take a limit from finite dτ , or use any other parameter you
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fancy, like your wristwatch. In the end, we won’t use τ or your watch. As for dξα, it is just
the freely-falling guy’s ruler and his wristwatch.) Next, write this equation in any other set
of coordinates you like, and call them xµ. Our inertial coordinates ξα will be some function
or other of the xµ so

0 =
d2ξα

dτ 2
=
d

dτ

(
∂ξα

∂xµ
dxµ

dτ

)
(75)

where we have used the chain rule to express dξα/dτ in terms of dxµ/dτ . Carrying out the
differentiation,

0 =
∂ξα

∂xµ
d2xµ

dτ 2
+

∂2ξα

∂xµ∂xν
dxµ

dτ

dxν

dτ
(76)

where now the chain rule has been used on ∂ξα/∂xµ. This may not look very promising.
But if we multiply this equation by ∂xλ/∂ξα, and remember to sum over α now, then the
chain rule in the form

∂xλ

∂ξα
∂ξα

∂xµ
= δλµ (77)

rescues us. (We are using the chain rule repeatedly and will certainly continue to do so,
again and again. Make sure you understand this, and that you understand what variables
are being held constant when the partial derivatives are taken. Deciding what is constant is
just as important as doing the differentiation!) Our equation becomes

d2xλ

dτ 2
+ Γλµν

dxµ

dτ

dxν

dτ
= 0, (78)

where

Γλµν =
∂xλ

∂ξα
∂2ξα

∂xµ∂xν
(79)

is known as the affine connection, and is a quantity of central importance in the study of
Riemannian geometry and relativity theory in particular. You should be able to prove, using
the chain rule of partial derivatives, an identity for the second derivatives of ξα that we will
use shortly:

∂2ξα

∂xµ∂xν
=
∂ξα

∂xλ
Γλµν (80)

(How does this work out when used in equation [76]?)

No need to worry, despite the funny notation. (Early relativity texts liked to use
gothic font Gλ

µν for the affine connection, which must have imbued it with a nice steam-
punk terror.) There is nothing especially mysterious about the affine connection. You use
it all the time, probably without realising it. For example, in cylindrical (r, θ) coordinates,

when you use the combinations r̈−rθ̇2 or rθ̈+2ṙθ̇ for your radial and tangential accelerations,
you are using the affine connection and the geodesic equation. In the first case, Γrθθ = −r;
in the second, Γθrθ = 1/r. (What happened to the 2?)

Exercise. Prove the last statements using ξx = r cos θ, ξy = r sin θ.

Exercise. On the surface of a unit-radius sphere, choose any point as your North Pole, work in
colatitude θ and azimuth φ coordinates, and show that locally near the North Pole ξx = θ cosφ,
ξy = θ sinφ. It is in this sense that the ξα coordinates are tied to a local region of the space near
the North Pole point. In our freely-falling coordinate system, the local coordinates are tied to a
point in spacetime.
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3.3 The metric tensor

In our locally inertial coordinates, the invariant spacetime interval is

c2dτ 2 = −ηαβdξαdξβ, (81)

so that in any other coordinates, dξα = (∂ξα/dxµ)dxµ and

c2dτ 2 = −ηαβ
∂ξα

∂xµ
∂ξβ

∂xν
dxµdxν ≡ −gµνdxµdxν (82)

where

gµν = ηαβ
∂ξα

∂xµ
∂ξβ

∂xν
(83)

is known as the metric tensor. The metric tensor embodies the information of how coordinate
differentials combine to form the invariant interval of our spacetime, and once we know gµν ,
we know everything, including (as we shall see) the affine connections Γλµν . The object of
general relativity theory is to compute gµν for a given distribution of mass (more precisely,
a given stress energy tensor), and a key goal of this course is to find the field equations that
enable us to do so.

3.4 The relationship between the metric tensor and affine connec-
tion

Because of their reliance of the local freely falling inertial coordinates ξα, the gµν and Γλµν
quantities are awkward to use in their present formulation. Fortunately, there is a direct
relationship between Γλµν and the first derivatives of gµν that will allow us to become free of
local bondage, permitting us to dispense with the ξα altogether. Though their existence is
crucial to formulate the mathematical structure, the practical need of the ξ’s to carry out
calculations is minimal.

Differentiate equation (83):

∂gµν
∂xλ

= ηαβ
∂2ξα

∂xλ∂xµ
∂ξβ

∂xν
+ ηαβ

∂ξα

∂xµ
∂2ξβ

∂xλ∂xν
(84)

Now use (80) for the second derivatives of ξ:

∂gµν
∂xλ

= ηαβ
∂ξα

∂xρ
∂ξβ

∂xν
Γρλµ + ηαβ

∂ξα

∂xµ
∂ξβ

∂xρ
Γρλν (85)

All remaining ξ derivatives may be absorbed as part of the metric tensor, leading to

∂gµν
∂xλ

= gρνΓ
ρ
λµ + gµρΓ

ρ
λν (86)

It remains only to unweave the Γ’s from the cloth of indices. This is done by first adding
∂gλν/∂x

µ to the above, then subtracting it with indices µ and ν reversed.

∂gµν
∂xλ

+
∂gλν
∂xµ

− ∂gλµ
∂xν

= gρνΓ
ρ
λµ +����gρµΓρλν + gρνΓ

ρ
µλ +����gρλΓ

ρ
µν −����gρµΓρνλ −����gρλΓ

ρ
νµ (87)
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Remembering that Γ is symmetric in its bottom indices, only the gρν terms survive, leaving

∂gµν
∂xλ

+
∂gλν
∂xµ

− ∂gλµ
∂xν

= 2gρνΓ
ρ
µλ (88)

Our last step is to mulitply by the inverse matrix gνσ, defined by

gνσgρν = δσρ , (89)

leaving us with the pretty result

Γσµλ =
gνσ

2

(
∂gµν
∂xλ

+
∂gλν
∂xµ

− ∂gλµ
∂xν

)
. (90)

Notice that there is no mention of the ξ’s. The affine connection is completely specified by
gµν and the derivatives of gµν in whatever coordinates you like. In practise, the inverse matrix
is not difficult to find, as we will usually work with metric tensors whose off diagonal terms
vanish. (Gain confidence once again by practising the geodesic equation with cylindrical
coordinates grr = 1, gθθ = r2 and using [90.]) Note as well that with some very simple index
relabeling, equation (88) leads directly to the mathematical identity

gρνΓ
ρ
µλ

dxµ

dτ

dxλ

dτ
=

(
∂gµν
∂xλ

− 1

2

∂gλµ
∂xν

)
dxµ

dτ

dxλ

dτ
. (91)

We’ll use this in a moment.

Exercise. Prove that gνσ is given explicitly by

gνσ = ηαβ
∂xν

∂ξα
∂xσ

∂ξβ

Exercise. Prove the identities of page 6 of the notes for a diagonal metric gab,

Γaba = Γaab =
1

2gaa

∂gaa
∂xb

(a = b permitted, NO SUM)

Γabb = − 1

2gaa

∂gbb
∂xa

(a 6= b, NO SUM)

Γabc = 0, (a, b, c distinct)

3.5 Variational calculation of the geodesic equation

The physical significance of the relationship between the metric tensor and affine connection
may be understood by a variational calculation. Off all possible paths in our spacetime
from some point A to another B, which leaves the proper time an extremum (in this case, a
maximum)? The motivation for this formulation is obvious: “The shortest distance between
two points is a straight line,” and the equations for this line-geodesic are d2ξi/ds

2 = 0 in
Cartesian coordinates. This is an elementary property of Euclidian space. We may ask what
is the shortest distance between two points in a more general curved space as well, and
this question naturally lends itself to a variational approach. What is less obvious is that
this mathematical machinery, which was fashioned for generalising the spacelike straight line
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equation d2ξi/ds2 = 0 to more general non-Euclidian geometries, also works for generalising
a dynamical equation of the form d2ξi/dτ 2 = 0, where now we are using invariant timelike
intervals, to geodesics embedded in distorted Minkowski geometries.

We describe our path by some external parameter p, which could be anything really,
perhaps the time on your very own wristwatch in your rest frame. (I don’t want to start
with τ , because dτ = 0 for light.) Then the proper time from A to B is

TAB =

∫ B

A

dτ

dp
dp =

1

c

∫ B

A

(
−gµν

dxµ

dp

dxν

dp

)1/2

dp (92)

Next, vary xλ to xλ + δxλ (we are regarding xλ as a function of p remember), with δxλ

vanishing at the end points A and B. We find

δTAB =
1

2c

∫ B

A

(
−gµν

dxµ

dp

dxν

dp

)−1/2(
−∂gµν
∂xλ

δxλ
dxµ

dp

dxν

dp
− 2gµν

dδxµ

dp

dxν

dp

)
dp (93)

(Do you understand the final term in the integral?)

Since the leading inverse square root in the integrand is just dp/dτ , δTAB simplifies to

δTAB =
1

2c

∫ B

A

(
−∂gµν
∂xλ

δxλ
dxµ

dτ

dxν

dτ
− 2gµν

dδxµ

dτ

dxν

dτ

)
dτ, (94)

and p has vanished from sight. We now integrate the second term by parts, noting that the
contribution from the endpoints has been specified to vanish. Remembering that

dgλν
dτ

=
dxσ

dτ

∂gλν
∂xσ

, (95)

we find

δTAB =
1

c

∫ B

A

(
−1

2

∂gµν
∂xλ

dxµ

dτ

dxν

dτ
+
∂gλν
∂xσ

dxσ

dτ

dxν

dτ
+ gλν

d2xν

dτ 2

)
δxλ dτ (96)

or

δTAB =
1

c

∫ B

A

[(
−1

2

∂gµν
∂xλ

+
∂gλν
∂xµ

)
dxµ

dτ

dxν

dτ
+ gλν

d2xν

dτ 2

]
δxλ dτ (97)

Finally, using equation (91), we obtain

δTAB =
1

c

∫ B

A

[(
dxµ

dτ

dxσ

dτ
Γνµσ +

d2xν

dτ 2

)
gλν

]
δxλ dτ (98)

Thus, if the geodesic equation (78) is satisfied, δTAB = 0 is satisfied, and the proper time is
an extremum. The name “geodesic” is used in geometry to describe the path of minimum
distance between two points in a manifold, and it is therefore gratifying to see that there is
a correspondence between a local “straight line” with zero curvature, and the local elimina-
tion of a gravitational field with the resulting zero acceleration, along the lines if the first
paragraph of this section. In the first case, the proper choice of local coordinates results in
the second derivative with respect to an invariant spatial interval vanishing; in the second
case, the proper choice of coordinates means that the second derivative with respect to an
invariant time interval vanishes, but the essential mathematics is the same.
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There is often a very practical side to working with the variational method: it can be
much easier to obtain the equations of motion for a given gµν this way than to construct them
directly. For example, the method quickly produces all the non-vanishing affine connection
components, just read them off as the coefficients of (dxµ/dτ)(dxν/dτ). You don’t have to
find them by trial and error. These quantities are then available for any variety of purposes
(and they are needed for many).

Here is another trick. You should have little difficulty showing that if we apply the
Euler-Lagrange variational method directly to the following functional L,

L = gµν ẋ
µẋν ,

where the dot is d/dτ , the resulting Euler-Lagrange equation

d

dτ

(
∂L
∂ẋρ

)
− ∂L
∂xρ

= 0

is just the standard geodesic equation of motion! This is often the easiest way to proceed.

Indeed, in classical mechanics, we all know that the equations of motion may be derived
from a Lagrangian variational principle of least action, an integral involving the difference
between kinetic and potential energies. This doesn’t seem geometrical at all. What is the
connection with what we’ve just done? How do we make contact with Newtonian mechanics
from the geodesic equation?

3.6 The Newtonian limit

We consider the case of a slowly moving mass (“slow” of course means relative to c, the
speed of light) in a weak gravitational field (GM/rc2 � 1). Since cdt � |dx|, the geodesic
equation greatly simplfies:

d2xµ

dτ 2
+ Γµ00

(
cdt

dτ

)2

= 0. (99)

Now

Γµ00 =
1

2
gµν
(
∂g0ν
∂(cdt)

+
∂g0ν
∂(cdt)

− ∂g00
∂xν

)
(100)

In the Newtonian limit, the largest of the g derivatives is the spatial gradient, hence

Γµ00 ' −
1

2
gµν

∂g00
∂xν

(101)

Since the gravitational field is weak, gαβ differs very little from the Minkoswki value:

gαβ = ηαβ + hαβ, hαβ � 1, (102)

and the µ = 0 geodesic equation is

d2t

dτ 2
+

1

2

∂h00
∂t

(
dt

dτ

)2

= 0 (103)

Clearly, the second term is zero for a static field, and will prove to be tiny when the gravita-
tional field changes with time under nonrelativistic conditions—we are, after all, calculating
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the difference between proper time and observer time! Dropping this term we find that t
and τ are linearly related, so that the spatial components of the geodesic equation become

d2x

dt2
− c2

2
∇h00 = 0 (104)

Isaac Newton would say:
d2x

dt2
+∇Φ = 0, (105)

with Φ being the classical gravitational potential. The two views are consistent if

h00 ' −
2Φ

c2
, g00 ' −

(
1 +

2Φ

c2

)
(106)

In other words, the gravitational potential force emerges as a sort of centripital term, similar
in structure to the centripital force in the standard radial equation of motion. This is a
remarkable result. It is by no means obvious that a purely geometrical geodesic equation
can serve the role of a Newtonian gravitational potential gradient force equation, but it
can. Moreover, it teaches us that the Newtonian limit of general relativity is all in the time
component, h00. It is now possible to measure directly the differences in the rate at which
clocks run at heights separated by 100 m or so on the Earth’s surface.

The quantity h00 is a dimensionless number of order v2/c2, where v is a velocity typical
of the system, an orbital speed or just the square root of a potential. Note that h00 is
determined by the dynamical equations only up to an additive constant. Here we have
chosen the constant to make the geometry Minkowskian at large distances from any matter.
At the surface of a spherical object of mass M and radius R,

h00 ' 2× 10−6
(
M

M�

)(
R�
R

)
(107)

where M� is the mass of the sun (about 2× 1030 kg) and R� is the radius of the sun (about
7 × 108 m). As an exercise, you may wish to look up masses of planets and other types
of stars and evaluate h00. What is its value at the surface of a white dwarf (mass of the
sun, radius of the earth)? What about a neutron star (mass of the sun, radius of Oxford)?
How many decimal points are needed to see the time difference in two digital clocks at a one
meter separation in height on the earth?

We are now able to relate the geodesic equation to the principle of least action in classical
mechanics. In the Newtonian limit, our variational integral becomes∫ [

c2(1 + 2Φ/c2)dt2 − d|x|2
]1/2

(108)

(Remember our compact notation: dt2 ≡ (dt)2, d|x|2 = (d|x|)2.) Expanding the square root,∫
c

(
1 +

Φ

c2
− v2

2c2
+ ...

)
dt (109)

where v2 ≡ (d|x|/dt)2. Thus, minimising the Lagrangian (kinetic energy minus potential
energy) is the same as maximising the proper time interval! What an unexpected and
beautiful connection.
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What we have calculated in this section is nothing more than our old friend the gravi-
tational redshift, with which we began our formal study of general relativity. The invariant
spacetime interval dτ , the proper time, is given by

c2dτ 2 = −gµνdxµdxν (110)

For an observer at rest at location x, the time interval registered on a clock will be

dτ(x) = [−g00(x)]1/2dt (111)

where dt is the time interval registered at infinity, where −g00 → 1. (Compare: the “proper
length” on the unit sphere for an interval at constant θ is sin θdφ, where dφ is the length
registered by an equatorial observer.) If the interval between two wave crest crossings is
found to be dτ(y) at location y, it will be dτ(x) when the light reaches x and it will be dt
at infinity. In general,

dτ(y)

dτ(x)
=

[
g00(y)

g00(x)

]1/2
, (112)

and in particular
dτ(R)

dt
=
ν(∞)

ν
= [−g00(R)]1/2 (113)

where ν = 1/dτ(R) is, for example, an atomic transition frequency measured at rest at the
surface R of a body, and ν(∞) the corresponding frequency measured a long distance away.
Interestingly, the value of g00 that we have derived in the Newtonian limit is, in fact, the
exact relativisitic value of g00 around a point mass M ! (A black hole.) The precise redshift
formula is

ν∞ =

(
1− 2GM

Rc2

)1/2

ν (114)

The redshift as measured by wavelength becomes infinite from light emerging from radius
R = 2GM/c2, the so-called Schwarzschild radius (about 3 km for a point with the mass of
the sun!).

Historically, general relativity theory was supported in its infancy by the reported detec-
tion of a gravitational redshift in a spectral line observed from the surface of the white dwarf
star Sirius B in 1925 by W.S. Adams. It “killed two birds with one stone,” as the leading
astronomer A.S. Eddington remarked. For it not only proved the existence of white dwarf
stars (at the time controversial since the mechanism of pressure support was unknown), the
measurement also confirmed an early and important prediction of general relativity theory:
the redshift of light due to gravity.

Alas, the modern consensus is that the actual measurements were flawed! Adams knew
what he was looking for and found it. Though he was premature, the activity this apparently
positive observation imparted to the study of white dwarfs and relativity theory turned out
to be very fruitful indeed. But we were lucky. Incorrect but well regarded single-investigator
observations have in the past caused much confusion and needless wrangling, as well as years
of wasted effort.

The first definitive test for gravitational redshift came much later, and it was terrestrial:
the 1959 Pound and Rebka experiment performed at Harvard University’s Jefferson Tower
measured the frequency shift of a 14.4 keV gamma ray falling (if that is the word for a gamma
ray) 22.6 m. Pound & Rebka were able to measure the shift in energy—just a few parts in
1014—by what was at the time the new and novel technique of Mössbauer spectroscopy.
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Exercise. A novel application of the gravitational redshift is provided by Bohr’s refutation of
an argument put forth by Einstein purportedly showing that an experiment could in principle be
designed to bypass the quantum uncertainty relation ∆E∆t ≥ h. The idea is to hang a box
containing a photon by a spring suspended in a gravitational field g. At some precise time a
shutter is opened and the photon leaves. You weigh the box before and after the photon. There is
in principle no interference between the arbitrarily accurate change in box weight and the arbitrarily
accurate time at which the shutter is opened. Or is there?

1.) Show that box apparatus satisfies an equation of the form

Mẍ = −Mg − kx

where M is the mass of the apparatus, x is the displacement, and k is the spring constant. Before
release, the box is in equilibrium at x = −gM/k.

2.) Show that the momentum of the box apparatus after a short time interval ∆t from when the
photon escapes is

δp = −gδm
ω

sin(ω∆t) '= −gδm∆t

where δm is the (uncertain!) photon mass and ω2 = k/M . With δp ∼ gδm∆t, the uncertainty
principle then dictates an uncertain location of the box position δx given by gδmδx∆t ∼ h. But
this is location uncertainty, not time uncertainty.

3.) Now the gravitational redshift comes in! Show that if there is an uncertainty in position δx,
there is an uncertainty in the time of release: δt ∼ (gδx/c2)∆t.

4.) Finally use this in part (2) to establish δE δt ∼ h with δE = δmc2.

Why does general relativity come into nonrelativistic quantum mechanics in such a fundamental
way? Because the gravitational redshift is relativity theory’s point-of-contact with classical New-
tonian mechanics, and Newtonian mechanics when blended with the uncertainty principle is the
start of nonrelativistic quantum mechanics.

A final thought

We Newtonian beings, with our natural mode of thinking in terms of forces and responses,
would naturally say “How interesting, the force of gravity distorts the flow time.” This is
the way I have been describing the gravitational redshift throught this chapter. But Einstein
has given us a more profound insight. It is not that gravity distorts the flow of time. An
Einsteinian being, brought up from the cradle to be comfortable with a spacetime point-of-
view, would, upon hearing this comment, cock their head and say: “What are you talking
about? Newtonian gravity is the distortion of the flow of time. It is a simple geometric
distortion that is brought about by the presence of matter.” This is a better way to think
of it. The nearby effect of weak gravity is indeed a distortion in the flow of time; the distant
effect of weak gravity is gravitational radiation, and this, we shall see, is a distortion of space.
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4 Tensor Analysis

Further, the dignity of the science

seems to require that every possible

means be explored itself for the solution

of a problem so elegant and so cele-

brated.

— Carl Friedrich Gauss

A mathematical equation is valid in the presence of general gravitational fields when

i.) It is a valid equation in the absence of gravity and respects Lorentz invariance.

ii.) It preserves its form, not just under Lorentz transformations, but under any coordinate
transformation, x→ x′.

What does “preserves its form” mean? It means that the equation must be written in terms
of quantities that transform as scalars, vectors, and higher ranked tensors under general
coordinate transformations. From (ii), we see that if we can find one coordinate system in
which our equation holds, it will hold in any set of coordinates. But by (i), the equation
does hold in locally freely falling coordinates, in which the effect of gravity is locally absent.
The effect of gravity is strictly embodied in the two key quantities that emerge from the
calculus of coordinate transformations: the metric tensor gµν and its first derivatives in Γλµν .
This approach is known as the Principle of General Covariance, and it is a very powerful
tool indeed.

4.1 Transformation laws

The simplest vector one can write down is the ordinary coordinate differential dxµ. If x′µ =
x′µ(x), there is no doubt how the dx′µ are related to the dxµ. It is called the chain rule, and
it is by now very familiar:

dx′µ =
∂x′µ

∂xν
dxν (115)

Be careful to distinguish between the coordinates xµ, which can be pretty much anything,
and their differentials dxµ, which are true vectors. Indeed, any set of quantities V µ that
transforms in this way is known as a contravariant vector:

V ′µ =
∂x′µ

∂xν
V ν (116)

The contravariant 4-velocity, which is a 4-vector, is simply V µ = dxµ/dτ , a generalisation of
the special relativistic dξα/dτ . A covariant vector, by contrast, transforms as

V ′µ =
∂xν

∂x′µ
Vν (117)

“CO LOW, PRIME BELOW.” (Sorry. Maybe you can do better.) These definitions of
contravariant and covariant vectors are consistent with those we first introduced in our
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discussions of the Lorentz matrices Λα
β and Λ̃β

α in Chapter 2, but now generalised from
specific linear transformations to arbitrary transformations.

The simplest covariant vector is the gradient ∂/∂xµ of a scalar Φ. Once again, the chain
rule tells us how to transform from one set of coordinates to another—we’ve no choice:

∂Φ

∂x′µ
=
∂xν

∂x′µ
∂Φ

∂xν
(118)

The generalisation to tensor transformation laws is immediate. A contravariant tensor T µν

transforms as

T ′µν =
∂x′µ

∂xρ
∂x′ν

∂xσ
T ρσ (119)

a covariant tensor Tµν as

T ′µν =
∂xρ

∂x′µ
∂xσ

∂x′ν
Tρσ (120)

and a mixed tensor T µν as

T ′µν =
∂x′µ

∂xρ
∂xσ

∂x′ν
T ρσ (121)

The generalisation to mixed tensors of arbitrary rank should be self-evident.

By this definition the metric tensor gµν really is a covariant tensor, just as its notation
would lead you to believe, because

g′µν ≡ ηαβ
∂ξα

∂x′µ
∂ξβ

∂x′ν
= ηαβ

∂ξα

∂xλ
∂ξβ

∂xρ
∂xλ

∂x′µ
∂xρ

∂x′ν
≡ gλρ

∂xλ

∂x′µ
∂xρ

∂x′ν
(122)

and the same for the contravariant gµν . But the gradient of a vector is not, in general, a
tensor or a vector:

∂V ′λ

∂x′µ
=

∂

∂x′µ

(
∂x′λ

∂xν
V ν

)
=
∂x′λ

∂xν
∂xρ

∂x′µ
∂V ν

∂xρ
+

∂2x′λ

∂xρ∂xν
∂xρ

∂x′µ
V ν (123)

The first term is just what we would have wanted if we were searching for a tensor trans-
formation law. But oh those pesky second order derivatives—the final term spoils it all.
This of course vanishes when the coordinate transformation is linear (as when we found that
vector derivatives are perfectly good tensors under the Lorentz transformations), but not in
general. We will show in the next section that while the gradient of a vector is in general
not a tensor, there is an elegant solution around this problem.

Tensors can be created and manipulated in many ways. For example, direct products of
tensors are tensors:

W µν
ρσ = T µνSρσ. (124)

A linear combination of tensors of the same rank multiplied by scalars is obviously a tensor
of unchanged rank. A tensor can lower its index by multiplying by gµν or raise it with gµν :

T ′ρµ ≡ g′µνT
′νρ =

∂xσ

∂x′µ
∂xλ

∂x′ν
∂x′ν

∂xκ
∂x′ρ

∂xτ
gσλT

κτ =
∂xσ

∂x′µ
∂x′ρ

∂xτ
gσκT

κτ (125)

which indeed does transform as a tensor of mixed second rank, T ρµ . To clarify: multiplying
T µν by any covariant tensor Sρµ generates a mixed tensor Mν

ρ , but we adopt the very useful
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convention of keeping the name T νρ when multiplying by Sρµ = gρµ, and thinking of the index
as “being lowered.” (And of course index-raising for multiplication by gρµ.)

Mixed tensors can “contract” to scalars. Start with T µν . Then consider the transforma-
tion of T µµ:

T ′µµ =
∂x′µ

∂xν
∂xρ

∂x′µ
T νρ = δρνT

ν
ρ = T νν (126)

i.e., T µµ is a scalar T . Exactly the same type of calculation shows that T µνµ is a vector T ν ,
and so on. Remember to contract “up–down:” T µµ = T , not T µµ = T .

The generalisation of the familiar scalar dot product between vectors Aµ and Bµ is
AµBµ = gµνA

µBν . We are often interested in just the spatial part of 4-vectors, the 3-vector
Ai. Then, in a non-Euclidian 3-space, the local angle between two vectors may be written
as the ratio

cos ∆θ =
AiBi

(AjAj BkBk)1/2
=

gijA
iBj

(gklAkAl gmnBmBn)1/2
(127)

the analogue of A ·B/(|A||B|). If we are given two parameterised curves, perhaps two
orbits xi(p) and yi(p), and wish to know the angle between them at some particular point,
this angle becomes

cos ∆θ =
ẋiẏi

(ẋjẋj ẏkẏk)1/2
=

gijẋ
iẏj

(gklẋkẋl gmnẏmẏn)1/2

where the dot notation denotes d/dp. Do you see why this is so?

4.2 The covariant derivative

Recall the geodesic equation
d2xλ

dτ 2
+ Γλµν

dxµ

dτ

dxν

dτ
= 0. (128)

The left hand side has one free index component, and the right hand side surely is a vector:
the trivial zero vector. Since this equation is valid in any coordinates, the left side needs
to transform as a vector. What is interesting is that neither of the two terms by itself is a
vector, yet somehow their sum transforms as a vector.

Rewrite the geodesic equation as follows. Denote dxλ/dτ , a true vector, as V λ. Then

V µ

[
∂V λ

∂xµ
+ ΓλµνV

ν

]
= 0 (129)

Ah ha! Since the left side must be a vector, the stuff in square brackets must be a tensor: it
is contracted with a vector V µ to produce a vector—namely zero. The square brackets must
contain a mixed tensor of rank two. Now, Γλµν vanishes in locally free falling coordinates,
in which we know that simple partial derivatives of vectors are indeed tensors. So this
prescription tells us how to upgrade the notion of a partial derivative to the status of a
tensor: to make a tensor out of a plain old partial derivative, form the quantity

∂V λ

∂xµ
+ ΓλµνV

ν ≡ V λ
;µ (130)
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the so called covariant derivative. Following convention, we use a semicolon to denote co-
variant differentiation. (Some authors get tired of writing out ordinary partial derivatives
and so use a comma for this (e.g V ν

, µ), but it is more clear to use full partial derivative
notation, and we shall abide by this in these notes, if not always in lecture.) The covariant
derivative is a true tensor, taking on a plain partial derivative form only in local freely falling
coordinates. We therefore have our partial derivative generalisation to tensor form!

You know, this is really too important a result not to check in detail. Perhaps you
think there is something special about the geodesic equation, or something special about
our V λ. In addition to this concern, we need to understand how to construct the covariant
derivative of covariant vectors, and of more general tensors. (Talk about confusing. Notice
the use of the word “covariant” twice in that last statement in two very different senses.
Apologies for this awkward, but completely standard, mathematical nomenclature.) If you
are already convinced that the covariant derivative really is a tensor, just skip down to right
after equation (137). You won’t learn anything more than you already know in the next long
paragraph, and there is a lot of calculation.

The first thing we need to do is to establish the transformation law for Γλµν . This is just
repeated application of the chain rule:

Γ′λµν ≡
∂x′λ

∂ξα
∂2ξα

∂x′µ∂x′ν
=
∂x′λ

∂xρ
∂xρ

∂ξα
∂

∂x′µ

(
∂xσ

∂x′ν
∂ξα

∂xσ

)
(131)

Carrying through the derivative,

Γ′λµν =
∂x′λ

∂xρ
∂xρ

∂ξα

(
∂xσ

∂x′ν
∂xτ

∂x′µ
∂2ξα

∂xτ∂xσ
+

∂2xσ

∂x′µ∂x′ν
∂ξα

∂xσ

)
(132)

Cleaning up, and recognising an affine connection when we see one, helps to rid us of these
meddlesome ξ’s:

Γ′λµν =
∂x′λ

∂xρ
∂xτ

∂x′µ
∂xσ

∂x′ν
Γρτσ +

∂x′λ

∂xρ
∂2xρ

∂x′µ∂x′ν
(133)

This may also be written

Γ′λµν =
∂x′λ

∂xρ
∂xτ

∂x′µ
∂xσ

∂x′ν
Γρτσ −

∂xρ

∂x′ν
∂xσ

∂x′µ
∂2x′λ

∂xσ∂xρ
(134)

Do you see why? (Hint: Either integrate ∂/∂x′µ by parts or differentiate the identity

∂x′λ

∂xρ
∂xρ

∂x′ν
= δλν .)

Hence

Γ′λµνV
′ν =

(
∂x′λ

∂xρ
∂xτ

∂x′µ
∂xσ

∂x′ν
Γρτσ −

∂xρ

∂x′ν
∂xσ

∂x′µ
∂2x′λ

∂xρ∂xσ

)
∂x′ν

∂xη
V η, (135)

and spotting some tricky sums over ∂x′ν that turn into Kronecker delta functions,

Γ′λµνV
′ν =

∂x′λ

∂xρ
∂xτ

∂x′µ
ΓρτσV

σ − ∂xσ

∂x′µ
∂2x′λ

∂xρ∂xσ
V ρ (136)

Finally, adding this to (123), the unwanted terms cancel just as they should. We thus obtain

∂V ′λ

∂x′µ
+ Γ′λµνV

′ν =
∂x′λ

∂xν
∂xρ

∂x′µ

(
∂V ν

∂xρ
+ ΓνρσV

σ

)
, (137)
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as desired. This combination really does transform as a tensor ought to.

It is now a one-step process to deduce how covariant derivatives work for covariant vectors.
Consider

VλV
λ
;µ = Vλ

∂V λ

∂xµ
+ ΓλµνV

νVλ (138)

which is a perfectly good covariant vector. Integrating by parts the first term on the right,
and then switching dummy indices λ and ν in the final term, this expression is identical to

∂(V λVλ)

∂xµ
− V λ

[
∂Vλ
∂xµ
− ΓνµλVν

]
. (139)

Since the first term is the covariant gradient of a scalar (zero actually, because V λVλ = −c2
in local inertial coordinates and it’s a scalar, so its always c2), and the entire expression must
be a good covariant vector, the term in square brackets must be a purely covariant tensor
of rank two. We have very quickly found our generalisation for the covariant derivative of a
covariant vector:

Vλ;µ =
∂Vλ
∂xµ
− ΓνµλVν (140)

That this really is a vector can also be directly verified via a calculation exactly similar to
our previous one for the covariant derivative of a contravariant vector.

Covariant derivatives of tensors are now simple to deduce. The tensor T λκ must formally
transform like a contravariant vector if we “freeze” one of its indices at some particular
component and allow the other to take on all component values. Since the formula must be
symmetric in the two indices,

T λκ;µ =
∂T λκ

∂xµ
+ ΓλµνT

νκ + ΓκνµT
λν (141)

and then it should also follow

Tλκ;µ =
∂Tλκ
∂xµ

− ΓνλµTνκ − ΓνκµTλν (142)

and of course

T λκ;µ =
∂T λκ
∂xµ

+ ΓλνµT
ν
κ − ΓνµκT

λ
ν (143)

The generalisation to tensors of arbitrary rank should now be self-evident. To generate the
affine connection terms, freeze all indices in your tensor, then unfreeze them one-by-one,
treating each unfrozen index as either a covariant or contravariant vector, depending upon
whether it is down or up. Practise this until it is second-nature.

We now can give a precise rule for how to take an equation that is valid in special
relativity, and upgrade it to the general relativistic theory of gravity. Work exclusively with
4-vectors and 4-tensors. Replace ηαβ with gµν. Take ordinary derivatives and turn them into
covariant derivatives. Voilà: your equation is set for the presence of gravitational fields.

It will not have escaped your attention, I am sure, that applying (142) to gµν produces

gµν;λ =
∂gµν
∂xλ

− gρνΓρµλ − gµρΓ
ρ
νλ = 0 (144)

where equation (86) has been used for the last equality. The covariant derivatives of gµν
vanish. This is exactly what we would have predicted, since the ordinary derivatives of ηαβ
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vanish in special relativity, and thus the covariant derivative of gµν should vanish in the
presence of gravitational fields. It’s just the general relativistic upgrade of ∂ηαβ/∂x

γ = 0.

Here are two important technical points that are easily shown. (You should do so explic-
itly.)

i.) The covariant derivative obeys the Leibniz rule for products. For example:

(T µνUλκ);ρ = T µν;ρ Uλκ + T µνUλκ;ρ,

(V µVµ);ν = V µ(Vµ);ν + Vµ(V µ);ν = V µ∂V
µ

∂xν
+ Vµ

∂Vµ
∂xν

(Γ′s cancel!)

ii.) The operation of contracting two tensor indices commutes with covariant differentiation.
It does not matter which you do first. Check it out in the second example above.

4.3 The affine connection and basis vectors

The reader may be wondering how this all relates to our notions of, say, spherical or polar
geometry and their associated sets of unit vectors and coordinates. The answer is: very
simply. Our discussion will be straightforward and intuitive, rather than rigorous.

A vector V may be expanded in a set of basis vectors,

V = V aea (145)

where we sum over the repeated a, but a here on a bold-faced vector refers to a particular
vector in the basis set. The V a are the usual vector contravariant components: old friends,
just numbers. Note that the sum is not a scalar formed from a contraction! We’ve used
roman letters here to help avoid that pitfall.

The covariant components are associated with what mathematicians are pleased to call
a dual basis:

V = Vbe
b (146)

Same V mind you, just different ways of representing its components. If the e’s seem a
little abstract, don’t worry, just take them at a formal level for the moment. You’ve seen
something very like them before in elementary treatments of vectors.

The basis and the dual basis are related by a dot product rule,

ea·eb = δba. (147)

This dot product rule relates the vectors of orthonormal bases. The basis vectors transform
just as good old vectors should:

e′a =
∂xb

∂x′a
eb, e′a =

∂x′a

∂xb
eb. (148)

Note that the dot product rule gives

V ·V = V aVbea·eb = V aVbδ
b
a = V aVa, (149)

as we would expect. On the other hand, expanding the differential line element ds,

ds2 = eadx
a·ebdxb = ea·ebdxadxb (150)
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so that we recover the metric tensor

gab = ea·eb (151)

Exactly the same style calculation gives

gab = ea·eb (152)

These last two equations tell us first that gab is the coefficient of ea in an expansion of the
vector eb in the usual basis:

eb = gabe
a, (153)

and tell us second that gab is the coefficient of ea in an expansion of the vector eb in the dual
basis:

eb = gabea (154)

We’ve recovered the rules for raising and lowering indices, in this case for the entire basis
vector.

Basis vectors change with coordinate position, as pretty much all vectors do in general.
We define an thrice-indexed object object Γbac by

∂ea
∂xc

= Γbaceb (155)

so that
Γbac = eb·∂cea ≡ ∂c(ea·eb)− ea·∂ceb = −ea·∂ceb. (156)

(Remember the shorthand notation ∂/∂xc = ∂c.) The last equality gives the expansion

∂eb

∂xc
= −Γbace

a (157)

Consider ∂cgab = ∂c(ea·eb). Using (155),

∂cgab = (∂cea)·eb + ea·(∂ceb) = Γdaced·eb + ea·Γdbced, (158)

or finally
∂cgab = Γdacgdb + Γdbcgad, (159)

exactly what we found in (86)! This leads, in turn, precisely to (90), the equation for the
affine connection in terms of the g partial derivatives. We now have a more intuitive under-
standing of what the Γ’s really represent: they are expansion coefficients for the derivatives
of basis vectors, which is how we are used to thinking of the extra acceleration terms in
non Cartesian coordinates when we first encounter them in our first mechanics courses. In
Cartesian coordinates, the Γbac just go away.

Finally, consider

∂a(V
beb) = (∂aV

b)eb + V b∂aeb = (∂aV
b)eb + V bΓcabec (160)

Taking the dot product with ed:

ed·∂a(V beb) = ∂aV
d + V bΓdab ≡ V d

;a, (161)
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just the familiar covariant derivative of a contravariant vector. This one you should be able
to do yourself:

ed·∂a(Vbeb) = ∂aVd − VbΓbad ≡ Vd;a, (162)

the covariant derivative of a covariant vector. This gives us some understanding as to why
the true tensors formed from the partial derivatives of a vector V are not simply ∂aV

d and
∂aVd, but rather ed·∂a(V beb) and ed·∂a(Vbeb) respectively. Our terse and purely coordinate
notation avoids the use of the e bases, but at a cost of missing a deeper and ultimately
simplifying mathematical structure. We can see an old maxim of mathematicians in action:
good mathematics starts with good definitions.

4.4 Volume element

The transformation of the metric tensor gµν may be thought of as a matrix equation:

g′µν =
∂xκ

∂x′µ
gκλ

∂xλ

∂x′ν
(163)

Remembering that the determinant of the product of matrices is the product of the deter-
minants, we find

g′ =

∣∣∣∣ ∂x∂x′
∣∣∣∣2 g (164)

where g is the determinant of gµν (just the product of the diagonal terms for the diagonal
metrics we will be using), and the notation |∂x′/∂x| indicates the Jacobian of the transfor-
mation x → x′. The significance of this result is that there is another quantity that also
transforms with a Jacobian factor: the volume element d4x.

d4x′ =

∣∣∣∣∂x′∂x

∣∣∣∣ d4x. (165)

This means √
−g′ d4x′ =

√
−g
∣∣∣∣ ∂x∂x′

∣∣∣∣ ∣∣∣∣∂x′∂x

∣∣∣∣ d4x =
√
−g d4x. (166)

In other words,
√
−g d4x is the invariant volume element of curved spacetime. The minus

sign is used merely as an absolute value to keep the quantities positive. In flat Minkowski
space time, d4x is invariant by itself.

Euclidian example: in going from Cartesian (g = 1) to cylindrical polar (g = R2) to
spherical coordinates (g = r4 sin2 θ), we have dx dy dz = RdRdz dφ = r2 sin θ dr dθ dφ. You
knew that. For a diagonal gµν , our formula gives a volume element of√

|g11g22g33g00|dx1 dx2 dx3 dx0,
just the product of the proper differential intervals. That also makes sense.

4.5 Covariant div, grad, curl, and all that

The ordinary partial derivative of a scalar transforms generally as covariant vector, so in this
case there is no distinction between a covariant and standard partial derivative. Another
easy result is

Vµ;ν − Vν;µ =
∂Vµ
∂xν
− ∂Vν
∂xµ

. (167)
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(The affine connection terms are symmetric in the two lower indices, so they cancel.) More
interesting is

V µ
;µ =

∂V µ

∂xµ
+ ΓµµλV

λ (168)

where by definition

Γµµλ =
gµρ

2

(
∂gρµ
∂xλ

+
∂gρλ
∂xµ

− ∂gµλ
∂xρ

)
(169)

Now, gµρ is symmetric in its indices, whereas the last two g derivatives combined are anti-
symmetric in the same indices, so that combination disappears entirely. We are left with

Γµµλ =
gµρ

2

∂gρµ
∂xλ

(170)

In this course, we will be dealing entirely with diagonal metric tensors, in which µ = ρ for
nonvanishing entries, and gµρ is the reciprocal of gµρ. In this simple case,

Γµµλ =
1

2

∂ ln |g|
∂xλ

(171)

where g is as usual the determinant of gµν , here just the product of the diagonal elements.
Though our result seems specific to diagonal gµν , W72 pp. 106-7, shows that this result is
true for any gµν .

2

The covariant divergence (168) becomes

V µ
;µ =

1√
|g|
∂(
√
|g|V µ)

∂xµ
(172)

a neat and tidy result. Note that ∫ √
|g|d4xV µ

;µ = 0 (173)

if V µ vanishes sufficiently rapidly) at infinity. (Why?)

We cannot leave the covariant derivative without discussing T µν;µ, the covariant divergence
of T µν . (And similarly for the divergence of T µν .) Conserved stress tensors are, after all,
general relativity’s “coin of the realm.” We have:

T µν;µ =
∂T µν

∂xµ
+ ΓµµλT

λν + ΓνµλT
µλ, or T µν;µ =

∂T µν
∂xµ

+ ΓµµλT
λ
ν − ΓλµνT

µ
λ (174)

and using (171), we may condense this to

T µν;µ =
1√
|g|
∂(
√
|g|T µν)
∂xµ

+ ΓνµλT
µλ, or T µν;µ =

1√
|g|
∂(
√
|g|T µν)
∂xµ

− ΓλµνT
µ
λ. (175)

For an antisymmetric contravariant tensor, call it Aµν , the last term of the first equality
drops out because Γ is symmetric in its lower indices:

Aµν;µ =
1√
|g|
∂(
√
|g|Aµν)
∂xµ

if Aµν antisymmetric. (176)

2Sketchy proof for the mathematically inclined: For matrix M , trace Tr, differential δ, to first order
in δ we have δ ln detM = ln det(M + δM) − ln detM = ln detM−1(M + δM) = ln det(1 + M−1δM) =
ln(1 + TrM−1δM) = TrM−1δM . Can you supply the missing details?
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4.6 Hydrostatic equilibrium

You have been patient and waded through a sea of indices, and it is time to be rewarded.
We will do our first real physics problem in general relativity: hydrostatic equilibrium.

In Newtonian mechanics, you will recall that hydrostatic equilibrium represents a balance
between a pressure gradient and the force of gravity. In general relativity this is completely
encapsulated in the condition

T µν;µ = 0

applied to the energy-momentum stress tensor (65), upgraded to covariant status:

T µν = Pgµν + (ρ+ P/c2)UµUν (177)

Our conservation equation is

0 = T µν;µ = gµν
∂P

∂xµ
+
[
(ρ+ P/c2)UµUν

]
;µ

(178)

where we have made use of the Leibniz rule for the covariant derivative of a product, and
the fact that the gµν covariant derivative vanishes. Using (175):

0 = gµν
∂P

∂xµ
+

1

|g|1/2
∂

∂xµ
[
|g|1/2(ρ+ P/c2)UµUν

]
+ Γνµλ(ρ+ P/c2)UµUλ (179)

In static equilibrium, all the U components vanish except U0. To determine this, we use

gµνU
µUν = −c2 (180)

the upgraded version of special relativity’s ηαβU
αUβ = −c2. Thus,

(U0)2 = − c2

g00
, (181)

and with

Γν00 = −g
µν

2

∂g00
∂xµ

, (182)

our equation reduces to

0 = gµν
[
∂P

∂xµ
+
(
ρc2 + P

) ∂ ln |g00|1/2

∂xµ

]
(183)

Since gµν has a perfectly good inverse, the term in square brackets must be zero:

∂P

∂xµ
+
(
ρc2 + P

) ∂ ln |g00|1/2

∂xµ
= 0 (184)

This is the general relativistic equation of hydrostatic equilibrium. Compare this with the
Newtonian counterpart:

∇P + ρ∇Φ = 0 (185)

The difference for a static problem is the replacement of ρ by ρ+ P/c2 for the inertial mass
density, and the use of ln |g00|1/2 for the potential (to which it reduces in the Newtonian
limit).
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If P = P (ρ), P ′ ≡ dP/dρ, equation (184) may be formally integrated:∫
P ′(ρ) dρ

P (ρ) + ρc2
+ ln |g00|1/2 = constant. (186)

Exercise. Solve the GR equation of hydrostatic equilibrium exactly for the case |g00| = (1 −
2GM/rc2)1/2 (e.g., near the surface of a neutron star) and P = Kργ for γ ≥ 1.

4.7 Covariant differentiation and parallel transport

In this section, we view covariant differentiation in a different light. We make no new
technical developments, rather we understand the content of the geodesic equation in a
different way. Start with a by now old friend,

d2xλ

dτ 2
+ Γλµν

dxµ

dτ

dxν

dτ
= 0. (187)

Writing dxλ/dτ as the vector it is, V λ, to help our thinking a bit,

dV λ

dτ
+ Γλµν

dxµ

dτ
V ν = 0, (188)

a covariant formulation of the statement that the vector V λ is conserved along a geodesic
path. But the covariance property of this statement has nothing to do with the specific
identity of V λ with dxλ/dτ . The full left-side of this equation is a genuine vector for any V λ

as long as V λ itself is a bona fide contravariant vector. The right side simply tells us that the
fully covariant left side expression is zero. (In our particular example, because momentum
is conserved.) Therefore, just as we “upgrade” from special to general relativity the partial
derivative,

∂V α

∂xβ
→ ∂V λ

∂xµ
+ ΓλµνV

ν ≡ V λ
;µ (189)

we upgrade the derivative along a path x(τ) in the same way by multiplying by dxµ/dτ and
summing over the index µ:

dV α

dτ
→ dV λ

dτ
+ Γλµν

dxµ

dτ
V ν ≡ DV λ

Dτ
(190)

DV λ/Dτ is a true vector; the transformation

DV ′λ

Dτ
=
∂x′λ

∂xµ
DV µ

Dτ
(191)

may be verified directly. (The inhomogeneous contributions from the Γ transformation and
the derivatives of the derivatives of the coordinate transformation coefficients cancel in a
manner exactly analogous to our original covariant partial derviative calculation.)

Exactly the same reasoning is used to define the covariant derivative for a covariant
vector,

dVλ
dτ
− Γνµλ

dxµ

dτ
Vν ≡

DVλ
Dτ

. (192)
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and for tensors, e.g.:
dT σλ
dτ

+ Γσµν
dxν

dτ
T µλ − Γµλν

dxν

dτ
T σµ ≡

DT σλ
Dτ

. (193)

When a vector or tensor quantity is carried along a path that does not change in a
locally inertially reference frame (d/dτ = 0), this statment becomes in arbitrary coordinates
D/Dτ = 0, the same physical result expressed in a covariant language. (Once again this
works because of identical agreement in the inertial coordinates, and then zero is zero in any
coordinate frame.) The condition D/Dτ = 0 is known as parallel transport. A steady vector,
for example, may always point along the y axis as we move it around in the xy plane, but its
r and θ components will have to change in order to keep this true! How those components
change is the content of the parallel transport equation.

Now, if we do a round trip and come back to our exact starting point, does a vector have
to have the same value it began with? You might think that the answer must be yes, but it
turns out to be more complicated than that. Indeed, it is a most interesting question...

The stage is now set to introduce the key tensor embodying the gravitational distortion
of spacetime.
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5 The curvature tensor

The properties which distinguish space

from other conceivable triply-extended

magnitudes are only to be deduced

from experience...At every point the

three-directional measure of curvature

can have an arbitrary value if only the

effective curvature of every measurable

region of space does not differ notice-

ably from zero.

— G. F. B. Riemann

5.1 Commutation rule for covariant derivatives

The covariant derivative shares many properties with the ordinary partial derivative: it is a
linear operator, it obeys the Leibniz rule, and it allows true tensor status to be bestowed upon
partial derivatives under any coordinate transformation. A natural question arises. Ordinary
partial derivatives commute: the order in which they are taken does not matter, provided
suitable smoothness conditions are present. Is the same true of covariant derivatives? Does
V µ
;σ;τ equal V µ

;τ ;σ?

Just do it.

V µ
;σ =

∂V µ

∂xσ
+ ΓµνσV

ν ≡ T µσ (194)

Then

T µσ;τ =
∂T µσ
∂xτ

+ ΓµντT
ν
σ − ΓνστT

µ
ν , (195)

or

T µσ;τ =
∂2V µ

∂xτ∂xσ
+

∂

∂xτ
(
ΓµλσV

λ
)

+ Γµντ

(
∂V ν

∂xσ
+ ΓνλσV

λ

)
− Γνστ

(
∂V µ

∂xν
+ ΓµλνV

λ

)
(196)

The first term and the last group (proportional to Γνστ ) are manifestly symmetric in σ and
τ , and so will vanish when the same calculation is done with the indices reversed and then
subtracted off. A bit of inspection shows that the same is true for all the remaining terms
proportional to the partial derivatives of V µ. The residual terms from taking the covariant
derivative commutator are

T µσ;τ − T µτ ;σ =

[
∂Γµλσ
∂xτ

− ∂Γµλτ
∂xσ

+ ΓµντΓ
ν
λσ − ΓµνσΓνλτ

]
V λ, (197)

which we may write as
T µσ;τ − T µτ ;σ = Rµ

λστV
λ (198)

Now the right side of this equation must be a tensor, and V λ is an arbitrary vector, which
means that Rµ

λστ needs to transform its coordinates as a tensor. That it does so may also
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be verified explicitly in a nasty calculation (if you want to see it spelt out in detail, see W72
pp.132-3). We conclude that

Rµ
λστ =

∂Γµλσ
∂xτ

− ∂Γµλτ
∂xσ

+ ΓµντΓ
ν
λσ − ΓµνσΓνλτ (199)

is indeed a true tensor, and it is called the curvature tensor. In fact, it may be shown (W72
p. 134) that this is the only tensor that is linear in the second derivatives of gµν and contains
only its first and second derivatives.

Why do we refer to this mixed tensor as the “curvature tensor?” Well, we begin to
answer this by noting that it vanishes in ordinary flat Minkowski spacetime—we simply
choose Cartesian coordinates to do our calculation. Then, because Rµ

λστ is a tensor, if it is
zero in one set of coordinates, it is zero in all. Commuting covariant derivatives makes sense
in this case, since they amount to ordinary derivatives. So distortions from Minkowski space
are essential.

Exercise. What is the (much simpler) form of Rµ
λστ in local inertial coordinates? It is often

convenient to work in such coordinates to prove a result, and then generalise it to arbitrary
coordinates using the the fact that Rµ

λστ is a tensor.

5.2 Parallel transport

Our intuition sharpens with the yet more striking example of parallel transport. Consider a
vector Vλ whose covariant derivative along a curve x(τ) vanishes. Then,

dVλ
dτ

= Γµλν
dxν

dτ
Vµ (200)

Consider next a tiny round trip journey over a closed path in which Vλ is changing by the
above prescription. If we remain in the neighbourhood of some point Xρ, with xρ passing
through Xρ at some instant τ0, x

ρ(τ0) = Xρ, we Taylor expand as follows:

Γµλν(x) = Γµλν(X) + (xρ −Xρ)
∂Γµλν
∂Xρ

+ ... (201)

Vµ[x(τ)] = Vµ(X) + dVµ + ... = Vµ(X) + (xρ −Xρ)Γσµρ(X)Vσ(X) + ... (202)

(where xρ −Xρ is dxρ from the parallel transport equation), whence

Γµλν(x)Vµ(x) = ΓµλνVµ + (xρ −Xρ)Vσ

(
∂Γσλν
∂Xρ

+ ΓσµρΓ
µ
λν

)
+ ... (203)

where all quantities on the right (except x!) are evaluated at X. Integrating

dVλ = Γµλν(x)Vµ(x) dxν (204)

around a tiny closed path
∮

, and using (204) and (203), we find that there is a change in
the starting value ∆Vλ arising from the term linear in xρ given by

∆Vλ =

(
∂Γσλν
∂Xρ

+ ΓσµρΓ
µ
λν

)
Vσ

∮
xρ dxν (205)
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The integral
∮
xρdxν certainly doesn’t vanish. (Try integrating it around a unit square

in the xy plane.) But it is antisymmetric in ρ and ν. (Integrate by parts and note that
the integrated term vanishes, being an exact differential.) That means the part of the ΓΓ
term that survives the ρν summation is the part that is antisymmetric in (ρ, ν). Since any
object depending on two indices, say A(ρ, ν), can be written as a symmetric part plus an
antisymmetric part,

1

2
[A(ρ, ν) + A(ν, ρ)] +

1

2
[A(ρ, ν)− A(ν, ρ)],

we find

∆Vλ =
1

2
Rσ

λνρVσ

∮
xρ dxν (206)

where

Rσ
λνρ =

(
∂Γσλν
∂Xρ

−
∂Γσλρ
∂Xν

+ ΓσµρΓ
µ
λν − ΓσµνΓ

µ
λρ

)
(207)

is precisely the curvature tensor. Parallel transport of a vector around a closed curve does
not change the vector, unless the enclosed area has a nonvanishing curvature tensor. In fact,
“the enclosed area” can be given a more intuitive if we think of integrating around a very
tiny square in the ρν hyperplane. Then the closed loop integral is just the directed area
dxρdxν :

∆Vλ =
1

2
Rσ

λνρVσdx
ρ dxν . (208)

The conversion of a tiny closed loop integral to an enclosed surface area element reminds us
a bit of Stokes theorem, and it will not be surprising to see that there is an analogy here to
the identity “divergence of curl equals zero”. We will see this shortly.

Exercise. A laboratory demonstration. Take a pencil and move it round the surface
of a flat desktop without rotating the pencil. Moving the pencil around a closed path,
always parallel to itself, will not change its orientation. Now do the same on the surface of a
spherical globe. Take a small pencil, pointed poleward, and move it from the equator along
the 0◦ meridian through Greenwich till you hit the north pole. Now, once again parallel to
itself, move the pencil down the 90◦E meridian till you come to the equator. Finally, once
again parallel to itself, slide the pencil along the equator to return to the starting point at
the prime meridian.

Has the pencil orientation changed from its initial one? Explain.

Curvature3, or more precisely the departure of spacetime from Minkowski structure,
reveals itself through the existence of the curvature tensor Rσ

λνρ. If spacetime is Minkowski-
flat, every component of the curvature tensor vanishes. An important consequence is that
parallel transport around a closed loop can result in a vector or tensor not returning to
its orginal value, if the closed loop encompasses matter (or its energy equivalent). An
experiment was proposed in the 1960’s to measure the precession of a gyroscope orbiting the
earth due to the effects of the spacetime curvature tensor. This eventually evolved into a
satellite known as Gravity Probe B, a $750,000,000 mission, launched in 2004. Alas, it was
plagued by technical problems for many years, and its results were controversial because of
unexpectedly high noise levels (solar activity). A final publication of science results in 2011
claims to have verified the predictions of general relativity to high accuracy, including an
even smaller effect known as “frame dragging” from the earth’s rotation, but my sense is

3“Curvature” is one of these somewhat misleading mathematical labels that has stuck, like “imaginary”
numbers. The name implies an external dimension into which the space is curved or embedded, an unnec-
essary complication. The space is simply distorted.
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that there is lingering uneasiness in the physics community regarding the handling of the
noise. Do an internet search on Gravity Probe B and judge for yourself!

When GPB was first proposed in the early 1960’s, tests of general relativity were very
few and far between. Any potentially observable result was novel and worth exploring. Since
that time, experimental GR has evolved tremendously. We live in a world of gravitational
lensing, exquisitely sensitive Shapiro time delays, and beautiful confirmations of gravitational
radiation, first via the binary pulsar system PSR1913+16, and now the recent direct signal
detection of GW150914 via advanced LIGO. All of these will be discussed in later chapters.
At this point it borders on the ludicrous to entertain serious doubt that the crudest leading
order general relativity parallel transport prediction is correct. (In fact, it looks like we have
seen this effect directly in close binary pulsar systems.) Elaborately engineered artificial
gyroscopes, precessing by teeny-tiny amounts in earth orbit don’t seem very exciting any
more to 21st century physicists.

5.3 Algebraic identities of Rσ
νλρ

5.3.1 Remembering the curvature tensor formula.

It is helpful to have a mnemonic for generating the curvature tensor. The hard part is
keeping track of the indices. Remember that the tensor itself is just a sum of derivatives of
Γ, and quadratic products of Γ. That part is easy to remember, since the curvature tensor
has “dimensions” of 1/x2, where x represents a coordinate. To remember the coordinate
juggling of Ra

bcd start with:
∂Γabc
∂xd

+ Γ∗bcΓ
a
d∗

where the first abcd ordering is simple to remember since it follows the same placement in
Ra

bcd, and ∗ is a dummy variable. For the second ΓΓ term, remember to just write out
the lower bcd indices straight across, making the last unfilled space a dummy index ∗. The
counterpart dummy index that is summed over must then be the upper slot on the other Γ,
since there is no self-contracted Γ in the full curvature tensor. There is then only one place
left for upper a. To finish off, just subtract the same thing with c and d reversed. Think of
it as swapping your CD’s. We arrive at:

Ra
bcd =

∂Γabc
∂xd

− ∂Γabd
∂xc

+ Γ∗bcΓ
a
d∗ − Γ∗bdΓ

a
c∗ (209)

5.4 Rλµνκ: fully covariant form

The fully covariant form of the stress tensor can be written so that it involves only second-
order derivatives of gµν and products of Γs, with no Γ partial derivatives. The second-order
g-derivatives, which are linear terms, will be our point of contact with Newtonian theory
from the full field equations. But hang on, we have a bit of heavy weather ahead.

We define
Rλµνκ = gλσR

σ
µνκ (210)

or

Rλµνκ = gλσ

[
∂Γσµν
∂xκ

−
∂Γσµκ
∂xν

+ ΓηµνΓ
σ
κη − ΓηµκΓ

σ
νη

]
(211)

Remembering the definition of the affine connection (90), the right side of (211) is
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gλσ
2

∂

∂xκ

[
gσρ
(
∂gρµ
∂xν

+
∂gρν
∂xµ

− ∂gµν
∂xρ

)]
− gλσ

2

∂

∂xν

[
gσρ
(
∂gρµ
∂xκ

+
∂gρκ
∂xµ

− ∂gµκ
∂xρ

)]
+ gλσ

(
ΓµνλΓ

σ
κη − ΓηµκΓ

σ
νη

)
(212)

The xκ and xν partial derivatives will operate on the gσρ term and the g-derivative terms. Let
us begin with the second group, the ∂g/∂x derivatives, as it is simpler. With gλσg

σρ = δλρ ,
the terms that are linear in the second order g derivatives are

1

2

(
∂2gλν
∂xκ∂xµ

− ∂2gµν
∂xκ∂xλ

− ∂2gλκ
∂xν∂xµ

+
∂2gµκ
∂xν∂xλ

)
(213)

If you can sense the beginnings of the classical wave equation lurking in these linear second
order derivatives, the leading terms when gµν departs only a little from ηµν , then you are
very much on the right track.

We are not done of course. We have the terms proportional to the κ and ν derivatives
of gσρ, which certainly do not vanish in general. But the covariant derivative of the metric
tensor gλσ does vanish, so invoke this sleight-of-hand integration by parts:

gλσ
∂gσρ

∂xκ
= −gσρ∂gλσ

∂xκ
= −gσρ (Γηκλgησ + Γηκσgηλ) (214)

where in the final equality, equation (142) has been used. By bringing gσρ out from the
partial derivative, it recombines to form affine connections once again. All the remaining
terms of Rλµνκ from (212) are now of the form gΓΓ:

− (Γηκλgησ +����Γηκσgηλ) Γσµν + (Γηνλgησ +����Γηνσgηλ) Γσµκ + gλσ
(
����ΓηµνΓ

σ
κη −����ΓηµκΓ

σ
νη

)
, (215)

It is not obvious at first, but with a little colour coding and index agility to help, you should
be able to see four of these six gΓΓ terms cancel out— the second group with the fifth, the
fourth group with the sixth—leaving only the first and third terms:

gησ
(
ΓηνλΓ

σ
µκ − ΓηκλΓ

σ
µν

)
(216)

Adding together the terms in (213) and (216), we arrive at

Rλµνκ =
1

2

(
∂2gλν
∂xκ∂xµ

− ∂2gµν
∂xκ∂xλ

− ∂2gλκ
∂xν∂xµ

+
∂2gµκ
∂xν∂xλ

)
+ gησ

(
ΓηνλΓ

σ
µκ − ΓηκλΓ

σ
µν

)
(217)

Exercise. What is Rλµνκ in local inertial coordinates?

Note the following important symmetry properties for the indices of Rλµνκ. Because they
may be expressed as vanishing tensor equations, they may be established in any coordinate
frame, so we choose a local frame in which the Γ vanish. They are then easily verified from
the terms linear in the g derivatives in (217):

Rλµνκ = Rνκλµ (symmetry) (218)

Rλµνκ = −Rµλνκ = −Rλµκν = Rµλκν (antisymmetry) (219)

Rλµνκ +Rλκµν +Rλνκµ = 0 (cyclic) (220)
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5.5 The Ricci Tensor

The Ricci tensor is the curvature tensor contracted on its (raised) first and third indices,
Ra

bad. In terms of the covariant curvature tensor:

Rµκ = gλνRλµνκ = gλνRνκλµ (by symmetry) = gνλRνκλµ = Rκµ (221)

so that the Ricci tensor is symmetric.

The Ricci tensor is an extremely important tensor in general relativity. Indeed, we shall
very soon see that Rµν = 0 is Einstein’s Laplace equation. There is enough information here
to calculate the deflection of light by a gravitating body or the advance of a planet’s orbital
perihelion! What is tricky is to guess the general relativistic version of the Poisson equation,
and no, it is not Rµν proportional to the stress energy tensor Tµν . (It wouldn’t be very tricky
then, would it?) Notice that while Rλ

µνκ = 0 implies that the Ricci tensor vanishes, the
converse does not follow: Rµν = 0 does not necessarily mean that the full curvature tensor
(covariant or otherwise) vanishes.

Exercise. Fun with the Ricci tensor. Prove first that

Rµκ =
∂Γλµλ
∂xκ

−
∂Γλµκ
∂xλ

+ ΓηµλΓ
λ
κη − ΓηµκΓ

λ
λη.

Next show that
Rµκ = −gλνRµλνκ = −gλνRλµκν = gλνRµλκν ,

and that gλµRλµνκ = gνκRλµνκ = 0. Why does this mean that Rµκ is the only second rank
covariant tensor that can be formed from contracting Rλµνκ?

We are not quite through contracting. We may form the curvature scalar

R ≡ Rµ
µ (222)

another very important quantity in general relativity.

Exercise. The curvature scalar is unique. Prove that

R = gνλgµκRλµνκ = −gνλgµκRµλνκ

and that
gλµgνκRλµνκ = 0.

Justify the title of this exercise.

5.6 The Bianchi Identities

The covariant curvature tensor obeys a very important differential identity, analogous to
div(curl)=0. These are the Bianchi identities. We prove the Bianchi identities in our
favourite freely falling inertial coordinates with Γ = 0, and since we will be showing that a
tensor is zero in these coordinates, it is zero in all coordinates. In Γ = 0 coordinates,

Rλµνκ;η =
1

2

∂

∂xη

(
∂2gλν
∂xκ∂xµ

− ∂2gµν
∂xκ∂xλ

− ∂2gλκ
∂xµ∂xν

+
∂2gµκ
∂xν∂xλ

)
(223)
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The Bianchi identities follow from cycling κ goes to ν, ν goes to η, η goes to κ. Leave λ and
µ alone. Repeat. Add the original Rλµνκ;η and the two cycled expressions together. You will
find that this gives

Rλµνκ;η +Rλµην;κ +Rλµκη;ν = 0 (224)

An easy way to check the bookkeeping on this is just to pay attention to the g’s: once
you’ve picked a particular value of ∂2gab in the numerator, the other ∂xc indices downstairs
are unambiguous, since as coordinate derivatives their order is immaterial. The first term
in (224) is then just shown: (gλν ,−gµν ,−gλκ, gµκ). Cycle to get the second group for the
second Bianchi term, (gλη,−gµη,−gλν , gµν). The final term then is (gλκ,−gµκ,−gλη, gµη).
Look: every g has its opposite when you add these all up, so the sum is clearly zero.

We would like to get equation (224) into the form of a single vanishing covariant tensor
divergence, for reasons that will soon become very clear. Toward this goal, contract λ with
ν, remembering the symmetries in (219). (E.g.: in the second term on the left side of [224],
swap ν and η before contracting, changing the sign.) We find,

Rµκ;η −Rµη;κ +Rν
µκη;ν = 0 (225)

Next, contract µ with κ:
R;η −Rµ

η;µ −Rν
η;ν = 0 (226)

(Did you understand the manipulations to get that final term on the left? First set things up with:

Rνµκη;ν = gνσRσµκη;ν = −gνσRµσκη;ν

Now it is easy to raise µ and contract with κ:

−gνσRµσµη;ν = −gνσRση;ν = −Rνη;ν)

Cleaning things up, our contracted identity (226) becomes:

(δµηR− 2Rµ
η);µ = 0. (227)

Raising η (we are allowed, of course, to bring gνη inside the covariant derivative to do this—
why?), and dividing by −2 puts this identity into its classic “zero-divergence” form:(

Rµν − gµνR
2

)
;µ

= 0 (228)

The generic tensor combination Aµν − gµνA/2 will appear repeatedly in our study of gravi-
tational radiation.

Einstein did not know equation (228) when he was struggling mightily with his theory,
but to be fair neither did most mathematicians! The identities were actually first discov-
ered by the German mathematician A. Voss in 1880, then independently in 1889 by Ricci.
These results were then quickly forgotten, even, it seems, by Ricci himself. Bianchi then
rediscovered them on his own in 1902, but they were still not widely known in the mathe-
matics community in 1915. This was a pity, because the Bianchi identities have been called
the “royal road to the Gravitational Field Equations ” by Einstein’s biographer A. Pais. It
seems to have been the mathematician H. Weyl who in 1917 first recognised the importance
of the Bianchi identitites for relativity, but the particular derivation we have followed was
not formulated until 1922, by Harward.

The reason for the identities’ importance is precisely analogous to Maxwell’s understand-
ing of the restrictions that the curl operator imposes on the field it generates, and to why the
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displacement current needs to be added to the equation ∇×B = µ0J . Taking the diver-
gence of this equation gives zero identically on the left—the divergence of the curl is zero—so
the right hand source term must also have a vanishing divergence. In other words, it must
become a statement of some sort of physical conservation law. Maxwell needed and invoked a
physical “displacement current,” (1/c2)∂E/∂t, and added it to the right side of the equation.
The ensuing physical conservation law corresponded to the conservation of electric charge,
now built into the fundamental formulation of Maxwell’s Equations. Here, we shall use the
Bianchi identities as an analogue (and it really is a precise mathematical analogue) of “the
divergence of the curl is zero,” a geometrical constraint that ensures that the Gravitational
Field Equations have conservation of the stress energy tensor automatically built into their
fundamental formulation, just as Maxwell’s Field Equations have charge conservation built
into their underlying structure. What is good for Maxwell is good for Einstein.
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6 The Einstein Field Equations

In the spring of 1913, Planck and

Nernst had come to Zürich for the

purpose of sounding out Einstein about

his possible interest in moving to

Berlin...Planck [asked him] what he

was working on, and Einstein described

general relativity as it was then. Planck

said ‘As an older friend, I must advise

you against it for in the first place

you will not succeed; and even if you

succeed, no one will believe you.’

— A. Pais, writing in ‘Subtle is the

Lord’

6.1 Formulation

We will now apply the principle of general covariance to the gravitational field itself. What
is the relativistic analogue of ∇2Φ = 4πGρ? We have now built up a sufficiently strong
mathematical arsenal from Riemannian geometry to be able to give a satisfactory answer to
this question.

We know that we must work with vectors and tensors to maintain general covariance, and
that the Newtonian-Poisson source, ρ, is a mere component of a more general stress-energy
tensor Tµν (in covariant tensor form) in relativity. We expect therefore that the gravitional
field equations will take the form

Gµν = CTµν (229)

where Gµν is a tensor comprised of gµν and its second derivatives, or products of the first
derivatives of gµν . We guess this since i) we know that in the Newtonian limit the largest
component of gµν is the g00 ' −1 − 2Φ/c2 component; ii) we need to recover the Poisson
equation; and iii) we assume that we are seeking a theory of gravity that does not change its
character with scale: it has no characteristic length associated with it where the field changes
fundamentally in character. The last condition may strike you as a bit too restrictive. Who
ordered that? Well, umm...OK, we now know this is actually wrong. It is wrong when applied
to the Universe at large! But it is the simplest assumption that we can make that will satisfy
all the basic requirements of a good theory. We’ll come back to the general relativity updates
once we have operating system GR1.0 installed.

Next, we know that the stress energy tensor is conserved in the sense of T µν;ν = 0. We
also know from our work with the Bianchi identities of the previous section that this will
automatically be satisfied if we take Gµν to be proportional to the particular linear combi-
nation

Gµν ∝ Rµν −
gµνR

2

(Notice that there is no difficulty shifting indices up or down as considerations demand: our
index shifters gµν and gµν all have vanishing covariant derivatives and can moved inside and
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outside of semi-colons.) We have determined the field equations of gravity up to an overall
normalisation:

Rµν −
gµνR

2
= CTµν (230)

The final step is to recover the Newtonian limit. In this limit, Tµν is dominated by T00, and
gµν can be replaced by ηαβ when shifting indices. The leading order derivative of gµν that
enters into the field equations comes from

g00 ' −1− 2Φ

c2

where Φ is the usual Newtonian potential. In what follows, we use i, j, k to indicate spatial
indices, and 0 will always be reserved for time.

The trace of equation (230) reads (raise µ, contract with ν):

R− 4× 1

2
R = −R = CT. (231)

Substituting this for R back in the original equation leads to

Rµν = C

(
Tµν −

gµνT

2

)
≡ CSµν (232)

which defines the so-called source function, a convenient grouping we shall use later:

Sµν = Tµν − gµνT/2. (233)

The 00 component of of (232) is

R00 = C

(
T00 −

g00T

2

)
(234)

In the Newtonian limit, the trace T ≡ T µµ is dominated by the 0 term, T 0
0, and raising and

lowering of the indices is done by the ηµν weak field limit of gµν .

R00 = C

(
T00 −

η00T
0
0

2

)
= C

(
T00 −

T00
2

)
= C

T00
2

= C
ρc2

2
, (235)

where ρ is the Newtonian mass density. Calculating R00 explicitly,

R00 = Rν
0ν0 = ηλνRλ0ν0 (236)

We need only the linear part of Rλµνκ in the weak field limit:

Rλµνκ =
1

2

(
∂2gλν
∂xκ∂xµ

− ∂2gµν
∂xκ∂xλ

− ∂2gλκ
∂xν∂xµ

+
∂2gµκ
∂xν∂xλ

)
, (237)

and in the static limit with µ = κ = 0, only the final term on the right side of this equation
survives:

Rλ0ν0 =
1

2

∂2g00
∂xν∂xλ

. (238)
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Finally,

R00 = ηλνRλ0ν0 =
1

2
ηλν

∂2g00
∂xλ∂xν

=
1

2
∇2g00 = − 1

c2
∇2Φ =

Cρc2

2
(239)

This happily agrees with the Poisson equation if C = −8πG/c4. Hello Isaac Newton. As
Einstein himself put it: “No fairer destiny could be allotted to any physical theory, than that
it should of itself point out the way to the introduction of a more comprehensive theory, in
which it lives on as a limiting case.” We therefore arrive at the Einstein Field Equations:

Gµν ≡ Rµν −
1

2
gµνR = −8πG

c4
Tµν (240)

The Field Equations first appeared in Einstein’s notes on 25 November 1915, just over a
hundred years ago, after an inadvertent competition with the mathematician David Hilbert,
triggered by an Einstein colloquium at Göttingen. (Talk about being scooped! Hilbert
actually derived the Field Equations first, by a variational method, but rightly insisted on
giving Einstein full credit for the physical theory. Incidentally, in common with Einstein,
Hilbert didn’t know the Bianchi identities.)

It is useful to also exhibit these equations explicitly in source function form. Contracting
µ and ν,

R =
8πG

c4
T, (241)

and the field equations become

Rµν = −8πG

c4

(
Tµν −

1

2
gµνT

)
≡ −8πG

c4
Sµν (242)

where as before,

Sµν = Tµν −
1

2
gµνT, (243)

a “Bianchified form” of the stress tensor. In vacuo, the Field Equations reduce to the
analogue of the Laplace Equation:

Rµν = 0. (244)

One final point. If we allow the possibility that gravity could change its form on different
scales, it is always possible to add a term of the form ±Λgµν to Gµν , where Λ is a constant
(positive by convention), without violating the conservation of Tµν condition. This is because
the covariant derivatives of gµν vanish identically, so that Tµν is still conserved. Einstein,
pursuing the consequences of his theory for cosmology, realised that his Field Equations did
not produce a static universe. This is bad, he thought, everyone knows the Universe is static.
So he sought a source of static stabilisation, adding an offsetting, positive Λ term to the right
side of the Field Equations:

Rµν −
1

2
gµνR = −8πG

c4
Tµν + Λgµν (245)

and dubbed Λ the cosmological constant. Had he not done so, he could have made a spec-
tacular prediction: the Universe is dynamic, a player in its own game, and must be either
expanding or contracting.4 With the historical discovery of an expanding univese, Einstein
retracted the Λ term, calling it “the biggest mistake of my life.”

4Even within the context of straight Euclidian geometry and Newtonian dynamics, uniform expansion of
an infinite space avoids the self-consistency problems associated with a static model. I’ve never understood
why this simple point is not emphasised more.
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Surprise. We now know that this term is, in fact, present on the largest cosmological
scales, and on these scales it is not a small effect. It mimics (and may well be) an energy
density of the vacuum itself. It is measured to be 70% of the effective energy density in the
Universe. It is to be emphasised that Λ must be taken into account only on the largest scales,
over which the locally much higher baryon and dark matter inhomogeneities are lowered
by effective smoothing; Λ is otherwise quite negligible. The so-called biggest mistake of
Einstein’s life was therefore quadratic in amplitude: one factor of error for introducing Λ for
the wrong reason, the second factor for retracting Λ for the wrong reason!

Except for cosmological problems, we will always assume Λ = 0.

6.2 Coordinate ambiguities

There is no unique solution to the Field Equation because of the fact that they have been
constructed to admit a new solution by a transformation of coordinates. To make this point
as clear as possible, imagine that we have worked hard, solved for the metric gµν , and in turns
out to be plain old Minkowski space.5 Denote the coordinates as t for the time dimension
and α, β, γ for the spatial dimensions. Even if we restrict ourselves to diagonal gµν , we might
have found that the diagonal entries are (−1, 1, 1, 1) or (−1, 1, α2, 1) or (−1, 1, α2, α2 sin2 β)
depending upon whether we happen to be using Cartesian (x, y, z), cylindrical (R, φ, z),
or spherical (r, θ, φ) spatial coordinate systems. Thus, we always have the freedom to work
with coordinates that simplify our equations or that make physical properties of our solutions
more transparent.

This is particularly useful for gravitational radiation. You may remember when you
studied electromagnetic radiation that the equations for the potentials (both A and Φ)
simplified considerably when a particular gauge was used—the Lorenz gauge. A different
gauge could have been used and the potential would have looked different, but the fields
would have been the same. The same is true for gravitational radiation, in which coordinate
transformations play this role, but in a very peculiar way: we change the components of gµν
as though a coordinate transformation were taking place, but we actually keep our working
coordinates the same! What seems like an elementary blunder is actually perfectly correct,
and will be explained more fully in Chapter 7.

For the problem of determining gµν around a point mass—the Schwarzschild black hole—
we will choose to work with coordinates that look as much as possible like standard spherical
coordinates.

6.3 The Schwarzschild Solution

We wish to determine the form of the metric tensor gµν for the spacetime surrounding a point
mass M by solving the equation Rµν = 0, subject to the appropriate boundary conditions.

Because the spacetime is static and spherically symmetric, we expect the invariant line
element to take the form

− c2dτ 2 = −B c2dt2 + Adr2 + C dΩ2 (246)

where dΩ is the (undistorted) solid angle,

dΩ2 = dθ2 + sin2 θ dφ2

5Don’t smirk. If we’re using awkward coordinates, it can be very hard to tell. You’ll see.
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and A, B, and C are all functions of the radial variable. We may choose our coordinates so
that C is defined to be r2 (if it is not already, do a coordinate transformation r′2 = C(r)
and then drop the ′). A and B will then be some unknown functions of r to be determined.
Our metric is now in “standard form:”

− c2dτ 2 = −B(r) c2dt2 + A(r) dr2 + r2 (dθ2 + sin2 θ dφ2) (247)

We may now read the components of gµν :

gtt = −B(r) grr = A(r) gθθ = r2 gφφ = r2 sin2 θ (248)

and its inverse gµν ,

gtt = −B−1(r) grr = A−1(r) gθθ = r−2 gφφ = r−2(sin θ)−2 (249)

The determinant of gµν is −g, where

g = r4AB sin2 θ (250)

We have seen that the affine connection for a diagonal metric tensor will be of the form

Γaab = Γaba =
1

2gaa

∂gaa
∂xb

no sum on a, with a = b permitted; or

Γabb = − 1

2gaa

∂gbb
∂xa

no sum on a or b, with a and b distinct. The nonvanishing components follow straightfor-
wardly:

Γttr = Γtrt =
B′

2B

Γrtt =
B′

2A
Γrrr =

A′

2A
Γrθθ = − r

A
Γrφφ = −r sin2 θ

A

Γθrθ = Γθθr =
1

r
Γθφφ = − sin θ cos θ

Γφφr = Γφrφ =
1

r
Γφφθ = Γφθφ = cot θ (251)

where A′ = dA/dr, B′ = dB/dr. We will also make use of this table to compute the orbits
in a Schwarzschild geometry.

Next, we need the Ricci Tensor:

Rµκ ≡ Rλ
µλκ =

∂Γλµλ
∂xκ

−
∂Γλµκ
∂xλ

+ ΓηµλΓ
λ
κη − ΓηµκΓ

λ
λη (252)

Remembering equation (171), this may be written

Rµκ =
1

2

∂2 ln g

∂xκ∂xµ
−
∂Γλµκ
∂xλ

+ ΓηµλΓ
λ
κη −

Γηµκ
2

∂ ln g

∂xη
(253)
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Right. First Rtt. Remember, static fields.

Rtt = −∂Γrtt
∂r

+ ΓηtλΓ
λ
tη − ΓηttΓ

λ
λη

= − ∂
∂r

(
B′

2A

)
+ ΓttλΓ

λ
tt + ΓrtλΓ

λ
tr − ΓrttΓ

λ
λr

= − ∂
∂r

(
B′

2A

)
+ ΓttrΓ

r
tt + ΓrttΓ

t
tr −

Γrtt
2

∂ ln g

∂r

= −
(
B′′

2A

)
+
B′A′

2A2
+

B′2

4AB
+

�
�
�B′2

4AB
− B′

4A

(
A′

A
+

�
�
�B′

B
+

4

r

)
This gives

Rtt = −B
′′

2A
+
B′

4A

(
B′

B
+
A′

A

)
− B′

rA
(254)

Next, Rrr:

Rrr =
1

2

∂2 ln g

∂r2
− ∂Γrrr

∂r
+ ΓηrλΓ

λ
rη −

Γrrr
2

∂ ln g

∂r

=
1

2

∂

∂r

(
�
�
�A′

A
+
B′

B
+

4

r

)
−

���
���∂

∂r

(
A′

2A

)
+ ΓηrλΓ

λ
rη −

A′

4A

(
A′

A
+
B′

B
+

4

r

)
=
B′′

2B
− 1

2

(
B′

B

)2

− 2

r2
+
(
Γtrt
)2

+ (Γrrr)
2 +

(
Γθrθ
)2

+
(

Γφrφ

)2
− 1

4

(
A′

A

)2

− A′B′

4AB
− A′

rA

=
B′′

2B
− 1

2

(
B′

B

)2

−
�
�
�2

r2
+
B′2

4B2
+

�
�
�A′2

4A2
+

�
�
�1

r2
+

�
�
�1

r2
−

�
�

�
�
�

1

4

(
A′

A

)2

− A′B′

4AB
− A′

rA

So that finally

Rrr =
B′′

2B
− 1

4

B′

B

(
A′

A
+
B′

B

)
− A′

rA
(255)

Tired? Well, here is a spoiler: all we will need for the problem at hand is Rtt and Rrr, so
you can now skip to the end of the section. For the true fanatics, we are just getting warmed
up! On to Rθθ:

Rθθ =
∂Γλθλ
∂θ
− ∂Γλθθ
∂xλ

+ ΓηθλΓ
λ
θη − ΓηθθΓ

λ
λη

=
1

2

∂2 ln g

∂θ2
− ∂Γrθθ

∂r
+ ΓηθλΓ

λ
θη − ΓrθθΓ

λ
λr

=
d(cot θ)

dθ
+
d

dr

( r
A

)
+ ΓηθλΓ

λ
θη +

r

2A

∂ ln g

∂r

= − 1

sin2 θ
+

1

A
− rA′

A2
+ ΓrθλΓ

λ
θr + ΓθθλΓ

λ
θθ + ΓφθλΓ

λ
θφ +

r

2A

(
A′

A
+
B′

B
+

4

r

)
= − 1

sin2 θ
+

3

A
− rA′

2A2
+ ΓrθθΓ

θ
θr + ΓθθrΓ

r
θθ +

(
Γφθφ

)2
+

rB′

2AB
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= − 1

sin2 θ
+

3

A
− rA′

2A2
− 2

A
+ cot2 θ +

rB′

2AB

The trigonometric terms add to −1. We finally obtain

Rθθ = −1 +
1

A
+

r

2A

(
−A

′

A
+
B′

B

)
(256)

Rφφ is the last nonvanishing Ricci component. No whining now! The first term in (252)
vanishes, since nothing in the metric depends on φ. Then,

Rφφ = −
∂Γλφφ
∂xλ

+ ΓηφλΓ
λ
φη −

Γηφφ
2

∂ ln |g|
∂xη

= −
∂Γrφφ
∂r
−
∂Γθφφ
∂θ

+ ΓrφλΓ
λ
φr + ΓθφλΓ

λ
φθ + ΓφφλΓ

λ
φφ −

1

2
Γrφφ

∂ ln |g|
∂r

− 1

2
Γθφφ

∂ ln |g|
∂θ

=
∂

∂r

(
r sin2 θ

A

)
+
∂

∂θ
(sin θ cos θ) + ΓrφφΓφφr + ΓθφφΓφφθ + ΓφφrΓ

r
φφ + ΓφφθΓ

θ
φφ

+
1

2
sin θ cos θ

∂ ln sin2 θ

∂θ
+

1

2

(
r sin2 θ

A

)(
A′

A
+
B′

B
+

4

r

)

=
�
�
��sin2 θ

A
−rA

′ sin2 θ

A2
+����

cos2 θ−sin2 θ−
�

�
��sin2 θ

A
−����

cos2 θ−sin2 θ

A
−����

cos2 θ+����
cos2 θ+

r sin2 θ

2A

(
A′

A
+
B′

B
+

4

r

)
= sin2 θ

[
r

2A

(
−A

′

A
+
B′

B

)
+

1

A
− 1

]
= sin2 θRθθ

The fact that Rφφ = sin2 θRθθ and that Rµν = 0 if µ and ν are not equal are consequences
of the spherical symmetry and time reversal symmetry of the problem repsectively. If the
first relation did not hold, or if Rij did not vanish when i and j were different spatial
coordinates, then an ordinary rotation of the axes would change the relative form of the
tensor components, despite the spherical symmetry. This is impossible. If Rti ≡ Rit were
non-vanishing (i is again a spatial index), the coordinate transformation t′ = −t would
change the components of the Ricci tensor. But a static Rµν must be invariant to this form
of time reversal coordinate change. (Why?) Note that this argument is not true for Rtt.
(Why not?)

Learn to think like a mathematical physicist in this kind of a calculation, taking into
account the symmetries that are present, and you will save a lot of work.

Exercise. Self-gravitating masses in general relativity. We are solving in this section
the vacuum equations Rµν = 0, but it is of great interest for stellar structure and cosmology
to have a set of equations for a self-gravitating spherical mass. Toward that end, we recall
equation (242):

Rµν = −8πG

c4
Sµν ≡ −

8πG

c4

(
Tµν −

gµν
2
T λλ

)
Let us evaluate Sµν for the case of an isotropic stress energy tensor of an ideal gas in its rest
frame. With

gtt = −B, grr = A, gθθ = r2, gφφ = r2 sin2 θ,

the stress-energy tensor
Tµν = Pgµν + (ρ+ P/c2)UµUν ,
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where Uµ is the 4-velocity, show that, in addition to the trivial condition

Ur = Uθ = Uφ = 0,

we must have Ut = −c
√
B (remember equation [180]) and that

Stt =
B

2
(3P + ρc2), Srr =

A

2
(ρc2 − P ), Sθθ =

r2

2
(ρc2 − P )

We will develop the solutions of Rµν = −8πGSµν/c
4 shortly.

Enough. We have more than we need to solve the problem at hand. To solve the equations
Rµν = 0 is now a rather easy task. Two components will suffice (we have only A and B to
solve for after all), all others then vanish identically. In particular, work with Rrr and Rtt,
both of which must separately vanish, so

Rrr

A
+
Rtt

B
= − 1

rA

(
A′

A
+
B′

B

)
= 0 (257)

whence we find
AB = constant = 1 (258)

where the constant must be unity since A and B go over to their Minkowski values at large
distances. The condition that Rtt = 0 is now from (254) simply

B′′ +
2B′

r
= 0, (259)

which means that B is a linear superposition of a constant plus another constant times 1/r.
But B must approach unity at large r, so the first constant is one, and we know from long ago
that the next order term at large distances must be 2Φ/c2 in order to recover the Newtonian
limit. Hence,

B = 1− 2GM

rc2
, A =

(
1− 2GM

rc2

)−1
(260)

The Schwarzschild Metric for the spacetime around a point mass is exactly

−c2dτ 2 = −
(

1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1
dr2 + r2dθ2 + r2 sin2 θ dφ2 (261)

This remarkable, simple and critically important exact solution of the Einstein Field Equa-
tion was obtained in 1916 by Karl Schwarzschild from the trenches of World War I. Tragically,
Schwarzschild did not survive the war,6 dying from a skin infection five months after finding
his marvelous solution. He managed to communicate his result fully in a letter to Einstein.
His last letter to Einstein was dated December 22, 1915, some 28 days after the formulation
of the Field Equations.

Exercise. The Tolman-Oppenheimer-Volkoff Equation. Let us strike again while the
iron is hot. Referring back to the previous exercise, we repeat part of our Schwarzschild

6The senseless WWI deaths of Karl Schwarzschild for the Germans and of Henry Moseley (of Oxford) for
the British were incalculable losses for science. Schwarzschild’s son Martin, a 4-year-old at the time of his
father’s death, also became a great astrophysicist, developing much of the modern theory of stellar evolution.
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calculation, but with the source terms Sµν retained. Form a familiar combination once
again:

Rrr

A
+
Rtt

B
= − 1

rA

(
A′

A
+
B′

B

)
= −8πG

c4

(
Stt
B

+
Srr
A

)
= −8πG

c4
(P + ρc2)

Show now that adding 2Rθθ/r
2 eliminates the B dependence:

Rrr

A
+
Rtt

B
+

2Rθθ

r2
= − 2A′

rA2
− 2

r2
+

2

Ar2
= −16πGρ

c2
.

Solve this equation for A and show that the solution with finite A(0) is

A(r) =

(
1− 2GM(r)

r

)−1
, M(r) =

∫ r

0

4πρ(r′) r′2 dr′

Finally, use the equation Rθθ = −8GπSθθ/c
4 together with hydrostatic equilibrium (184)

(for the term B′/B in Rθθ) to obtain the celebrated Tolman-Oppenheimer-Volkoff equation
for the interior structure of general relativistic stars:

dP

dr
= −GM(r) ρ

r2

(
1 +

P

ρc2

)(
1 +

4πr3P

M(r) c2

)(
1− 2GM(r)

rc2

)−1
This is a rather long, but completely straightforward, exercise.

Students of stellar structure will recognise the classical equation hydrostatic equilibrium
equation for a Newtonian star, with three correction terms. The final factor on the right is
purely geometrical, the radial curvature term A from the metric. The corrective replacement
of ρ by ρ + P/c2 arises even in the special relativistic equations of motion for the inertial
density; for inertial purposes P/c2 is an effective density. Finally the modification of the
gravitatingM(r) term (toM(r)+4πr3P/c2) also includes a contribution from the pressure,
as though an additional effective mass density 3P (r)/c2 were spread throughout the interior
spherical volume within r, even though P (r) is just the local pressure. Note that in massive
stars, this pressure could be radiative.

6.4 The Schwarzschild Radius

It will not have escaped the reader’s attention that at

r =
2GM

c2
≡ RS (262)

the metric becomes singular in appearance. RS is known as the Schwarzschild radius. Nu-
merically, normalising M to one solar mass M�,

RS = 2.95 (M/M�) km, (263)

which is well inside any normal star! The Schwarzschild radius is part of the external vacuum
spacetime only for black holes. Indeed, it is what makes black holes black. At least it was
thought to be the feature that made black holes truly black, until Hawking came along in
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1974 and showed us that quantum field theory changes the behaviour of black holes. But as
usual, we are getting ahead of ourselves. Let us stick to classical theory.

I have been careful to write “singular in appearance” because in fact, the spacetime
is perfectly well behaved at r = RS. It is only the coordinates that become strained at
this point, and these coordinates have been introduced, you will recall, so that they would
be familiar to us, we few, we happy band of observers at infinity, as ordinary spherical
coordinates. The curvature scalar R, for example, remains zero without so much as a ripple
as we pass through r = RS. We can see this coordinate effect staring at us if we start with
the ordinary metric on the unit sphere,

ds2 = dθ2 + sin2 θ dφ2,

and change coordinates to x = sin θ:

ds2 =
dx2

1− x2
+ x2dφ2.

This looks horrible at x = 1, but in reality nothing is happening. Since x is just the distance
from the z-axis to spherical surface (i.e. cylindrical radius), the “singularity” simply reflects
the fact that at the equator x has reached its maximum value 1. So, dx must be zero at
this point. x is just a bad coordinate at the equator; φ is a bad coordinate at the pole. Bad
coordinates happen to good spacetimes. Get over it.

The physical interpretation of the first two terms of the metric (261) is that the proper
time interval at a fixed spatial location is given by

dt

(
1− 2GM

rc2

)1/2

(proper time interval at fixed location). (264)

The proper radial distance interval at a fixed angular location and time is

dr

(
1− 2GM

rc2

)−1/2
(proper radial distance interval at fixed time & angle). (265)

Exercise. Getting rid of the Schwarzschild coordinate singularity. A challenge
problem for the adventurous student only. Make sure you want to do this be-
fore you start. Consider the rather unusual coordinate transformation found by Martin
Kruskal. Start with our standard spherical coordinates t, r, θ, φ and introduce new r′ and t′

coordinates:

r′2 − c2t′2 = c2T 2

(
rc2

2GM
− 1

)
exp

(
rc2

2GM

)
2r′ct′

r′2 + c2t′2
= tanh

(
c3t

2GM

)
where T is an arbitrary constant. Show that the Schwarzschild metric transforms to

−c2dτ 2 =

(
32G3M3

c8rT 2

)
exp

(
−rc2

2GM

)
(c2dt′2 − dr′2)− r2dΩ2

where T is arbitrary constant with dimensions of time, and r is the implicit solution of our
first equation for r′2 − c2t′2. The right side of this equation has a minimum of −c2T 2 at
r = 0, hence we must have

r′2 > c2(t′2 − T 2)

always. When t′ < T there is no problem. But when t′ > T there are two distinct regions:
r′ = ±c

√
t′2 − T 2! Then the metric has a real singularity at either of these values of r′ (which

is just r = 0), but still no singularity at r′ = ±ct′, the value r = RS.
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6.5 Schwarzschild spacetime.

6.5.1 Radial photon geodesic

This doesn’t mean that there is nothing of interest happening at r = RS.

For starters, the gravitational redshift recorded by an observer at infinity relative to
someone at rest at location r in the Schwarzschild spacetime is given (we now know) precisely
by

dt =
dτ

(1− 2GM/rc2)1/2
(Exact.) (266)

so that at r → RS, signals arrive at a distant observer’s post infinitely redshifted. What
does this mean?

Comfortably sitting in the Clarendon Labs, monitoring the radio signals my hardworking
graduate student is sending me whilst engaged on a perfectly reasonable thesis mission to take
measurements of the r = RS tidal forces in a nearby black hole, I grow increasingly impatient.
Not only are the incessant complaints becoming progressively more torpid and drawn out,
the transmission frequency keeps shifting to longer and longer wavelengths, slipping out of
my receiver’s bandpass. Most irritating. Eventually, all contact is lost. (Typical.) I never
receive any signal of any kind from within RS. RS is said to be the location of the event
horizon. The singularity at r = 0 is present, but completely hidden from the outside world
at R = RS within an event horizon. It is what Roger Penrose has aptly named “cosmic
censorship.”

The time coordinate change for light to travel from rA to rB following its geodesic path
is given by setting

−(1− 2GM/rc2)c2dt2 + dr2/(1− 2GM/rc2) = 0

and then computing

tAB =

∫ B

A

dt =
1

c

∫ rB

rA

dr

(1− 2GM/rc2)
=
rB − rA

c
+
RS

c
ln

(
rB −RS

rA −RS

)
(267)

which will be recognised as the Newtonian time interval plus a logarithmic correction pro-
poritional to the Schwarzschild radius RS. Note that our expression becomes infinite when
a path endpoint includes RS. When RS may be considered small over the entire integration
path, to leading order

tAB '
rB − rA

c
+
RS

c
ln

(
rA
rB

)
=
rB − rA

c

(
1 +

RS ln(rA/rB)

rB − rA

)
(268)

A GPS satellite orbits at an altitude of 20,200 km, and the radius of the earth is 6370 km.
RS for the earth is only 9mm! (Make a fist. Squeeze the entire earth inside it. You’re not
even close to making a black hole.) Then, the general relativisitic correction factor is

RS

rB − rA
' 9× 10−3

(20, 200− 6370)× 103
= 6.5× 10−10

This level of accuracy, about a part in 109, is needed for determining positions on the surface
of the earth to a precision of a few meters (as when your GPS intones “Turn right onto the
Lon-don Road.”). How does the gravitational effect compare with the second order kinematic
time dilation due to the satellite’s motion? You should find them comparable.
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6.5.2 Orbital equations

Start with the geodesic equation, written in terms of an arbitrary time parameter p:

d2xλ

dp2
+ Γλµν

dxµ

dp

dxν

dp
= 0 (269)

It doesn’t matter what p is, just use your watch. Using the table of equation (251), it is very
easy to write down the equations for the orbits in a Schwarzschild geometry:

d2(ct)

dp2
+
B′

B

dr

dp

d(ct)

dp
= 0, (270)

d2r

dp2
+
B′

2A

(
cdt

dp

)2

+
A′

2A

(
dr

dp

)2

− r

A

(
dθ

dp

)2

− r sin2 θ

A

(
dφ

dp

)2

= 0, (271)

d2θ

dp2
+

2

r

dr

dp

dθ

dp
− sin θ cos θ

(
dφ

dp

)2

= 0, (272)

d2φ

dp2
+

2

r

dr

dp

dφ

dp
+ 2 cot θ

dθ

dp

dφ

dp
= 0. (273)

Obviously, it is silly to keep θ as a variable. The orbit may be set to the θ = π/2 plane.
Then, our equations become:

d2(ct)

dp2
+
B′

B

dr

dp

d(ct)

dp
= 0, (274)

d2r

dp2
+
B′

2A

(
cdt

dp

)2

+
A′

2A

(
dr

dp

)2

− r

A

(
dφ

dp

)2

= 0, (275)

d2φ

dp2
+

2

r

dr

dp

dφ

dp
= 0. (276)

Exercise. Derive the last three equations very simply by applying the Euler-Lagrange Equa-
tions on the Lagrangian

−B(r)c2ṫ2 + A(r)ṙ2 + r2φ̇2

where the dot represents d/dp. Which method do you prefer?

Remember that A and B depend explicitly on r, and only implicity on p via r = r(p).
Then, the first and last of these equations are particularly simple:

d

dp

(
B
cdt

dp

)
= 0 (277)

d

dp

(
r2
dφ

dp

)
= 0 (278)

It is convenient to choose our parameter p to be close to the time:

dt

dp
= B−1, (279)
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and of course general relativity conserves angular momentum for a spherical geometry:

r2
dφ

dp
= J (constant) (280)

Finally, just as we may form an energy integration constant from the radial motion equation
in Newtonian theory, so too in Schwarzschild geometry. Multiplying (275) by 2Adr/dp, and
using our results for dt/dp and dφ/dp, we find:

d

dp

[
A

(
dr

dp

)2

+
J2

r2
− c2

B

]
= 0 (281)

or

A

(
dr

dp

)2

+
J2

r2
− c2

B
= −E (constant.) (282)

Fixing θ = π/2 and using our results for dt/dp, dr/dp and dφ/dp,

− c2
(
dτ

dp

)2

= −B c2
(
dt

dp

)2

+A

(
dr

dp

)2

+r2
(
dφ

dp

)2

= −c
2

B
+A

(
dr

dp

)2

+
J2

r2
= −E. (283)

Hence dτ 2 = dp2(E/c2), i.e. p and τ differ only by a proportionality constant. For matter,
E > 0, while E = 0 for photons. To leading Newtonian order E ' c2, i.e. the rest mass
energy per unit mass. Substituting for B in (282), we find that extremal values of orbital r
locations correspond to (

1− 2GM

rc2

)(
J2

r2
+ E

)
− c2 = 0 (284)

for matter, and thus to (
1− 2GM

rc2

)
J2

r2
− c2 = 0 (285)

for photons.

The radial equation of motion may be written for dr/dτ , dr/dt, or dr/dφ respectively
(we use AB = 1): (

dr

dτ

)2

+
c2

A

(
1 +

J2

Er2

)
=
c4

E
(286)(

dr

dt

)2

+
B2

A

(
E +

J2

r2

)
=
Bc2

A
(287)(

dr

dφ

)2

+
r2

A

(
1 +

Er2

J2

)
=
c2r4

J2
(288)

From here, it is simply a matter of evaluating a (perhaps complicated) integral over r to
obtain a solution.
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𝝙𝜑	  

γ	  
γ	  

Sun	  

δ	  
𝜑	  =	  0	  	  𝜑	  =	  π	  

Figure 2: Bending of light by the gravitational field of the sun. In flat spacetime the
photon γ travels the straight line from ϕ = 0 to ϕ = π along the path r sinϕ = b. The
presence of spacetime curvature starts the photon at ϕ = −δ and finishes its passage at
ϕ = π + δ. The deflection angle is ∆ϕ = 2δ.
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6.6 The deflection of light by an intervening body.

The first prediction made by General Relativity Theory that could be tested was that
starlight passing by the limb of the sun would be slightly but measurably deflected by the
gravitational field. This type of measurement can only be done, of course, when the sun is
completely eclipsed by the moon. Fortunately, the timing of the appearance of the theory
with an eclipse was ideal. One of the longest total solar eclipses of the century occured on
29 May 1919. The path of totality extended from a strip in South America to central Africa.
An expedition headed by A.S. Eddington observed the eclipse from the island of Principe,
off the west coast of Africa. Measurements of thirteen stars confirmed not only that gravity
affected the propagation of light, but that it did so by an amount in much better accord
with general relativity theory than with a Newtonian “corpuscular theory,” with the test
mass velocity set equal to c. (The latter gives a deflection angle half as large as GR, in
essence because the 2GM/rc2 terms in both the dt and dx metric coefficients contribute
equally to the photon deflection, whereas in the Newtonian limit only the dt modification is
retained—as we know.) This success earned Einstein press coverage that today is normally
reserved for rock stars. Everybody knew who Albert Einstein was!

Today, not only mere deflection, but “gravitational lensing” and image formation across
the electromagnetic spectrum are standard astronomical techniques to probe matter in all
its forms: from small planets to huge, diffuse cosmological agglomerations of dark matter.

Let us return to the classic test. As in Newtonian dynamics, it turns out to be easier to
work with u ≡ 1/r, in which case (

du

dφ

)2

=
1

r4

(
dr

dφ

)2

. (289)

Equation (288) with B = 1/A and E = 0 for a photon may be written

1

r4

(
dr

dφ

)2

+
B

r2
=
c2

J2
= constant (290)

In terms of u: (
du

dφ

)2

+ u2
(

1− 2GMu

c2

)
=
c2

J2
(291)

Differentiating with respect to φ (du/dφ ≡ u′) leads quickly to

u′′ + u =
3GM

c2
u2 ≡ 3εu2. (292)

We treat ε ≡ GM/c2 as a small parameter. We expand u as u = u0+u1, with u1 = O(εu0)�
u0 (read “u1 is of order ε times u0 and much smaller than u0”). Then, terms of order unity
must obey the equation

u′′0 + u0 = 0, (293)

and the terms of order ε must obey the equation

u′′1 + u1 = 3εu20. (294)

To leading order (u = u0), nothing happens: the photon moves in a straight line. If the
point of closest approach is the impact parameter b, then the equation for a straight line is
r sinφ = b, or

u0 =
sinφ

b
(295)
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which is the unique solution to equation (293) with boundary conditions r = ∞ at φ = 0
and φ = π.

At order ε, there is a deflection from a straight line due to the presence of u1:

u′′1 + u1 = 3εu20 =
3ε

b2
sin2 φ =

3ε

2b2
(1− cos 2φ) (296)

Clearly, we need to search for solutions of the form u1 = U + V cos 2φ, where U and V are
constants. Substituting this into (296), we easily find find U = 3ε/2b2 and V = ε/2b2. Our
solution is then

1

r
= u0 + u1 =

sinφ

b
+

3ε

2b2
+
ε cos 2φ

2b2
(297)

With ε = 0, the solution describes a straight line, r sinφ = b. The first order effects of
including ε incorporate the tiny deflections from this straight line. The ε = 0 solution sends
r off to infinity at φ = 0 and φ = π. We may compute the leading order small changes to
these two “infinity angles” by using φ = 0 and φ = π in the correction ε cos 2φ term. Then
we find that r goes off to infinity not at φ = 0 and π, but at the slightly corrected values
φ = −δ and φ = π + δ where

δ =
2ε

b
(298)

In other words, there is now a total deflection angle ∆φ from a straight line of 2δ, or

∆φ =
4GM

bc2
= 1.75 arcseconds for the Sun. (299)

Happily, arcsecond deflections were just at the limit of reliable photographic methods of
measurement in 1919. Those arcsecond deflections unleashed a truly revolutionary paradigm
shift. For once, the word is not an exaggeration.

6.7 The advance of the perihelion of Mercury

For Einstein personally, the revolution had started earlier, even before he had his Field
Equations. The vacuum form of the Field Equations is, as we know, sufficient to describe
the spacetime outside the gravitational source bodies themselves. Working with the equation
Rµν = 0, Einstein found, and on 18 November 1915 presented, the explanation of a 60-year-
old astronomical puzzle: what was the cause of Mercury’s excess perihelion advance of 43′′

per century? The directly measured perihelion advance is actually much larger than this,
but after the interactions from all the planets are taken into account, the excess 43′′ per
century is an unexplained residual of 7.5% of the total. According to Einstein’s biographer
A. Pais, the discovery that this precise perihelion advance emerged from general relativity
was

“...by far the strongest emotional experience in Einstein’s scientific life, perhaps in all his life.
Nature had spoken to him. He had to be right.”

6.7.1 Newtonian orbits

Interestingly, the perihelion first-order GR calculation is not much more difficult than straight
Newtonian. GR introduces a 1/r2 term in the effective gravitational potential, but there is
already a 1/r2 term from the centrifugal term! Other corrections do not add substantively
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Figure 3: Departures from a 1/r gravitational potential cause elliptical orbits not to
close. In the case of Mercury, the perihelion advances by 43 seconds of arc per century.
The effect is shown here, greatly exaggerated.
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to the difficulty. We thus begin with a detailed review of the Newtonian problem, and we
will play off this solution for the GR perihelion advance.

Conservation of energy is
v2r
2

+
J2

2r2
− GM

r
= E (300)

where J is the (constant) specific angular momentum r2dφ/dt and E is the constant energy
per unit mass. (In this Newtonian case, when the two bodies have comparable masses, M is
actually the sum of the individual masses, and r the relative separation of the two bodies.)
This is just the low energy limit of (286), whose exact form we may write as

1

2

(
dr

dτ

)2

+
c2

E

(
J2

2r2

)
− GM

r

(
1 +

J2

r2E

)
=

(
c2 − E

2E

)
c2. (301)

We now identify E with c2 to leading order, and to next order (c2 − E)/2 with E (i.e. the
mechanical energy above and beyond the rest mass energy). The Newtonian equation may
be written

vr =
dr

dφ

dφ

dt
=
J

r2
dr

dφ
= ±

(
2E +

2GM

r
− J2

r2

)1/2

(302)

and thence separated: ∫
J dr

r2
(

2E +
2GM

r
− J2

r2

)1/2
= ±φ (303)

With u = 1/r, ∫
du(

2E
J2

+
2GMu

J2
− u2

)1/2
= ∓φ (304)

or ∫
du[

2E
J2

+
G2M2

J4
−
(
u− GM

J2

)2
]1/2 = ∓φ (305)

Don’t be put off by all the fluff. The integral is standard trigonometric:

cos−1

 u− GM

J2(
2E
J2

+
G2M2

J4

)1/2

 = ±φ (306)

In terms of r = 1/u this equation unfolds and simplifies to

r =
J2/GM

1 + ε cosφ
, ε2 ≡ 1 +

2EJ2

G2M2
(307)

With E < 0 we find that ε < 1, and that (307) is just the equation for a classical elliptical
orbit of eccentricity ε. We identify the semi-latus rectum,

L = J2/GM (308)
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the perihelion (radius of closest approach) r− and the aphelion (radius of farthest extent)
r+,

r− =
L

1 + ε
, r+ =

L

1− ε
,

1

L
=

1

2

(
1

r+
+

1

r−

)
(309)

and the semi-major axis

a =
1

2
(r+ + r−), whence L = a(1− ε2) (310)

Notice that the zeros of the denominator in the integral (305) occur at u− = 1/r− and
u+ = 1/r+, corresponding in our arccosine function to φ equals 0 and π respectively.

Exercise.) The Shows must go on. Show that the semi-minor axis of an ellipse is b = a
√

1− ε2.
Show that the area of an ellipse is πab. Show that the total energy of a two-body bound system
(masses m1 and m2) is −Gm1m2/2a, independent of ε. With M = m1 +m2, show that the period

of a two-body bound system is 2π
√
a3/GM , independent of ε. (There is a very simple way to do

the latter!)

6.7.2 The perihelion advance of Mercury

Equation (288) may be written in terms of u = 1/r as(
du

dφ

)2

+

(
1− 2GMu

c2

)(
u2 +

E

J2

)
=
c2

J2
. (311)

Now differentiate with respect to φ and simplify. The resulting equation is:

u′′ + u =
GME

c2J2
+

3GMu2

c2
' GM

J2
+

3GMu2

c2
, (312)

since E is very close to c2 for a nonrelativistic Mercury, and the difference here is immaterial.
The Newtonian limit corresponds to dropping the final term on the right side of the equation;
the resulting solution is

u ≡ uN =
GM

J2
(1 + ε cosφ) or r =

J2/GM

1 + ε cosφ
(313)

where ε is an arbitrary constant. This is just the classic equation for a conic section, with
hyperbolic (ε > 1), parabolic (ε = 1) and ellipsoidal (ε < 1) solutions. For ellipses, ε is the
eccentricity.

As the general relativistic term 3GMu2/c2 is tiny, we are entirely justified in using the
Newtonian solution for u2 in this higher order term. Writing u = uN + δu with uN given by
(313), the differential equation becomes

d2δu

dφ2
+ δu =

3GM

c2
u2N =

3(GM)3

c2J4
(1 + 2ε cosφ+ ε2 cos2 φ). (314)

In Problem Set 2, you will be asked to solve this equation. The resulting solution for
u = uN + δu may be written

u ' GM

J2
(1 + ε cos[φ(1− α)]) (315)
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Figure 4: Radar echo delay from Venus as a function of time, fit with
general relativistic prediction.

where α = 3(GM/Jc)2. Thus, the perihelion occurs not with a φ-period of 2π, but with a
slightly longer period of

2π

1− α
' 2π + 2πα, (316)

i.e. an advance of the perihelion by an amount

∆φ = 2πα = 6π

(
GM

Jc

)2

= 6π

(
GM

c2L

)
= 2.783× 10−6

(
1010m

L

)
(317)

in units of radians per orbit. With L = 5.546× 1010 m, the measured semi-latus rectum for
Mercury’s orbit, this value of ∆φ works out to be precisely 43 seconds of arc per century.

From its discovery in 1915 until the stunning gravitational radiation measurement in
1982 of the binary pulsar 1913+16, the precision perihelion advance of Mercury was general
relativity’s greatest observational success.

6.8 Shapiro delay: the fourth protocol

For many years, the experimental foundation of general relativity consisted of the three
tests we have described that were first proposed by Einstein: the gravitational red shift,
the bending of light by gravitational fields, and the advance of Mercury’s perihelion. In
1964, nearly a decade after Einstein’s passing, a fourth test was proposed: the time delay by
radio signals when crossing near the sun in the inner solar system. The idea, proposed and
carried out by Irwin Shapiro, is that a radio signal is sent from earth, bounces off Mercury,
and returns. One does the experiment when Mercury is at its closest point to the earth,
then repeats the experiment when the planet is on the far side of orbit. There should be
an additional delay of the pulses when Mercury is on the far side of the sun because of the
traversal of the radio waves across the sun’s Schwarzschild geometry. It is this delay that is
measured.

Recall equation (287), using the “ordinary” time parameter t for an observer at infinity,
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with E = 0 for radio waves: (
dr

dt

)2

+
B2

A

J2

r2
=
Bc2

A
(318)

It is convenient to evaluate the constant J in terms of r0, the point of closest approach to
the sun. With dr/dt = 0, we easily find

J2 =
r20c

2

B0

(319)

where B0 ≡ B(r0). The differential equation then separates and we find that the time t(r, r0)
to traverse from r0 to r (or vice-versa) is

t(r, r0) =
1

c

∫ r

r0

Adr(
1− B

B0

r20
r2

)1/2
, (320)

where we have made use of AB = 1. Expanding to first order in GM/c2r with B =
1− 2GM/c2r:

1− B

B0

r20
r2
' 1−

[
1 +

2GM

c2

(
1

r0
− 1

r

)]
r20
r2
. (321)

This may now be rewritten as:

1− B

B0

r20
r2
'
(

1− r20
r2

)(
1− 2GMr0

c2r(r + r0)

)
(322)

Using this in our time integral for t(r0, r) and expanding,

t(r0, r) =
1

c

∫ r

r0

dr

(
1− r20

r2

)−1/2(
1 +

2GM

rc2
+

GMr0
c2r(r + r0)

)
(323)

The required integrals are

1

c

∫ r

r0

r dr

(r2 − r20)1/2
=

1

c
(r2 − r20)1/2 (324)

2GM

c3

∫ r

r0

dr

(r2 − r20)1/2
=

2GM

c3
cosh−1

(
r

r0

)
=

2GM

c3
ln

(
r

r0
+

√
r2

r20
− 1

)
(325)

GMr0
c3

∫ r

r0

dr

(r + r0)(r2 − r20)1/2
=
GM

c3

√
r − r0
r + r0

(326)

Thus,

t(r, r0) =
1

c
(r2 − r20)1/2 +

2GM

c3
ln

(
r

r0
+

√
r2

r20
− 1

)
+
GM

c3

√
r − r0
r + r0

(327)

We are interested in 2t(r1, r0) ± 2t(r2, r0) for the path from the earth at r1, reflected from
the planet (at r2), and back. The ± sign depends upon whether the signal passes through
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r0 while enroute to the planet, i.e. on whether the planet is on the far side or the near side
of the sun.

It may seem straightforward to plug in values appropriate to the earth’s radial location
and the planet’s (either Mercury or Venus, in fact), compute the “expected Newtonian time”
for transit (a sum of the first terms) and then measure the actual time for comparison with
our formula. In practise, to know what the delay is, we have to know what the Newtonian
transit time is to fantastic accuracy! In fact, the way this is done is to treat the problem
not as a measurement of a single delay time, but as an entire function of time given by
our solution (327) with r = r(t). Figure (3) shows such a fit near the passage of superior
conjunction (i.e. the far side orbital near the sun in sky projection), in excellent agreement
with theory. Exactly how the parameterisation is carried out would take us too far afield;
there is some discussion in W72 pp. 202–207, and an abundance of topical information on
the internet under “Shapiro delay.”

Modern applications of the Shaprio delay use pulsars as signal probes, whose time passage
properties are altered by the presence of gravitational waves, a topic for the next chapter.
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They are not objective, and (like abso-

lute velocity) are not detectable by any

conceivable experiment. They are merely

sinuosities in the co-ordinate system, and

the only speed of propagation relevant to

them is “the speed of thought.”

— A. S. Eddington writing in 1922 of

Einstein’s suspicions.

On September 14, 2015, at 09:50:45 UTC

the two detectors of the Laser Interfer-

ometer Gravitational Wave Observatory

simultaneously observed a transient grav-

itational wave signal. The signal sweeps

upwards from 35 to 250 Hz with a peak

gravitational wave strain of 1 × 10−21. It

matches the waveform predicted by general

relativity for the inspiral and merger of a

pair of black holes and the ringdown of the

resulting single black hole.

— B. P. Abbott et al., 2016, Physical

Review Letters, 116, 061102

7 Gravitational Radiation

Gravity is spoken in the three languages. First, there is traditional Newtonian potential
theory, the language used by most practising astrophysicists. Then, there is the language of
Einstein’s General Relativity Theory, the language of Riemannian geometry that we have
been studying. Finally, there is the language of quantum field theory: gravity is a theory
of the exchange of spin 2 particles, gravitons, much as electromagnetism is a theory arising
from the exchange of spin 1 photons. Just as the starting point of quantum electrodynamics
is the radiation theory of Maxwell, the starting point of quantum gravity must be a classical
radiation theory of gravity. Unlike quantum electrodynamics, the most accurate physical
theory ever created, there is no quantum theory of gravity at present, and there is not even
a consensus approach. Quantum gravity is therefore very much an active area of ongoing
research. For the theorist, this is reason enough to study the theory of gravitational radi-
ation in general relativity. But there are good reasons for the practical astrophysicist to
get involved. In Februrary 2016, the first detection of gravitational waves was announced.
The event signal had been received and recorded on September 14, 2015, and is denoted
G[ravitational]W[ave]150914. The detection was so clean, and matched the wave form pre-
dictions of general relativity in such detail, there can be no doubt that the detection was
genuine. A new way to probe the most impenetrable parts of the Universe is at hand.
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The theory of general relativity in the limit when gµν is very close to ηµν is a classical
theory of gravitational radiation (and not just Newtonian theory), in the same way that
Maxwellian Electrodynamics is a classical electromagnetic radiation theory. The field equa-
tions for the small difference tensor gµν − ηµν become, in the weak field limit, a set of rather
ordinary looking wave equations with source terms—much like Maxwell’s Equations. The
principal difference is that electrodynamics is sourced by a vector quantity (the usual vector
potential A with the potential Φ combine to form a 4-vector), whereas gravitational fields in
general relativity are sourced by a tensor quantity Tµν . This becomes a major difference when
we relax the condition that the gravity field be weak: the gravitational radiation itself makes
a contribution to its own source, something electromagnetic radiation cannot do. But this is
not completely unprecedented in wave theories. We have seen this sort of thing before, in a
purely classical context: sound waves can themselves generate acoustical disturbances, and
one of the consequences is a shock wave, or sonic boom. While a few somewhat pathological
mathematical solutions for exact gravitational radiation waves are known, in general people
either work in the weak field limit or resort to numerical solutions of the field equations.
Even with powerful computers, however, precise numerical solutions of the field equations
for astrophysically interesting problems—like merging black holes—have long been a major
technical challenge. In the last decade, a practical mathematical breakthrough has occurred,
and it is now possible to compute highly accurate wave forms for these kinds of problems,
with important predictions for the new generation of gravitational wave detectors.

As we have noted, astrophysicists now have perhaps the most important reason of all to
understand gravitational radiation: we are on the verge of what will surely be a golden age
of gravitational wave astronomy. That gravitational radiation truly exists was established
in 1974, when a close binary system (7.75 hour period) with a neutron star and a pulsar
(PSR 1913+16) was discovered by Hulse and Taylor. So much orbital information could be
extracted from this remarkable system that it was possible to predict, then measure, the rate
of orbital decay (more precisely, the gradual speed-up of the decaying orbit’s period) caused
by the energy carried off by gravitational radiation. The resulting period shortening, though
tiny in any practical sense, was large enough to be cleanly measured. General relativity
turned out to be exactly correct (Taylor & Weisberg, ApJ, 1982, 253, 908), and the 1993
Nobel Prize in Physics was duly awarded to Hulse and Taylor for this historical achievement.

The September 2015 gravitational wave detection pushed back the envelope dramatically.
It established that i) the reception and analysis of gravitational waves is technically feasible
and will soon become a widely-used probe of the universe; ii) black holes exist beyond any
doubt whatsoever, this truly is the proverbial “smoking-gun”; iii) the full dynamical content
of strong field general relativity on time and length scales characteristic of stellar systems is
correct. This achievement is an historical milestone in physics. Some have speculated that
its impact on astronomy will rival Galileo’s introduction of the telescope. Perhaps Hertz’s
1887 detection of electromagnetic radiation in the lab is another, more apt, comparison.
(Commercial exploitation of gravity waves is probably some ways off. Maybe it will be
licenced someday as a revenue source.)

There may be more to come. In the near future, it is anticipated that extremely deli-
cate pulsar timing experiments, in which arrival times of pulses are measured to fantastic
precision, will come on line. In essence, this is a measure of the Shapiro delay. It is caused
neither by the Sun nor by a star, but by the passage of a gravitational wave between us and
the pulsar source!

The subject of gravitational radiation is complicated and computationally intensive. Even
the basics will involve some effort on your part. I hope you will agree that the effort is well
rewarded.
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7.1 The linearised gravitational wave equation

We assume that the metric is close to Minkowski space. Let us introduce the quantity hµν ,
the (small) departure in the metric tensor gµν from its Minkowski ηµν limit:

gµν = ηµν + hµν (328)

To leading order, when we raise and lower indices we may do so with ηµν . But be careful
with gµν itself. Don’t just lower the indices in the above equation willy-nilly! Instead, note
that

gµν = ηµν − hµν (329)

to ensure gµνg
νκ = δκµ. (You can raise the index of g with η only when approximating gµν as

its leading order value, which is ηµν .) Note that

ηµνhνκ = hµκ, ηµν
∂

∂xν
=

∂

∂xµ
(330)

and that we can slide dummy indices “up-down” sometimes:

∂hµν
∂xµ

= ηµρ
∂hρν
∂xµ

=
∂hρν
∂xρ
≡ ∂hµν
∂xµ

(331)

The story begins with the Einstein Field Equations cast in a form in which the “linearised
Ricci tensor” is isolated on the left side of our working equation. Specifically, we write

Rµν = R(1)
µν +R(2)

µν + ...etc. (332)

and

G(1)
µν = R(1)

µν − ηµν
R(1)

2
(333)

where R
(1)
µν is all the Ricci tensor terms linear in hµν , R

(2)
µν all terms quadratic in hµν , and so

forth. The linearised affine connection is

Γλµν =
1

2
ηλρ
(
∂hρν
∂xµ

+
∂hρµ
∂xν

− ∂hµν
∂xρ

)
=

1

2

(
∂hλν
∂xµ

+
∂hλµ
∂xν
− ∂hµν

∂xλ

)
. (334)

In terms of hµν and h = hµµ, from equation (213) on page 50, we explicitly find

R(1)
µν =

1

2

(
∂2h

∂xµ∂xν
−

∂2hλµ
∂xν∂xλ

− ∂2hλν
∂xµ∂xλ

+ 2hµν

)
(335)

where

2 ≡ ∂2

∂xλ∂xλ
= ∇2 − 1

c2
∂2

∂t2
(336)

is the d’Alembertian (clearly a Lorentz invariant), making a most welcome appearance into
the proceedings. Contracting µ with ν, we find that

R(1) = 2h− ∂2hµν

∂xµ∂xν
(337)
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where we have made use of
∂hλµ
∂xµ

=
∂hλµ

∂xµ
.

Assembling G
(1)
µν , we find

G(1)
µν =

1

2

[
∂2h

∂xµ∂xν
−

∂2hλµ
∂xλ∂xν

− ∂2hλν
∂xλ∂xµ

+ 2hµν − ηµν
(

2h− ∂2hλρ

∂xλ∂xρ

)]
. (338)

The full, nonlinear Field Equations may then formally be written

G(1)
µν = −

(
8πGTµν
c4

+Gµν −G(1)
µν

)
≡ −8πG(Tµν + τµν)

c4
, (339)

where

τµν =
c4

8πG
(Gµν −G(1)

µν ) ' c4

8πG

(
R(2)
µν − ηµν

R(2)

2

)
(340)

Though composed of geometrical terms, the quantity τµν is written on the right side of the
equation with the stress energy tensor Tµν , and is interpreted as the stress energy contribution
of the gravitational radiation itself. We shall have more to say on this in section 7.4. In linear
theory, τµν is neglected in comparison with the ordinary matter Tµν .

This is a bit disappointing to behold. Even the linearised Field Equations look to be
a mess! But then, you may have forgotten that the raw Maxwell wave equations for the
potentials are no present, either. You will permit me to remind you. Here are the equations
for the scalar potential Φ and vector potential A:

∇2Φ +
1

c

∂

∂t
(∇·A) = −4πρ (341)

∇2A− 1

c2
∂2A

∂t2
−∇

(
∇·A+

1

c

∂Φ

∂t

)
= −4π

c
J (342)

(Note: I have used esu units, which are much more natural for relativity. Here ρ is the
electric charge density.) Do the following exercise!

Exercise. In covariant notation, with Aα = (Φ,A) and Jα = (ρ,J/c) representing respec-
tively the potential and source term 4-vectors, the original general equations look a bit more
presentable. The only contravariant 4-vectors that we can form which are second order in
the derivatives of Aα are 2Aα and ∂α∂βA

β. Show that if ∂αJ
α = 0 identically, then our

equation relating Aα to Jα must be of the form

2Aα − ∂α∂βAβ = CJα

where C is a constant to be determined, and that this equation remains unchanged when
the transformation Aα → Aα + ∂αΛ in made. This property is known as gauge-invariance.
We will shortly see something very analogous in general relativity. In the meantime, how do
we determine C?

Remember the story here. Work in the “Lorenz gauge,” which we are always free to do:

∇·A+
1

c

∂Φ

∂t
= 0 (343)

79



In covariant 4-vector language, this is just ∂αA
α = 0. Then, the dynamical equations

simplify:

∇2Φ− 1

c2
∂Φ

∂t2
= 2Φ = −4πρ (344)

∇2A− 1

c2
∂2A

∂t2
= 2A = −4π

c
J (345)

This is nicer. Physically transparent Lorentz-invariant wave equations emerge. Might some-
thing similar happen for the Einstein Field Equations?

That the answer might be YES is supported by noticing that G
(1)
µν can be written entirely

in terms of the “Bianchi-like” quantity

h̄µν = hµν −
ηµνh

2
, or h̄µν = hµν −

δµνh

2
. (346)

Using this in (338), the linearised Field Equation becomes

2G(1)
µν = 2h̄µν −

∂2h̄λµ
∂xν∂xλ

− ∂2h̄λν
∂xµ∂xλ

+ ηµν
∂2h̄λρ

∂xλ∂xρ
= −16πGTµν

c4
. (347)

(It is easiest to verify this by starting with (347), substituting with (346), and showing that
this leads to (338).)

Interesting. Except for 2h̄µν , every term in this equation involves the divergence of h̄µν
or h̄µν . Hmmm. Shades of Maxwell’s ∂Aα/∂xα. In the Maxwell case, the freedom of gauge
invariance allowed us to pick the gauge in which ∂Aα/∂xα = 0. Does our equation have a
gauge invariance that will allow us to do the same for gravitational radiation so that we can
set these h̄-divergence derivatives to zero?

It does. Go back to equation (338) and on the right side, change hµν to h′µν , where

h′µν = hµν −
∂ξν
∂xµ
− ∂ξµ
∂xν

, (348)

and the ξµ represent any vector function. You will find that the form of the equation
is completely unchanged, i.e. the ξµ terms cancel out identically! This is a true gauge
invariance.

In this case, what is happening is that an infinitesimal coordinate transformation itself
is acting as a gauge transformation. If

x′µ = xµ + ξµ(x), or xµ = x′µ − ξµ(x′) to lead order. (349)

then

g′µν = η′µν + h′µν =
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ =

(
δρµ −

∂ξρ

∂xµ

)(
δσν −

∂ξσ

∂xν

)
(ηρσ + hρσ) (350)

With η′ identical to η, we must have

h′µν = hµν −
∂ξν
∂xµ
− ∂ξµ
∂xν

(351)
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as before. Though closely related, don’t confuse general covariance under coordinate trans-
formations with this gauge transformation. Unlike general covariance, the gauge transfor-
mation works without actually changing the coordinates! We keep the same x’s and add a
group of certain functional derivatives to the hµν , analogous to adding a gradient ∇Φ to A
in Maxwell’s theory. We find that the equations remain identical, just as we would find if
we took ∇×(A+∇Φ) in the Maxwell case.

Pause for a moment. In general relativity, don’t we actually need to change the coor-
dinates when we...well, when we change the coordinates? What is going on here? Keeping
the coordinates is not an option, is it? Change the hµν tensor components but leave the
coordinates untouched? Why should that work?

Let me try to clarify what has always struck me as a genuinely confusing point. (If it is all
clear to you already, or you willing to take this as it comes, feel free to skip this paragraph.)
If we did a full coordinate transformation, we would of course find that the full Einstein
tensor wave equation would also have the (nonlinear) solution h′µν , in x′ coordinates. The
tensorial form of the field equations is built in just that way. Here, however, we are working
only with the part linear in h, and linear in ξ, assuming these are comparable. So imagine
doing the full transformation, but approaching it order by order in h or ξ. Every order in h
has to independently cooperate: h̄µν must be a solution to the equations when we keep only
the linear terms by themselves. Then we must find that it is still a solution when we work
with the quadratic terms, which cancel amongst themselves, and so on. We start first with all
the terms linear in h, the largest terms to worry about. In the linearised equation we change
the h’s by adding the ξ derivatives following the equation (351) prescription. The additional
terms generated are of order ∂ξ/∂x. Okay, noted, very good. Now that we’ve modifed the
h’s, continue on with the same infinitesimal coordinate transformation, next applied to the
∂/∂xµ derivatives, to get those transformed as well to linear order. Ah. Interesting. The
new ξ-terms generated are of order (∂ξ/∂x′)(∂h′/∂x):

∂h′µν

∂x′µ
=
∂xρ

∂x′µ
∂h′µν

∂xρ
=
∂h′µν

∂xµ
− ∂ξρ

∂x′µ
∂h′µν

∂xρ
,

and remember that ξ and h′ are both supposed to be small. By contrast, the change of h to
h′ via (351) gave us additional terms in our equation which are an order larger: ∂ξ/∂x, not
the product of ∂xξ with ∂xh

′. If we had to additively combine ∂xξ terms with the product
terms ∂xξ ∂xh, we would be blending orders in h and ξ that don’t match! Do you see what
this means? Since h′(x′) is a solution of the full tensor wave equation, it must also be of
the more restricted linearised equation, when h is small. Changing h as per equation (351)
generates relatively big linear terms, and then continuing our duty and changing x to x′

in the derivatives actually generates only little stuff. The little stuff cannot cancel out the
the big stuff, the ∂xξ terms that we have generated from (351). So how do we get rid of
those much bigger ∂xξ terms, as we must in order to ensure that h′ really is a solution of
the linear equation? The answer is that we don’t have to actively get rid of those terms.
The equation kills those terms for us, all by itself when we add them all up. Miracle?
No. This is exactly how a coordinate transformation must behave. That is the beauty of
it: it reduces to a gauge-invariant theory in the linear regime. Even without transforming
the partial derivatives explicitly, the largest ∂xξ terms in the gauge transformation cancel
one another. In the full theory, members of the “quadratic club,” terms of order (∂xξ)∂xh,
will ultimately cancel out too. But they do so amongst themselves, thank you very much.
Quadratic members only please. We are a higher order than you linear fellows.

Understanding the gauge properties of the gravitational wave equation was very chal-
lenging in the early days of the subject. The opening “speed-of-thought” quotation of this
chapter by Eddington is taken somewhat out of context. What he really said in his famous
paper (Eddington A.S. 1922 Proc. Roy. Soc. A, 102, 716, 268) is the following:
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“Weyl has classified plane gravitational waves into three types, viz.: (1) longitudinal-longitudinal;
(2) longitudinal-transverse; (3) transverse-transverse. The present investigation leads to the con-
clusion that transverse-transverse waves are propagated with the speed of light in all systems of
co-ordindates. Waves of the first and second types have no fixed velocity—a result which rouses
suspicion as to their objective existence. Einstein had also become suspicious of these waves (in
so far as they occur in his special co-ordinate system) for another reason, because he found they
convey no energy. They are not objective and (like absolute velocity) are not detectable by any
conceivable experiment. They are merely sinuosities in the co-ordinate system, and the only speed
of propagation relevant to them is the ‘speed of thought.’ ”

The quotation is often taken to be dismissive of the entire notion of gravitational radi-
ation, which it clearly is not. Rather, it is directed toward those solutions which we would
now say are gauge-dependent (either of the first two types of waves, which involve at least
one longitudinal component) and those which are gauge-independent (the third, completely
transverse, type). Physical solutions must ultimately be gauge independent. Matters would
have been clear to someone who bothered to examine the components of the Riemann cur-
vature tensor. The first two types of waves would have produced an identically zero Rλ

µνκ.
They produce no curvature; they are indeed “merely sinuosities in the co-ordinate system,”
and they are are unphysical.

Back to our problem. Just as the Lorenz gauge ∂αA
α = 0 was useful in the case of

Maxwell’s equations, so now is the so-called harmonic gauge:

∂h̄µν
∂xµ

=
∂hµν
∂xµ
− 1

2

∂h

∂xν
= 0 (352)

In this gauge, the Field Equations (347) take the “wave-equation” form

2h̄µν = −16πGTµν
c4

(353)

How we can be sure that, even with our gauge freedom, we can find the right ξµ to get into
a harmonic gauge and ensure the emergence of (353)? Well, if we have been unfortunate
enough to be working in a gauge in which equation (352) is not satisfied, then form h′µν à la
equation (351) and demand that ∂h′µν /∂x

µ = (1/2)∂h′/∂xν . We find that this implies

2ξν =
∂h̄µν
∂xµ

, (354)

a wave equation for ξν identical in form to (353). For this equation, a solution certainly
exists. Indeed, our experience with electrodynamics has taught us that the solution to the
fundamental radiation equation (353) takes the form

h̄µν(r, t) =
4G

c4

∫
Tµν(r

′, t−R/c)
R

d3r′, R ≡ |r − r′| (355)

and hence a similar solution exisits for (354). The h̄µν , like their electrodynamic counterparts,
are determined at time t and location r by a source intergration over r′ taken at the retarded
times t′ ≡ t − R/c. In other words, disturbances in the gravitational field travel at a finite
speed, the speed of light c.

Exercise. Show that for a source with motions near the speed of light, like merging black
holes, h̄µν (or hµν for that matter) is of order RS/r, where RS is the Schwarzschild radius
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based on the total mass of the system in question and r is the distance to the source. You
want to know how big hµν is going to be in your detector when black holes merge? Count
the number of expected Schwarzschild radii to the source and take the reciprocal. With M tot

�
equal to the total mass measured in solar masses, show that hµν ∼ 3M tot

� /rkm, measuring r
in km. We are pushing our weak field approximation here, but to this order it works fine.
We’ll give a sharper estimate shortly.

7.1.1 Come to think of it...

You may not have actually seen the solution (355) before, or maybe, you know, you just
need a little reminding. It is important. Let’s derive it.

Consider the equation

− 1

c2
∂2Ψ

∂t2
+∇2Ψ = −4πf(r, t) (356)

We specialise to the Green’s function solution

− 1

c2
∂2G

∂t2
+∇2G = −4πδ(r)δ(t) (357)

Of course, our particular choice of origin is immaterial, as is our zero of time, so that we
shall replace r by R ≡ r − r′ (R ≡ |R|), and t by τ ≡ t− t′ at the end of the calculation,
with the primed values being fiducial reference points. The form of the solution we find here
will still be valid with the shifts of space and time origins.

Fourier transform (357) by integrating over
∫
eiωtdt and denote the fourier transform of

G by G̃:
k2G̃+∇2G̃ = −4πδ(r) (358)

where k2 = ω2/c2. Clearly G̃ is a function only of r, hence the solution to the homogeneous
equation away from the origin,

d2(rG̃)

dr2
+ k2(rG̃) = 0,

is easily found to be G̃ = e±ikr/r. The delta function behaviour is actually already included
here, as can be seen by taking the limit k → 0, in which we recover the correct potential of
a point charge, with the proper normalisation already in place. The back transform gives

G =
1

2πr

∫ ∞
−∞

e±ikr−iωt dω =
1

2πr

∫ ∞
−∞

e−iω(t∓r/c) dω (359)

which we recognise as a Dirac delta function (remember ω/k = c):

G =
δ(t∓ r/c)

r
→ δ(t− r/c)

r
→ δ(τ −R/c)

R
(360)

where we have selected the retarded time solution t− r/c as a nod to causality, and moved
thence to (τ , R) variables for an arbitary time and space origin. We see that a flash at t = t′
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located at r = r′ produces an effect at a time R/c later, at a distance R from the flash. The
general solution constructed from our Green’s function is

Ψ =

∫
f(r′, t′)

R
δ(t− t′ −R/c)dt′dr′ =

∫
f(r′, t′)

R
dr′ (361)

where in the final integral we have set t′ = t − R/c, the retarded time. Remember that t′

depends on both r and r′.

7.2 Plane waves

To understand more fully the solution (355), consider the problem in which Tµν has an
oscillatory time dependence, e−iωt

′
. Since we are dealing with a linear theory, this isn’t

particularly restrictive, since any well-behaved time dependence can be represented by a
Fourier sum. The source, say a binary star system, occupies a finite volume. We seek the
solution for h̄µν at distances huge compared with the scale of the source itself, i.e. r � r′.
Then,

R ' r − er · r′ (362)

where er is a unit vector in the r direction, and

h̄µν(r, t) ' exp[i(kr − ωt)] 4G

rc4

∫
Tµν(r

′) exp(−ik · r′) d3r (363)

with k = (ω/c)er the wavenumber in the radial direction. Since r is huge, this has the
asymptotic form of a plane wave. Hence, h̄µν and thus hµν itself have the form of simple
plane waves, travelling in the radial direction, at large distances from the source generating
them. These waves turn out to have some remarkable polarisation properties, which we now
discuss.

7.2.1 The transverse-traceless (TT) gauge

Consider a traveling plane wave for hµν , orienting our z axis along k, so that

k0 = ω/c, k1 = 0, k2 = 0, k3 = ω/c and k0 = −ω/c, ki = ki (364)

where as usual we raise and lower indices with ηµνor its numerical identical dual ηµν .

Then hµν takes the form
hµν = eµνa exp(ikρx

ρ) (365)

where a is an amplitude and eµν = eνµ a polarisation tensor, again with the η’s raising and
lowering subscripts. Thus

eij = eij = eij (366)

e0i = −ei0 = e0i = −e0i (367)

e00 = e00 = −e00 (368)

The harmonic constraint
∂hµν
∂xµ

=
1

2

∂hµµ
∂xν

(369)
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implies
kµe

µ
ν = kνe

µ
µ/2 (370)

For ν = 0 this means
k0e

0
0 + k3e

3
0 = k0(e

i
i + e00)/2, (371)

or
− (e00 + e30) = (eii − e00)/2. (372)

When ν = j (a spatial index),

k0e
0
j + k3e

3
j = kj(eii − e00)/2 (373)

The j = 1 and j = 2 cases reduce to

e01 + e31 = e02 + e32 = 0, (374)

while j = 3 yields
e03 + e33 = (eii − e00)/2 = −(e00 + e03) (375)

Equations (374) and the first=last equality of (375) yield

e01 = −e31, e02 = −e32, e03 = −(e00 + e33)/2 (376)

Using the above expression for e03 in the first=second equality of (375) then gives

e22 = −e11 (377)

Of the 10 independent components of the symmetric eµν the harmonic condition (369) thus
enables us to express e0i and e22 in terms of e3i, e00, and e11. These latter 5 components plus
a sixth, e12, remain unconstrained for the moment.

But wait! We have not yet used the gauge freedom of equation (351) within the harmonic
constraint. We can still continue to eliminate components of eµν . In particular, let us choose

ξµ(x) = iεµ exp(ikρx
ρ) (378)

where the εµ are four constants to be chosen. This satisfies 2ξµ=0, and therefore does not
change the harmonic coordinate condition, ∂µh̄

µ
ν = 0. Then following the prescription of

(351), we generate a new, but physically equivalent polarisation tensor,

e′µν = eµν + kµεν + kνεµ (379)

and by choosing the εµ appropriately, we can eliminate all of the e′µν except for e′11, e
′
22 = −e′11,

and e′12. In particular, using (379),

e′11 = e11, e′12 = e12 (380)

unchanged. But with k = ω/c,

e′13 = e13 + kε1, e′23 = e23 + kε2, e′33 = e33 + 2kε3, e′00 = e00 − 2kε0, (381)

so that these four components may be set to zero by a simple choice of the εµ. When working
with plane waves we may always choose this gauge, which is transverse (since the only eij
components that are present are transverse to the z direction of propagation) and traceless
(since e11 = −e22). Oddly enough, this gauge is named the transverse-traceless (TT) gauge.
Notice that in the TT gauge, hµν vanishes if any of its indices are 0, whether raised or
lowered.
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7.3 The quadrupole formula

In the limit of large r (“compact source approximation”), equation (355) is:

h̄µν(r, t) =
4G

rc4

∫
T µν(r′, t′)d3r′, (382)

where t′ = t − r/c is the retarded time. Moreover, for the TT gauge, we are interested in
the spatial ij components of this equation, since all time indices vanish. (Also, because h̄µν
is traceless, we need not distinguish between h and h̄.) The integral over Tij may be cast in
a very convenient form as follows.

0 =

∫
∂(x′jT ik)

∂x′k
d3r′ =

∫ (
∂T ik

∂x′k

)
x′j d3r′ +

∫
T ij d3r′, (383)

where the first equality follows because the first integral reduces to a surface integration of
T ik at infinity, where it is presumed to vanish. Thus∫

T ij d3r′ = −
∫ (

∂T ik

∂x′k

)
x′j d3r′ =

∫ (
∂T i0

∂x′0

)
x′j d3r′ =

1

c

d

dt′

∫
T i0x′j d3r′ (384)

where the second equality uses the conservation of T µν . Remember that t′ is the retarded
time. As Tij is symmetric in its indices,

d

dt′

∫
T i0x′j d3r′ =

d

dt′

∫
T j0x′i d3r′ (385)

Continuing in this same spirit,

0 =

∫
∂(T 0kx′ix′j)

∂x′k
d3r′ =

∫ (
∂T 0k

∂x′k

)
x′ix′j d3r′ +

∫
(T 0ix′j + T 0jx′i) d3r′ (386)

Using exactly the same reasoning as before,∫
(T 0ix′j + T 0jx′i) d3r′ =

1

c

d

dt′

∫
T 00x′ix′j d3r′ (387)

Therefore, ∫
T ij d3r′ =

1

2c2
d2

dt′2

∫
T 00x′ix′j d3r′ (388)

Inserting this in (382), we obtain the quadrupole formula for gravitational radiation:

h̄ij =
2G

c6r

d2I ij

dt′2
(389)

where I ij is the quadrupole-moment tensor of the energy density:

I ij =

∫
T 00x′ix′j d3r′ (390)
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To estimate this numerically, we write

d2I ij

dt′2
∼Ma2c2ω2 (391)

where M is the characteristic mass of the rotating system, a an internal separation, and ω
a characteristic frequency, an orbital frequency for a binary say. Then

h̄ij ∼ 2GMa2ω2

c4r
' 7× 10−22(M/M�)(a211ω

2
7/r100) (392)

where M/M� is the mass in solar masses, a11 the separation in units of 1011 cm (about a
separation of one solar radius), ω7 the frequency associated with a 7 hour orbital period
(similar to PSR193+16) and r100 the distance in units of 100 parsecs, some 3× 1020 cm. A
typical rather large h one might expect at earth from a local astronomical source is then of
order 10−21.

What about the LIGO source, GW150914? How does our formula work in this case? The
distance in this case is cosmological, not local, with r = 1.2 × 1022 km, or in astronomical
parlance, about 400 megaparsecs (Mpc). In this case, we write (392) as

h̄ij ∼ 2GMa2ω2

c4r
=

(
2.9532

rkm

)(
M

M�

)(aω
c

)2
' 1× 10−22

M/M�
rGpc

(aω
c

)2
, (393)

since 2GM�/c
2 is just the Sun’s Schwarzschild radius. (One Gpc=103Mpc = 3.0856 ×

1022km.) The point is that (aω/c)2 is a number not very different from 1 for a relativistic
source, perhaps 0.1 or so. Plugging in numbers with M/M� = 60 and (aω/c)2 = 0.1, we find
h̄ij = 1.5× 10−21, just about as observed at peak amplitude.

Exercise. Prove that h̄ij given by (389) is an exact solution of 2h̄ij = 0, for any r, even if r is not
large.

7.4 Radiated Energy

7.4.1 A useful toy problem

We have yet to make the link between hµν and the actual energy flux that is carried off by
these time varying metric coefficients. Relating metric coefficients to energy is not trivial.
To see how to do this, start with a simpler toy problem. Imagine that the wave equation for
general relativity looked like this:

− 1

c2
∂2Φ

∂t2
+∇2Φ = 4πGρ (394)

This is what a relativisitic theory would look like if the source ρ were just a simple scalar
quantity, instead of a component of a stress tensor. Then, if we multiply by (1/4πG)∂Φ/∂t,
integrate (∂Φ/∂t)∇2Φ by parts and regroup, this leads to

− 1

8πG

∂

∂t

[(
∂Φ

∂t

)2

+ |∇Φ|2
]

+∇·
(

1

4πG

∂Φ

∂t
∇Φ

)
= ρ

∂Φ

∂t
. (395)
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But

ρ
∂Φ

∂t
=
∂(ρΦ)

∂t
− Φ

∂ρ

∂t
=
∂(ρΦ)

∂t
+ Φ∇·(ρv) =

∂(ρΦ)

∂t
+∇·(ρvΦ)− ρv·∇Φ (396)

where v is the velocity and the mass conservation equation

∂ρ

∂t
+∇·(ρv) = 0

has been used in the second “= ” sign from the left. Combining (395) and (396), and then
rearranging the terms a bit leads to

∂

∂t

[
ρΦ +

1

8πG

((
∂Φ

∂t

)2

+ |∇Φ|2
)]

+∇·
(
ρvΦ− 1

4πG

∂Φ

∂t
∇Φ

)
= ρv·∇Φ (397)

The right side is just minus the rate at which work is being done on the sources per unit
volume. (The force per unit volume, you recall, is −ρ∇Φ.) For the usual case of interest
when the source ρ vanishes outside a certain radius, the left side may then be readily inter-
preted as a far-field wave energy density of [(∂tΦ)2 + |∇Φ|2]/8πG and a wave energy flux of
−(∂tΦ)∇Φ/4πG. (Is the sign of the flux sensible for outgoing waves?) The question we raise
here is whether an analogous method might work on the more involved linear wave equation
of tensorial general relativity. The answer is YES, but we have to set things up properly.
We can’t be casual. And, needless to say, it is a bit more messy index-wise!

7.5 A conserved energy flux for linearised gravity

Start with equation (347):

2h̄µν −
∂2h̄λµ
∂xν∂xλ

− ∂2h̄λν
∂xµ∂xλ

+ ηµν
∂2h̄λρ

∂xλ∂xρ
= −16πGTµν

c4
. (398)

Contract on µν: the first term on the left becomes 2h̄, the second and third each become
−∂2h̄λρ/∂xλ∂xρ, while the final contraction turns ηµν into a factor of 4. (Why?) This leads
us to

2h̄+ 2
∂2h̄λρ

∂xλ∂xρ
= −κT (399)

where we have written κ = 16πG/c4. We then recast our original equation as

2h̄µν −
∂2h̄λµ
∂xν∂xλ

− ∂2h̄λν
∂xµ∂xλ

+ ηµν2h̄ = −κSµν (400)

where we have introduced the source function

Sµν = Tµν −
ηµνT

2
(401)

Now multiply (400) by ∂h̄µν/∂xσ, summing over µ and ν as usual but keeping σ free. The
first term on the left becomes

∂h̄µν

∂xσ
2h̄µν =

∂h̄µν

∂xσ
∂2h̄µν
∂xρ∂xρ

=
∂

∂xρ

(
∂h̄µν
∂xρ

∂h̄µν

∂xσ

)
− ∂h̄µν

∂xρ
∂2h̄µν

∂xρ∂xσ
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=
∂

∂xρ

(
∂h̄µν
∂xρ

∂h̄µν

∂xσ

)
− ∂h̄µν

∂xρ
∂

∂xσ
∂h̄

µν

∂xρ
=

∂

∂xρ

(
∂h̄µν
∂xρ

∂h̄µν

∂xσ

)
− ∂

∂xσ

(
1

2

∂h̄µν
∂xρ

∂h̄
µν

∂xρ

)
(402)

Do you see why the final equality is valid for the ∂/∂xσ exact derivative? It doesn’t matter
which group of µν on the h̄’s is the up group and which is the down group.

Now that you’ve seen the tricks of the trade, you should be able to juggle the indices
with me and recast all the terms as exact derivatives: we are aiming to get a pure divergence
on the left side. The second term is

−
∂2h̄λµ
∂xν∂xλ

∂h̄µν

∂xσ
= − ∂2h̄λµ

∂xν∂xλ
∂h̄µν
∂xσ

= − ∂

∂xν

(
∂h̄λµ

∂xλ
∂h̄µν
∂xσ

)
+
∂h̄λµ

∂xλ
∂2h̄µν
∂xσ∂xν

or, replacing ν with ρ in the first group on the right,

−
∂2h̄λµ
∂xν∂xλ

∂h̄µν

∂xσ
= − ∂

∂xρ

(
∂h̄λµ

∂xλ
∂h̄µρ
∂xσ

)
+

1

2

∂

∂xσ

(
∂h̄λµ

∂xλ
∂h̄µν
∂xν

)
(403)

The third term is

− ∂2h̄λν
∂xµ∂xλ

∂h̄µν

∂xσ

But this is exactly the same as the term we’ve just done: just interchange the dummy indices
µ and ν and remember that h̄µν is symmetric in µν. So there is no need to do any more
here. The fourth and final term of the left side of equation is

− 1

2

∂h̄

∂xσ
∂2h̄

∂xρ∂xρ
= −1

2

∂

∂xρ

(
∂h̄

∂xρ
∂h̄

∂xσ

)
+

1

4

∂

∂xσ

(
∂h̄

∂xρ
∂h̄

∂xρ

)
. (404)

Thus, after dividing our fundamental equation by 2κ, the left side of equation (400) takes
on a nice compact form, and we find

∂Uρσ
∂xρ

= −1

2
Sµν

∂h̄µν

∂xσ
, (405)

where
Uρσ = Tρσ + ηρσS. (406)

S is the scalar density:

S = −
(

1

4κ

∂h̄µν
∂xρ

∂h̄
µν

∂xρ

)
+

1

2κ

(
∂h̄λµ

∂xλ
∂h̄µν
∂xν

)
+

1

8κ

(
∂h̄

∂xρ
∂h̄

∂xρ

)
, (407)

and Tρσ is a flux tensor:

Tρσ =
1

2κ

(
∂h̄µν
∂xρ

∂h̄µν

∂xσ

)
− 1

κ

(
∂h̄λµ

∂xλ
∂h̄µρ
∂xσ

)
− 1

4κ

(
∂h̄

∂xρ
∂h̄

∂xσ

)
. (408)

By working with plane waves in standard harmonic coordinates, ∂h̄λµ/∂xλ = 0, and Uρσ
becomes symmetric in ρσ. Remembering kρk

ρ = 0 for the TT gauge, we find the simple
result

Uρσ =
c4

32πG

(
∂h̄µν
∂xρ

∂h̄µν

∂xσ

)
(TT gauge). (409)
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Why did we choose to divide by 2κ for our overall constant? Why not just κ, or for that
matter, 4κ? It is the right side of our energy equation that tells this story. This is

− 1

2
Sµν

∂h̄µν

∂xσ
= −1

2

(
Tµν −

ηµν
2
T
)(∂hµν

∂xσ
− ηµν

2

∂h

∂xσ

)
= −1

2
Tµν

∂hµν

∂xσ
. (410)

Choose σ = 0, the time component. We work in the Newtonian limit h00 ' −2Φ/c2, where
Φ is a Newtonian gravitational potential. In the µν summation on the right side of the
equation, we are then dominated by the 00 components of both hµν and Tµν . Now, we
are about to do a number of integration by parts. But we will always ignore the exact
derivative! Why? Because the exact derivative of a perioidic function (and everything here
is periodic) must oscillate away to zero on average. But in general the products of the
periodic functions don’t oscillate to zero; for example the average of cos2(ωt)2 = 1/2. Thus
we keep these product terms, but only if they are not an exact derivative. Using the right
arrow → to mean “integrate by parts and ignore the pure derivatives” (as inconsequential
for wave losses), we perform the following manipulations on the right side of equation (410):

− 1

2
T00

∂h00

∂x0
→ 1

2

∂T00
∂x0

h00 = −1

2

∂T 0i

∂xi
h00 → 1

2
T 0i∂h

00

∂xi
' −ρv

c
·∇Φ, (411)

where the first equality follows from ∂νT
0ν = 0. We have arrived on the right at an expression

for the rate at which the effective Newtonian potential does net work on the matter. Why
is that 1/c there? Don’t worry, it cancels out with the same factor on the left (flux) side of
the original equation. What about the sign of this? This expression is negative if the force
−ρ∇Φ is oppositely directed to the velocity, so that the source is losing energy by generating
outgoing waves. Our harmonic gauge expression (409) for T0i is also negative for an outward
flowing wave that is a function of the argument (r− ct), r being spherical radius and t time.
By contrast, T 0i would be positive, as befits an outward moving wave energy.

The fact that division by 2κ produces a source corresponding to the rate at which work is
done on the Newtonian sources (when σ = 0) means that our overall normalisation is indeed
correct. The σ = 0 energy flux of (409) is the true energy flux of gravitational radiation in
the weak field limit:

F i = Fi = cT i0 = −cTi0 = − c4

32πG

(
∂h̄µν
∂xi

∂h̄µν

∂t

)
(TT gauge). (412)

7.6 The energy loss formula for gravitational waves

Our next step is to evaluate the transverse and traceless components of hij, denoted hTTij , in
terms of the transverse and traceless components of Iij. Begin with the traceless component,
denoted Jij:

Jij = Iij −
δij
3
I (413)

where I is the trace of Iij. Next, we address the transverse property. The projection of a
vector v onto a plane perpendicular to a unit direction vector n is accomplished simply by
removing the component of v along n. Denoting the resulting projected vector as w,

w = v − (n · v)n (414)

or
wj = (δij − ninj)vi ≡ Pijvi (415)
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where we have introduced the projection tensor

Pij = δij − ninj,

with the easily shown properties

niPij = njPij = 0, PijPjk = Pik, Pii = 2. (416)

Projecting tensor components presents no difficulties,

wij = PikPjlvkl → niwij = njwij = 0, (417)

nor does the extraction of a projected tensor that is both traceless and transverse:

wTTij =

(
PikPjl −

1

2
PijPkl

)
vkl → wTTii = (PikPil − Pkl)vkl = (Pkl − Pkl)vkl = 0. (418)

Let us define

JTTij =

(
PikPjl −

1

2
PijPkl

)
Jkl. (419)

Notice now that (Jij − JTTij )JTTij is the contraction of the nontranverse part of Jij with its
fully transverse part. It ought to vanish, if there is any justice. Happily, it does:

(Jij − JTTij )JTTij = JijJ
TT
ij − Jkl(PikPjl −

1

2
PijPkl)(PimPjn −

1

2
PijPmn)Jmn (420)

Following the rules carefully in (416) and remembering Pij = Pji, this is

JijJ
TT
ij − Jkl(PmkPnl −

1

2
PklPmn −

��
���1

2
PmnPkl +

��
���1

2
PmnPkl)Jmn = JijJ

TT
ij − JklJTTkl = 0 (421)

This will come in very handy in a moment.

Next, we write down the traceless-transverse part of the quadrupole formula:

hTTij =
2G

c6r

d2JTTij
dt′2

. (422)

Recalling that t′ = t− r/c and the JTT ’s are functions of t′ (not t!),

∂hTTij
∂t

=
2G

c6r

d3JTTij
dt′3

,
∂hTTij
∂r

= −2G

c7r

d3JTTij
dt′3

(423)

where, in the second expression we retain only the dominant term in 1/r. The radial flux of
gravitational waves is then given by (412):

Fr =
G

8πr2c9
d3JTTij
dt′3

d3JTTij
dt′3

(424)

The 1/c9 dependence ultimately translates into a 1/c5 dependence for Newtonian sources,
since each of the J ’s carries a c2 factor.
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The final step is to write out JTTij in terms of the Jij via the projection operator. It is
here that the fact that Jij is traceless is a computational help.(

PikPjl −
1

2
PijPkl

)
= (δik − nink)(δjl − njnl)−

1

2
(δij − ninj)(δkl − nknl) (425)

Thus, with Jkl traceless, we find

JTTij =

(
PikPjl −

1

2
PijPkl

)
Jkl = Jij +

1

2
(δij + ninj)nknlJkl − ninkJjk − njnkJik (426)

If we now write ...
J
TT
ij

...
J
TT
ij = [

...
J ij + (

...
J
TT
ij −

...
J ij)]

...
J
TT
ij , (427)

then we’ve seen in (420) and (421) that

(
...
J
TT
ij −

...
J ij)

...
J
TT
ij = 0,

and we are left with

...
J ij

...
J
TT
ij ≡

...
J ij(

...
J ij +

1

2
(δij + ninj)nknl

...
J kl − nink

...
J jk − njnk

...
J ik) =

...
J ij

...
J ij − 2njnk

...
J ij

...
J ik +

1

2
ninjnknl

...
J ij

...
J kl (428)

We conclude:

...
J
TT
ij

...
J
TT
ij =

...
J ij

...
J
TT
ij =

...
J ij

...
J ij − 2

...
J ij

...
J iknjnk +

1

2

...
J ij

...
J klninjnknl (429)

The gravitational wave luminosity is an integration of this distribution over all solid angles,

LGW =

∫
r2Fr dΩ (430)

To evaluate this, you will need ∫
ninj dΩ =

4π

3
δij. (431)

This is pretty simple: if the two vector components of n are not the same, the integral
vanishes by symmetry (e.g. the average of xy over a sphere is zero). That means it is
proportional to a delta function, say Cδij. To get the constant of proportionality C, take the
trace of both sides:

∫
dΩ = 4π = 3C. More scary looking is the other identity you’ll need:∫

ninjnknl dΩ =
4π

15
(δijδkl + δikδjl + δilδkj), (432)

but keep calm and think. The only way the integral cannot vanish is if two of the indices
agree with one another and the remaining two indices also agree with one another. (Maybe
the second pair is just the same pair as the first, maybe not.) This pairwise index agreement
requirement is precisely what the symmetric combination of delta functions ensures, summed
over the three different ways the agreement can occur. To get the 4π/15 factor, set i = j and
sum, and the same thing with l = k. The integral on the left is then trivially

∫
nininlnl dΩ =
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∫
dΩ = 4π. The combination of delta functions is 9 + 3 + 3 = 15. Hence the normalisation

factor 4π/15. Putting this all together via (424), (429), (431) and (432), remembering
Jii = 0, and carrying out the angular integral, the total gravitational luminosity is given by
a beautifully simple formula, first derived by Albert Einstein7 in 1918:

LGW =
G

8πc9
×
[
4π − 2× 4π

3
+

1

2
× 4π

15
× (0 + 1 + 1)

]
...
J ij

...
J ij

which amounts to:

LGW =
G

5c9
...
J ij

...
J ij =

G

5c9

(
...
I ij

...
I ij −

1

3

...
I ii

...
I jj

)
(433)

7.7 Gravitational radiation from binary stars

In W72, the detection of gravitational radiation looms as a very distant possibility, and
rightly so. The section covering this topic devotes its attention to the possibility that rapidly
rotating neutron stars might, just might, be a good source. Alas, for this to occur the
neutron star would have to possess a sizeable and rapidly varying quadrupole moment, and
this neutron stars do not seem to possess. Neutron stars are nearly exact spheres, even when
rotating rapidly as pulsars. They are in essence perfectly axisymmetric; were they to have
any quadrupole moment, it would hardly change with time.

The possibility that Keplerian orbits might be interesting from the point-of-view of mea-
suring gravitational radiation is never mentioned in W72. Certainly ordinary orbits involving
ordinary stars are not a promising source. But compact objects (white dwarfs, neutron stars
or black holes) in very close binaries, with orbital periods measured in hours, were discovered
within two years of the book’s publication, and these turn out to be extremely interesting.
They are the central focus of modern day gravitational wave research. As we have noted
earlier, the first confirmation of the existence of gravitational radiation came from the bi-
nary pulsar system 1913+16, in which the change in the orbital period from the loss of
wave energy was inferred via the changing interval of the arrival times of the pulsar signal.
The radiation level of the gravitational waves itself was well below the threshold of direct
detection at the time (and still today at the frequencies of interest). Over long enough time
scales, a tight binary of compact objects, black holes in the most spectacular manifestation,
may lose enough energy through gravitational radiation that the resulting inspiral goes all
the way to completion and the system either coalesces or explodes. Predictions suggest that
there are enough merging binaries in the universe to produce a rather high detection rate:
several per year at a minimum. LIGO has already published its first detection, and given how
quickly it was found when the threshold detector upgrade was made, there are grounds for
optimism for more to come8. The final frenzied seconds of black holes coalescence will emit
detectable gravitational wave signatures rich in physical content at frequencies that LIGO
is tuned for. Such waveforms can now also be determined numerically to high precision (F.
Pretorius 2005, Phys. Rev. Lett. 95, 121101). In the near future, they will very likely be
detected on a regular basis.

Let us apply equation (433) to the case of two point masses in a classical Keplerian orbit.
There is of course no contradiction between assuming a classical orbit and calculating its

7Actually, Einstein found a coefficient of 1/10, not 1/5. Eddington put matters right a few years later.
Tricky business, this gravitational radiation.

8Update: yes indeed! There is now a second confirmed black hole merger, GW151226, and a third likely
merger, though at a formal statistical level short of full GW status: LVT151012. LVT stands for “LIGO
VIRGO Transient.”
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gravitational energy loss. We are working here in the regime in which the losses themselves
exert only a tiny change on the orbit over one period, and the objects themselves, while close
by ordinary astronomical standards, are separated by a distance well beyond their respective
Schwarzschild radii. (Pretorius [2005] does not make this restriction, of course!)

The orbital elements are defined on page 71. The separation r of the two bodies is given
as a function of azimuth φ as

r =
L

1 + ε cosφ
(434)

where L is the semilatus rectum and ε is the orbital eccentricity. With M being the total
mass of the individual objects, M = m1 + m2, l the constant specific angular momentum
(we forego J for angular momentum to avoid confusion with Jij), and a is the semi-major
axis, we have

r2
dφ

dt
= l, L =

l2

GM
= a(1− ε2) (435)

and thus

dφ

dt
=

(
GM

a3(1− ε2)3

)1/2

(1 + ε cosφ)2
dr

dt
=

(
GM

a(1− ε2)

)1/2

ε sinφ (436)

The distance from the center-of-mass of each body is denoted r1 and r2. Writing these as
vector quantities,

r1 =
m2r

M
, r2 = −m1r

M
(437)

Thus the coordinates in the xy orbital plane are

r1 =
m2r

M
(cosφ, sinφ), r2 =

m1r

M
(− cosφ,− sinφ) (438)

The nonvanishing moment tensors Iij are then

Ixx =
m1m

2
2 +m2

1m2

M2
r2 cos2 φ = µr2 cos2 φ (439)

Iyy = µr2 sin2 φ (440)

Ixy = Iyx = µr2 sinφ cosφ (441)

Iii = Ixx + Iyy = µr2 (442)

where µ is the reduced mass m1m2/M . It is a now lengthy, but entirely straightforward task
to differentiate each of these moments three times. You should begin with the relatively
easy ε = 0 case when reproducing the formulae below, though I present the results for finite
ε here:

d3Ixx
dt3

= α(1 + ε cosφ)2(2 sin 2φ+ 3ε sinφ cos2 φ), (443)

d3Iyy
dt3

= −α(1 + ε cosφ)2[2 sin 2φ+ ε sinφ(1 + 3 cos2 φ)], (444)

d3Ixy
dt3

=
d3Iyx
dt3

= −α(1 + ε cosφ)2[2 cos 2φ− ε cosφ(1− 3 cos2 φ)], (445)
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where

α2 ≡ 4G3m2
1m

2
2M

a5(1− ε2)5
(446)

Equation (433) yields, after some assembling:

LGW =
32

5

G4

c5
m2

1m
2
2M

a5(1− ε2)5
(1 + ε cosφ)4

[
(1 + ε cosφ)2 +

ε2

12
sin2 φ

]
(447)

Our final step is to average LGW over an orbit. This is not simply an integral over dφ/2π.

We must integrate over time, i.e., over dφ/φ̇, and then divide by the orbital period to do a
time average. The answer is

〈LGW 〉 =
32

5

G4

c5
m2

1m
2
2M

a5
f(ε) = 1.00× 1025 m2

�1m
2
�2M�(a�)−5 f(ε) Watts, (448)

where

f(ε) =
1 + (73/24)ε2 + (37/96)ε4

(1− ε2)7/2
(449)

and � indicates solar units of mass (1.99×1030 kg) and length (one solar radius is 6.955×108

m). (Peters and Mathews 1963).

Exercise. Show that following the procedure described above, the time-averaged luminosity
〈LGW 〉time is given by the expression

〈LGW 〉time =
32

5

G4

c5
m2

1m
2
2M

a5(1− ε2)7/2

〈
(1 + ε cosφ)2

[
(1 + ε cosφ)2 +

ε2

12
sin2 φ

]〉
angle

,

where the average on the right is over 2π angles in φ. Use the fact that the angular average
of cos2 φ is 1/2 and the average of cos4 φ is 3/8 to derive equation (448).

Equations (448) and (449) give the famous gravitational wave energy loss formula for a
classical Keplerian orbit. Notice the dramatic effect of finite eccentricity via the f(ε) function.
The first binary pulsar to be discovered, PSR1913+16, has an eccentricity of about 0.62, and
thus an enhancement of its gravitational wave energy loss that is boosted by more than an
order of magnitude relative to a circular orbit.

This whole problem must have seemed like an utter flight of fancy in 1963: the concept
of a neutron star was barely credible and not taken seriously; the notion of pulsar timing
was simply beyond conceptualisation. A lesson, perhaps, that no good calculation of an
interesting physical problem ever goes to waste!

Exercise. When we studied Schwarzschild orbits, there was an exercise to show that the
total Newtonian orbital energy of a bound two body system is −Gm1m2/2a and that the
system period is proportional to a3/2, independent of the eccentricity. Use these results to
show that the orbital period change due to the loss of gravitational radiation is given by

Ṗ = −192π

5

(m1m2

M2

)(GM
ac2

)5/2

f(ε)

with M = m1 +m2 as before. This Ṗ is a measurable quantity! Stay tuned.

Exercise. Now that you’re an expert in the the two-body gravitational radiation problem,
let’s move on to three! Show that three equal masses revolving around their common centre-
of-mass emit no quadrupole gravitational radiation.
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7.8 Detection of gravitational radiation

7.8.1 Preliminary comments

The history of gravitational radiation has been somewhat checkered. Albert Einstein himself
stumbled several times, both conceptually and computationally. Arguments of fundamental
principle persisted through the early 1960’s; technical arguments still go on.

At the core of the early controversy was the question of whether gravitational radiation
existed at all! The now classic Peters and Mathews paper of 1963 begins with a disclaimer
that they are assuming that the “standard interpretation” of the theory is correct. The
confusion concerned whether the behaviour of hµν potentials were just some sort of math-
ematical coordinate effect, devoid of any actual physical consequences. For example, if we
calculate the affine connection Γµνλ and apply the geodesic equation,

d2xµ

dτ 2
+ Γµνλ

dxν

dτ

dxλ

dτ
= 0 (450)

and ask what happens to a particle initially at rest with dxν/dτ = (−c,0). The subsequent
evolution of the spatial velocity components is then

d2xi

dτ 2
+ Γi00c

2 = 0 (451)

But equation (334) clearly shows that Γi00 = 0 since any h with a zero index vanishes for
our TT plane waves. The particle evidently remains at rest. Is there really no effect of
gravitational radiation on ordinary matter?!

Coordinates, coordinates, coordinates. The point, once again, is that coordinates by
themselves mean nothing, any more than does the statement “My house is located at the
vector (2, 1.3).” By now we should have learned this lesson. We picked our gauge to make
life simple, and we have simply found a coordinate system that is frozen to the individual
particles. There is nothing more to it than that. The proper spatial separation between
two particles with coordinate separation dxi is ds2 = (ηij − hij)dxi dxj, and that separation
surely is not constant because h11, h22, and h12 = h21 are wiggling even while the dxi are
fixed. Indeed, to first order in hij, we may write

ds2 = ηij(dx
i − hikdxk/2)(dxj − hjmdxm/2).

This makes the physical interpretation easy: the passing wave increments the initially undis-
turbed spatial interval dxi by an amount −hikdxk/2. It was Richard Feynman who in 1955
seems to have given the simplest and most convincing argument for the existence of grav-
itational waves. If the separation is between two beads on a rigid stick and the beads are
free to slide, they will oscillate with the tidal force of the wave. If there is now a tiny bit of
stickiness, the beads will heat the stick. Where did that energy come from? It could only
be the wave. The “sticky bead argument” became iconic in the relativity community.

The two independent states of linear polarisation of a gravitational wave are sometimes
referred to as + and ×, “plus” and “cross.” The behave similarly, but rotated by 45◦. The
+ wave as it passes initially causes a prolate distortion along the vertical part of the plus
sign, squeezes from prolate to oblate distorting along the vertical axis, then squeezes inward
from oblate to prolate once again. The × wave shows the same oscillation pattern along a
rotation pattern rotated by 45◦. (An excellent animation is shown in the Wikipedia article
“Gravitational Waves.”) These are true physical distortions caused by the tidal force of the
gravitational wave.
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In the midst of what had been intensively theoretical investigations and debate surround-
ing the nature of gravitational radiation, in 1968 a physicist named Joseph Weber calmly
announced that he had detected gravitational radiation experimentally in his basement lab,
coming in prodigious amounts from the centre of the Milk Way Galaxy, thank you very
much. His technique was to use what are now called “Weber bars”, giant cylinders of alu-
minum fitted with special piezoelectric devices that can convert tiny mechanical oscillations
into electrical signals. The gravitational waves distorted these great big bars by a tiny, tiny
amount, and the signals were picked up. Or at least that was the idea. The dimensionless
relative strain δl/l of a bar of length l due to passing wave would be of order hij, or 10−21

by our optimistic estimate. To make a long, rather sad story very short, Weber was in
error in several different ways, and ultimately his experiment was completely discredited.
Yet his legacy was not wholly negative: the possibility of actually detecting gravitational
waves hadn’t been taken very seriously up to this point. Post Weber, the idea gradually
took hold in the physics establishment. People asked themselves how we might actually go
about detecting these signals. It became part of the mainstream, with leading figures in
relativity getting directly involved. The detection of gravitational radiation is not a task for
a clever lone researcher working in the basement of university building, any more than was,
say, finding the Higgs boson. Substantial resources of the National Science Foundation in
the US and a research team numbering in the thousands were needed for the construction
and testing of viable gravitational wave receptors. Almost fifty years after Weber, the LIGO
facility has at last cleanly detected the exquisitely gentle tensorial strains of gravitational
waves at the level of h ∼ 10−21. The LIGO mirrors did not crack from side-to-side, but they
did flutter a bit in the gravitational breeze. This truly borders on magic: if the effective
length of LIGO’s interferomter arm is taken is taken to be l = 10 km, then δl is 10−15 cm,
one percent of the radius of a proton!

The next exercise is strongly recommended.

Exercise. Weaker than weak interactions. Imagine a gravitational detector of two
identical masses m separated by a distance l symmetrically about the origin along the x-
axis. Along comes a plane wave gravitational wave front, propagating along the z-axis, with
hxx = −hyy = Axx cos(kz − ωt) and no other components. The masses vibrate in response.
Show that, to linear order in Axx,

...
I xx =

1

2
mc4ω3l2Axx sinωt,

that there are no other
...
I ij, and that the masses radiate an average gravitational wave

luminosity of

〈LGW 〉 =
G

60c5
m2ω6l4A2

xx

Next, show that the average energy flux for our incoming plane wave radiation is, from
equation (412),

F =
c3ω2A2

xx

64πG
.

The cross section for gravitational interaction (dimensions of area) is defined to be the ratio
of the average luminosity to the average incoming flux. Why is this a good definition for the
cross section? Show that this ratio is

σ =
16πG2m2ω4l4

15c8
=

4

15
πR2

S

(
ωl

c

)4

where RS = 2Gm/c2 is the Schwarzschild radius of each mass. Evaluate this numerically for
m = 10kg, l = 10m, ω = 20 rad s−1 (motivated by GW150914). Compare this with a typical
weak interaction cross section of 10−48m2. Just how weak is gravitational scattering?
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7.8.2 Indirect methods: orbital energy loss in binary pulsars

In 1974, a remarkable binary system was discovered by Hulse and Taylor (1975, ApJ Letters,
195, L51). One of the stars was a pulsar with a pulse period of 59 milliseconds, i.e., a neutron
star that rotates about 17 times a second. The orbital period was 7.75 hours, a very tight
binary with a separation of about the radius of the Sun. The other star was not seen, only
inferred, but the very small separation between the two stars together with the absence of
any eclipse of the pulsar suggested that the companion was also a compact star. (If the
binary orbital plane were close to being in the plane of the sky to avoid observed eclipses,
then the pulsar pulses would show no Doppler shifts, in sharp contradiction to observations.)

What made this yet more extraordinary is that pulsars are among the most accurate
clocks in the universe, until recently more accurate than any earthbound atomic clock. The
most accurately measured pulsar has a pulse period known to 17 significant figures! Indeed,
pulsars can be calibrated only by ensemble averages of large numbers of atomic clocks.
Pulsars are now directly used as clocks. 9 Nature has placed its most accurate clock in
the middle of binary system in which fantastically precise timing is required. This is the
ultimate general relativity laboratory.

Classic nonrelativistic binary observation techniques allow one to determine five param-
eters from observations of the pulsar: the semimajor axis projected against the plane of
the sky (a sin i), the eccentricity e, the orbital period P , and two parameters related to the
periastron (the point of closest separation): its angular position within the orbit and a time
reference point for when it occurs.

Relativistic effects, something new and beyond standard analysis, give two more param-
eters. The first is the advance of the perihelion (exactly analogous to Mercury) which in
the case of PSR 1913+16 is 4.2◦ per year. (Recall that Mercury’s is only 43 arc seconds
per century!) The second is the second order (∼ v2/c2) Doppler shift of the pulse period
from both the gravitational redshift of the combined system and the rotational kinematics.
These seven parameters allow a complete determination of the masses and orbital compo-
nents of the system, a neat achievement in itself. The masses of the neutron stars are
1.4414M� and 1.3867M�, remarkably similar to one another and remarkably similar to the
Chandrasekhar mass 1.42M�

10. (The digits in the neutron stars’ masses are all significant!)
More importantly, there is a third relativistic effect also present, and therefore the problem
is over-constrained. That is to say, it is possible to make a prediction. The orbital period
changes slowly with time, shortening in duration due to the gradual approach of the two
bodies. This “inspiral” is caused by the loss of orbital energy that has been carried off by
gravitational radiation, equation (448). Thus, by monitoring the precise arrival times of the
pulsar signals emanating from this slowly decaying orbit, the existence of gravitational ra-
diation could be quantitatively confirmed and Einstein’s quadrupole formula verified—even
though the radiation itself was not directly observable.

Figure [5] shows the results of many years of observations. The dots are the cumulative
change in the time of periastron due to the more progressively more rapid orbital period as
the neutron stars inspiral from gravitational radiation losses. Without the radiation losses,
there would still be a perihelion advance of course, but the time between perihelia would not
change–it would just be a bit longer than an orbital period. It is the cumulative change
between perihelia that is an indication of actual energy loss. The solid line is not a fit to the
data. It is the prediction of general relativity of what the cumulative change in the “epoch
of perihelion” (as it is called) should be, according to the energy loss formula of Peters and

9Since 2011, a bank of six pulsars, observed from Gdansk Poland, has been monitored continuously as a
timekeeping device.

10This is the upper limit to the mass of a white dwarf star. If the mass exceeds this value, it collapses to
either a neutron star or black hole, but cannot remain a white dwarf.
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Figure 5: The cumulative change in the periastron event (“epoch”) caused by the inspiral
of the pulsar PSR1913+16. The dots are the data, the curve is the prediction, not the
best fit! This prediction is confirmed to better than a fraction of a percent.
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Mathews, (448). This beautiful precision fit leaves no doubt whatsover that the quadrupole
radiation formula of Einstein is correct. For this achievement, Hulse and Taylor won a well-
deserved Nobel Prize in 1993. (It must be just a coincidence that this is about the time that
the data points seem to become more sparse.)

Direct detection of gravitational waves is a very recent phenomenon. There are two
types of gravitational wave detectors currently in operation. The first is based on a classic
19th century laboratory apparatus: a Michelson interferometer. The second makes use
of pulsar emission pulses—specifically their arrival times—as a probe of the hµν caused by
gravitational waves as they propagate across our line of site to the pulsar. The interferometer
detectors are designed for wave frequencies from ∼ 10 Hz to 1000’s of Hz. This is now up
and running. By contrast, the pulsar measurements are sensitive to frequencies of tens to
hundreds of micro Hz. A very different range, measuring physical processes on very different
scales. This technique has yet to be demonstrated. The high frequency interferometers
measure the gravitational radiation from stellar-mass black holes or neutron star binaries
merging together. The low frequency pulsar timing will measure black holes merging, but
with masses of order 109 solar masses. These are the masses of galactic core black holes in
active galaxies.

7.8.3 Direct methods: LIGO

LIGO, or Laser Interferometer Gravitational-Wave Observatory, detects gravitational waves
as described in figure (6). In the absence of a wave, the arms are set to destructively interfere,
so that no light reaches the detector. The idea is that a gravitational wave passes through the
apparatus from above or below, each period of oscillation slightly squeezing one arm, slightly
extending the other. With coherent laser light traversing each arm, when it re-superposes at
the centre, the phase will become ever so slightly out of precise cancellation, and photons will
appear in the detector. In practise, the light makes many passages back and forth along a
4 km arm before analysis. The development of increased sensitivity comes from engineering
greater and greater numbers of reflections, and thus a greater effective path length. There are
two such interferometers, one in Livingston, Louisiana, the other in Hanford, Washington,
a separation of 3000 km. Both must show a simultaneous wave passage (actually, with an
offset of 10 milliseconds for speed of light travel time) for the signal to be verified.

This is a highly simplified description, of course. All kinds of ingenious amplification
and noise suppression techniques go into this project, which is designed to measure induced
strains at the incredible level of 10−21. This detection is only possible because we measure
not the flux of radiation, which would have a 1/r2 dependence with distance to the source,
but the hij amplitude, which has a 1/r dependence.

Figure (7) shows a match of an accurate numerical simulation to the processed LIGO
event GW150914. I have overlaid three measured wave periods P1, P2, and P3, with each of
their respective lengths given in seconds. (These were measured with a plastic ruler directly
from the diagram!) The total duration of these three periods is 0.086 s. Throughout this
time the black holes are separated by a distance in excess of of 4 RS, so we are barely at the
limit for which we can trust Newtonian orbit theory. Let’s give it a try for a circular orbit.
(Circularity is not unexpected for the final throes of coalescence.)

Using the zero eccentricity orbital period decrease formula from the previous exercise,
but remembering that the orbital period P is twice the gravitational wave period PGW ,

ṖGW = −96π
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M2
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)5/2
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Figure 6: A schematic interferometer. Coherent light enters from the laser at the left.
Half is deflected 45◦ upward by the beam splitter, half continues on. The two halves
reflect from the mirrors. The beams re-superpose at the splitter, interfere, and are
passed to a detector at the bottom. If the path lengths are identical or differ by an
integral number of wavelengths they interfere constructively; if they differ by an odd
number of half-wavelengths they cancel one another. In “null” mode, the two arms
are set to destructively interfere so that no light whatsoever reaches the detector. A
passing gravity wave just barely offsets this precise destructive interference and causes
laser photons to appear in the detector.
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We eliminate the semi-major axis a in favour of the measured period PGW ,

P 2 =
4π2a3

GM
, whence P 2

GW =
π2a3

GM

This gives

ṖGW = −96π8/3

5c5

(
GMc

PGW

)5/3

(452)

where we have introduced what is known as the “chirp mass” Mc,

Mc =
(m1m2)

3/5

M1/5
(453)

The chirp mass (so-named because if the gravitational wave were audible at the same fre-
quencies, it would indeed sound like a chirp!) is the above combination of m1 and m2,
which is directly measurable from PGW and its derivative. It can be shown (try it!) that
M = m1 +m2 is a minimum when m1 = m2, in which case

m1 = m2 ' 1.15Mc.

Now, putting numbers in (452), we find

Mc� = −5.522× 103PGW Ṗ
3/5
GW (454)

where Mc� is the chirp mass in solar masses and PGW is measured in seconds. From the
GW150914 data, we estimate

ṖGW '
P3 − P1

P1 + P2 + P3

=
−0.0057

0.086
= −0.0663,

and for PGW we use the midvalue P2 = 0.0283. This yields

Mc� ' 30.7 (455)

compared with “Mc ' 30M�” in Abbot et al (2016)! I’m sure this remarkable level of
agreement is somewhat (but not entirely!) fortuitous. Even in this, its simplest presentation,
the wave form presents a wealth of information. The “equal mass” coalescing black hole
system comprises two 35M� black holes, and certainly at that mass a compact object can
only be a black hole!

The two masses need not be equal of course, so is it possible that this is something other
than a coalescing black hole binary? We can quickly rule out any other possibility, without
a sophisticated analysis. It cannot be any combination of white dwarfs or neutron stars,
because the chirp mass is too big. Could it be, say, a black hole plus a neutron star? With
a fixed observed Mc = 30M�, and a neutron star of at most ∼ 2M�, the black hole would
have to be some 1700M�. So? Well, then the Schwarzschild radius would have to be very
large, and coalescence would have occured at a separation distance too large for any of the
observed high frequencies to be generated! There are frequencies present toward the end of
the wave form event in excess of 75 Hz. This is completely incompatible with a black hole
mass of this magnitude.

A sophisticated analysis using accurate first principle numerical simulations of gravi-
tational wave from coalescing black holes tells an interesting history, though one rather
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Figure 7: From Abbot et al. (2016). The upper diagram is a schematic rendering of
the black hole inspiral process, from slowly evolution in a quasi-Newtonian regime, to a
strongly interacting regime, followed by a coalescence and “ring-down,” as the emergent
single black hole settles down to its final, nonradiating geometry. The middle figure is
the gravitational wave strain, overlaid with three identified periods discussed in the the
text. The final bottom plot shows the separation of the system and the relative velocity
as a function of time, from insprial just up to the moment of coalescence.

well-captured by our naive efforts. Using a detailed match to the waveform, the following
can be deduced. The system lies at a distance of some 400 Mpc, with significant uncertainties
here of order 40%. At these distances, the wave form needs to be corrected for cosmolog-
ical expansion effects, and the masses in the source rest frame are 36M� and 29M�, with
±15% uncertainties. The final mass, 62M� is less than the sum of the two, 65M�: some
3M�c

2 worth of energy has disappeared in gravitational waves! A release of 5 × 1047J is, I
believe, the largest explosion of any kind every recorded. A billion years later, some of that
energy, in the form of ripples in space itself, tickles the interferometer arms in Louisiana and
Washington. It is, I believe, at 10−15 cm, the smallest amplitude mechanical motion ever
recorded.

What a story.

7.8.4 Direct methods: Pulsar timing array

Pulsars are, as we have noted, fantastically precise clocks. Within the pulsar cohort, those
with millisecond periods are the most accurate of all. The period of PSR1937+21 is known to
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Figure 8: A schematic view of a gravitational wave passing through
an array of pulsar probes.

be 1.5578064688197945 milliseconds, an accuracy of one part in 1017. One can then predict
the arrival time of a pulse to this level of accuracy as well. By constraining variations in
pulse arrival times from a single pulsar, we can set an upper limit to amount of gravitational
radiation that the signal has traversed. But we don’t just have one pulsar. So why settle
for one pulsar and mere constraints? We know of many pulsars, distributed more or less
uniformly through the galaxy. If the arrival times from this “pulsar timing array” (PTA) were
correlated with one another in a mathematically calculable manner, this would be a direct
indication of the the deformation of space caused by the passage of a gravitational wave. This
technique is sensitive to very long wavelength gravitational radiation, light-years in extent.
This is very difficult to do because all other sources introducing a spurious correlation must
be scrupulously eliminated. LIGO too has noise issues, but unlike pulsar blips propagating
through the interstellar medium, LIGO’s signal is very clean and all hardware is accessible.
Thus, PTA has its share of skeptics. At the time of this writing, there are only upper limits
from the PTA measurements.

104



Despite its name, the big bang theory is

not really a theory of a bang at all. It is

really only a theory of the aftermath of a

bang.

— Alan Guth

8 Cosmology

8.1 Introduction

8.1.1 Newtonian cosmology

The subject of the origin of the Universe is irresistible to the scientist and layperson alike.
What went bang? Where did the Universe come from? What happened along the way?
Where are we headed? The theory of general relativity, with its rigorous mathematical
formulation of the large-scale geometry of spacetime, provides both the conceptual and
technical apparatus to understand the structure and evolution of the Universe. We are
fortunate to live in an era in which many precise answers to these great questions are at
hand. Moreover, while we need general relativity to put ourselves on a truly firm footing, we
can get quite far using very simple ideas and hardly any relativity at all! Not only can, we
absolutely should begin this way. Let us start with some very Newtonian dynamics and see
what there is to see. Then, knowing a bit of what to expect and where we are headed, we will
be in a much better position to revisit “the problem of the Universe” on a fully relativisitic
basis.

A plausible but naive model of the Universe might be one in which space is ordinary
static Euclidian space, and the galaxies fill up this space uniformly (on average) everywhere.
Putting aside the question of the origin of such a structure (let’s say it has existed for all
time) and the problem that the cumulative light received at any location would be infinite
(“Olber’s paradox”–that’s tougher to get around: let’s say maybe we turned on the galaxies
at some finite time in the past11), the static Euclidian model is not even mathematically
self-consistent.

Consider the analysis from Figure [9]. There are two observers, one at the centre of the
sphere labelled of radius r1, the other at the centre of sphere r2. Each calculates the expected
acceleration at the location of the big black dot, which is a point on the surface of each of
the spheres. Our model universe is spherically symmetric about r1, but it is also spherically
symmetric about r2. Hence the following conundrum:

The observer at the centre of the r1 sphere ignores the effect of the spherically symmetric
mass exterior to the black point and concludes that the acceleration at the dot’s location is

a1 =
GM(within r1)

r21
=

4πGρr1
3

(456)

directed toward the centre of the r1 sphere. (Here ρ is meant to be the average uniform mass
density of the Universe.) But the observer at the origin of the r2 sphere claims, by identical
reasoning, that the acceleration must be a2 = 4πGρr2/3 directed toward the centre of r2!
Both cannot be correct.

11See W72, pp. 611-13.
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r2	  

a1	  ≠	  a2	  	  

a1	   a2	  

Figure 9: In a static homogeneous Euclidian universe, an observer at the
center of the r1 circle would calculate a different gravitational acceleration
for the dot than an observer at the centre of the r2 circle, i.e. a1 6= a2.
But if we take into account the relative acceleration of the two observers,
each considers the other to be in a noninertial frame, and the calculation
is self-consistent with the included fictitious force. (See text.)

What if the Universe is dynamically active? Then we must put in the gravitational accel-
eration, in the form of a noninertial reference frame, from the very start of the calculation.
If the observers at the centres of r1 and r2 are actually accelerating relative to one another,
there is no reason to expect that their separate calculations for the black dot acceleration to
agree, because the observers are not part of the same inertial frame! Can we make this pic-
ture self-consistent somehow for any two r1 and r2 observers? Yes. If the Universe exhibits
a relative acceleration between two observers that is proportional to the vector difference
r2 − r1 between the two observers’ positions, all is well.

Here is how it works. The observer at the centre of circle 1 measures the acceleration
of the black dot to be −4πGρr1/3 as above, with r1 indicating a vector pointing from the
centre of circle 1 to the surface dot. (In figure [9], r1 and r2 are shown pointing to arbitrary
boundary points for clarity; but think of them now as both pointing directly to the common,
big dot boundary point.) The same circle 1 observer finds that the acceleration of the centre
of circle 2 is −4πGρ(r1 − r2)/3, where r2 is the position vector oriented from the circle 2
centre toward the big dot. (Defined this way, these particular r1 and r2 vectors are colinear.)
Thus, the person at the centre of circle 1 would say that the acceleration of the big dot, as
measured by an observer moving in the (noninertial) centre of circle 2 frame is the circle 1
acceleration of −4πGr1/3, minus the acceleration of the circle 2 centred observer:

− 4πGρr1
3

− −4πGρ(r1 − r2)

3
= −4πGρr2

3
(457)

Lo and behold, this is the result that the observer at the centre of circle 2 finds self-
consistently in the privacy of his own study, without worrying about what anyone else thinks
might be going on. A Euclidian, “linearly accelerating” universe is therefore perfectly self-
consistent, at least at this level of dynamics. A dynamically active, expanding universe is
essential. The expansion itself is essentially Newtonian, not, as originally thought at the
time of its discovery, a mysterious effect of general relativity. Now, the rate of expansion
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naively ought to be slowing, since this is what gravity does: an object thrown from the
surface of the earth slows down as its distance from the surface increases. As we shall soon
see however, our Universe is a bit more devious than that. There is still some mystery here
beyond the realm of the purely Newtonian.

8.1.2 The dynamical equation of motion

A simple way to describe the internal acceleration of the Universe is to begin with the
spatially homogeneous but time-dependent relative expansion between two locations. The
separation between two arbitrary points separated by a distance r(t) may be written

r(t) = R(t)l (458)

where l is a comoving coordinate that labels a fixed radial distance from us in the space—
fixed in the sense of being fixed to the expanding space, like latitude and longitude would
be on the surface of an inflating globe. If we take l to have dimensions of length, then R(t)
is a dimensionless function of time alone. It is a scale factor that embodies the dynamical
behaviour of the Universe. The velocity v = dr/dt ≡ ṙ of a “fixed” point expanding with
space is then

v(t) = Ṙl = (Ṙ/R)r. (459)

We should emphasise the vector character of this relationship:

v(t) = (Ṙ/R)r (460)

where r is a vector pointing outward from our arbitrarily chosen origin. Then, the accelera-
tion is

a(t) =
dv

dt
= (R̈/R)r (461)

(Why didn’t we differentiate r(t)/R(t)?) But we already know the relative acceleration
between two points, because we know Newtonian physics. We’ve just worked it out a moment
ago! You can easily see that the above discussions (especially equation [456]) imply that we
must have :

− 4πGρ

3
=
R̈

R
(462)

Notice how l disappears: this is an equation for the scale factor R, and that does not depend
on where you are. Next, multiply this by ṘR and integrate, assuming that mass is conserved
in the usual way, i.e. ρR3 is constant. (Why is this “the usual way?”) We then obtain

Ṙ2 − 8πGρR2

3
= 2E (463)

where E is an energy-like integration constant. This, in a simple, apparently naive Euclidian-
Newtonian approach, would be our fundamental dynamical cosmological equation for the
evolution of the Universe. Amazingly, providing that we are prepared to allow the mass
density ρ is to be upgraded to an energy density divided by c2 that includes all contributions
(in particular radiation and vacuum energy), this innocent little equation turns out to be far
more general: it is exactly correct in full relativity theory! More on this anon.
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8.1.3 Cosmological redshift

The expansion of the Universe leads to a very important kinematic effect known as the
cosmological redshift. Since the Universe is expanding, a travelling photon is constantly
overtaking sources that are moving away from it. If a photon has a wavelength λ at some
location r, when the photon passes an observer a distance dr = cdt away, moving at a relative
velocity Ṙ dr/R, the observer measures a Doppler change in wavelength dλ determined by
equation (460):

dλ

λ
=
v

c
=

Ṙ

cR
dr =

Ṙ

R
dt, (464)

or in other words
1

λ

dλ

dt
≡ λ̇

λ
=
Ṙ

R
. (465)

Solving for λ, we find that it is linearly proportional to R. It is as though the wavelength
stretches with the rest of the Universe! This is a very general kinematic result, a property of
any model that is symmetrically expanding. (Sneak preview: this of course means that the
frequency goes down as 1/R. But the frequency of a photon is, in essence, its energy. The
entire Universe must be radiatively cooling. Energy is not conserved in the expansion; the
entropy in a voulme R3, which is proportional to the third power of the temperature times
R3, is.)

We are free, and it is customary, to choose our coordinates in such a way that the current
value of R is 1, with R becoming smaller and smaller as we go back in time. If a photon
is emitted with a wavelength λe at some time t in the past, the wavelength we would now
measure (λ0) is formally expressed as

λ0 = λe(1 + z) (466)

where z is defined by this equation and known as the redshift parameter. Therefore,

λ0
λe

= 1 + z =
1

R(t)
(467)

The advantage to using z, as opposed to the more geometrical quantity R, is that z is directly
observed by astronomers. But the two are mathematically equivalent via this completely
general equation, R = 1/(1 + z). If you measure a redshift of 2, it has come from a time
when the Universe had one-third of its current size.

We have been, you will notice, pretty informal, just organising our common sense. It is
customary for cosmology courses to begin with a heavy dose of historical material related
to the discovery of the expansion of the Universe. We will get to this in short order, but I
have taken a somewhat different tack here, in part because much of the historical material
is rather well-known these days, but mainly because it is not often appreciated how far
direct Newtonian reasoning can take one in establishing a viable cosmological model of the
Universe. Let us examine one very simple model, and then see how formal general theory
gets us to the same place in the end.

8.2 Cosmology models for the impatient

8.2.1 The large-scale spacetime metric

Euclid, Newton and pure thought can take us very far, even farther than we have ventured
up to now. Because the Newtonian approach on which we are about to embark is going to
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work remarkably well, here is a brief reminder as to why we actually do need relativity in
our study of the large scale structure of the Universe. Let us understand what it is at stake.

First, we require a Riemannian metric structure to ensure that the speed of light is a uni-
versal constant c, especially when traversing a dynamically evolving spacetime background.
It is rather easy to see what the form this metric must take in the simplest model of an
expanding Euclidian Universe. Symmetry demands that time must flow the same for all ob-
servers comoving with the universal expansion, and we can always choose time to be a linear
function of the time coordinate. Space is uniformly expanding at the same rate everywhere.
So if space itself is Euclidian, the spacetime metric practically leaps out of the page,

− c2dτ 2 = −c2dt2 +R2(dx2 + dy2 + dz2) (468)

where we have used the usual (x, y, z) Cartesian coordinates, and R satisfies equation (463).
Here x, y, z are all comoving with the expansion, in essence the l coordinate of the previous
section. In particular, for a photon heading directly toward us along our line of sight from
a distant source,

R
dl

dt
= −c (469)

where dl is interpreted as the change in radial comoving coordinate induced by the photon’s
passage. This equation describes an ant crawling along the surface of an expanding sphere
from, say, the pole to the equator, moving at a constant velocity c. In this case, think of dl
as the change in latitude.

Equation (468) really does appear to be the true form of the spacetime metric for our
Universe. Space is in fact very nearly, or perhaps even precisely, Euclidian. As a math-
ematical point, this need not be the case even if we demand perfect symmetry, any more
than a perfectly symmetric two-dimensional surface must be a plane. We could preserve our
global maximal spatial symmetry and have a curved space, just like the surface of sphere.
This, in common with a flat plane, is symmetric about every point, but is obviously dis-
torted relative to a plane. The case of a two-dimensional spherical surface is readily grasped
because we can easily embed it in three dimensions and form a mental image. It is finite
in area and said to be positively curved. There is also a perfectly viable flaring, negatively
curved two-dimensional surface. A saddle begins to capture its essence, but not quite, be-
cause the curvature is not uniform in a saddle. The case of a uniformly negatively curved
surface cannot be embedded in three dimensions, so it is hard to picture in your mind’s eye!
There are perfectly good positively and negatively three-dimensional spaces as well, which
are logically possible alternative symmetric structures for the space of our Universe. They
just happen not to fit the data. It is fortunate for us that the real Universe seems also to be
mathematically the simplest. We will study these other symmetric spaces later; for now we
confine our attention to expanding, good old, “flat” Euclidian space.

Second, we need relativity in the form of the Birkhoff theorem to justify properly the
argument neglecting exterior contributions from outside the arbitraily chosen spheres we
used in section 8.1. The Newtonian description strictly can’t be applied to an infinite sys-
tem, whereas nothing prevents us from using Birkhoff’s theorem applied to an unbounded
symmetric spacetime.

Third, we need a relativistically valid argument to arrive at equation (463). Nothing in
the Newtonian derivation hints at this level of generality. We shall return to this carefully
in section 8.3.

Fourth, we need relativity theory to relate the constant E to the geometry of our space.
For now, we restrict ourselves to the case E = 0, which will turn out to be the only solution
consistent with the adoption of a flat Euclidian spatial geometry, the sort of universe we do
seem to live in.
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8.2.2 The Einstein-de Sitter universe: a useful toy model

Consider equation (463) for the case E = 0 in the presence of ordinary matter, for which
ρR3 is a constant. Remember that we are free to choose coordinates in which R = 1 at the
present time t = t0. We may then choose the constant ρR3 to be equal to its present day
value, ρM0. Equation (463) becomes

R1/2Ṙ =

(
8πGρM0

3

)1/2

. (470)

Then,

2

3
R3/2 =

(
8πGρM0

3

)1/2

t (471)

where the integration constant has been set to zero under the assumption that R was very
small at early times. We finally obtain

R =

(
3H0t

2

)2/3

(472)

where H0, the value of Ṙ/R and the current time t0, is known as the Hubble constant,

H0 = Ṙ(t0) =

(
8πGρM0

3

)1/2

. (473)

More generally, the Hubble parameter is defined as

H(t) =
Ṙ

R
(474)

for any time t. The solution (472) is known, for historical reasons, as the Einstein-de Sitter
model.

Exercise. Show that H(t) = H0(1 + z)3/2 for our simple model R = (t/t0)
2/3.

The Hubble constant is in principle something that we may observe directly, “simply” by
measuring the distances to nearby galaxies as well as their redshift, and then using equation
(460). In practise this is hardly simple. On the contrary, it is a very difficult task for reasons
we will discuss a bit later, but the bottom line is that the measured value of H0 and the
measured value of the density of ordinary matter ρM0 do not satisfy (473) in our Universe.
There is not enough ordinary matter ρM0 to account for the measured H0. Yet, equation
(463) does seem to be precisely valid, with E = 0. As the energy density of radiation in the
contemporary Universe is much less than 3H2

0/8πG, how is all this possible?

The answer is stunning. While the energy density of ordinary matter does indeed dom-
inate over radiation, there is strong evidence now of an energy density associated with the
vacuum of spacetime itself! This energy density, ρV , is the dominant energy density of the
real Universe on cosmolgical scales, though not at present overwhelmingly so: ρV is about
73% of the energy budget whereas matter (ordinary baryons and “dark matter”) comes in
at about 27%. However, ρV remains constant as the Universe expands, so that at later
times vacuum energy dominates the expansion: ρM drops off as 1/R3, and ρV completely
dominates. Moreover, with an effective vacuum Hubble parameter

HV ≡
(

8πGρV
3

)1/2

, (475)
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equation (463) at later times takes the form

Ṙ = HVR (476)

or
R ∝ exp(HV t) (477)

the Universe will expand exponentially! In other words, rather than gravity slowly deceler-
ating the expansion by the mutual Newtonian attractive force, the vacuum energy density
will actively drive an ever more vigorous repulsive force. The Universe was expanding more
slowly in the past than in the present. It is this particular discovery which led to our cur-
rent understanding of the remarkable expansion dynamics. The Nobel Prize in Physics was
awarded to Perlmutter, Schmidt and Riess in 2011 for the use of distant supernovae as a tool
for unravelling the dynamics of the Universe from early to later times. We are currently in
the epoch where exponential expansion is taking over.

Equations (467), (469) and (473) may be combined to answer the following question.
If we measure a photon of redshift z, from what value of l did it originate? This is an
important question because it provides the link between observations and geometry. With
R(t) = (t/t0)

2/3 = (3H0t/2)2/3, equation (469) may be be integrated over the path of the
photon from its emission at l at time t:∫ l

0

dl′ = −c
∫ t

t0

dt′

R
= ct

2/3
0

∫ t0

t

dt′

t′2/3
= 3ct0

(
1−
√
R
)

=
2c

H0

(
1− 1√

1 + z

)
≡ l(z) (478)

This is a very interesting equation for many reasons. First, note that as z →∞, l→ 2c/H0,
a constant. The most distant photons—and therefore the most distant regions that may
causally influence us—come from l = 2c/H0. This quantity is known as the horizon, denoted
lH . Beyond the horizon, we can see—and be influenced by—nothing. This particular value of
lH = 2c/H0 is associated with the Einstein–de Sitter model, but the existence of a horizon is a
general feature of many cosmologies and will generally be a multiple of c/H0. Do not confuse
this cosmological horizon, sometimes called a “particle horizon” with the event horizon of
a black hole. The particle horizon is notionally outward, the length over which a a causal
effect may be exerted. The event horizon is notionally inward, the radius within which no
causal contact with the outside world is possible.

Physical distances are given not by l, but by Rl. Since R = 1 currently, 2c/H0 is the
current physical scale of the horizon as well. There is nothing special about now, however.
We could be doing this analysis at any time t, and the scale of the horizon at time t in the
E-de S model would then be 2c/H(t) = 2c/[H0(1 + z)3/2]. So here is another interesting
question. The farthest back in time that we can see is to a redshift of about z = 1500. At
higher redsifts the Universe was completely opaque. Just as we can only see to the opaque
surface of the Sun, but not its interior, we can only see back in time to when the Universe
became opaque to photons. Question: what would be the subtended angular size of the
horizon ΘH at z = 1500, as we it measure today? This is an important question because
we would not expect the Universe to be very smooth or regular or correlated in any way on
angular scales bigger than this. (The E-dS model doesn’t actually hold during the radiation
dominated phase, but it will serve to make our point.) The angular size of the horizon is
given by the following expression:

ΘH =
2c

H0(1 + z)3/2R(z)l(z)
=

2c

H0(1 + z)1/2l(z)
=

1√
1 + z − 1

(479)

The first equality sets the horizon angle equal to the actual physical size of the horizon at
redshift z, divided by d = R(z)l(z), the distance to redshift z at the earlier time corresponding
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to redshift z (not now!). This d is the relevant distance to the photon sources at the moment
of the radiation emission. The Universe was a smaller place then, and we cannot, we must
not, use the current proper distance, which would be l(z) times R0 = 1. If you plug in
z = 1500 into (479) and convert ΘH to degrees, you’ll find ΘH = 1.5◦, about 3 times
the diameter of the full moon. But the Universe looks very regular on much, much larger
angular scales, indeed over the entire sky! Even if our model is only crude, it highlights an
important problem. We will see later in this course how modern cosmology addresses this
puzzle. Simply put, how does the Universe know about itself in a global sense, given that it
takes signals, even signals travelling at the speed of light, so long to cross it? What we have
here, ladies and gentleman, is a failure to communicate.

By the way, the fact that the Universe was “on top of us” at early times has another
surprising consequence. Assuming that the average physical size of a galaxy isn’t changing
very much with time, if we calculate the average angular size of a galaxy, we find that at low
redshift, all is normal: the more distant galaxies appear to be smaller. But then, at higher
and higher redshifts, the galaxies appear to be growing larger on the sky! Why? Because at
large z, the Universe was, well, on top of us. The “distance-to-redshift-z” formula is

l(z)R(z) =
2c

H0(1 + z)3/2

(√
1 + z − 1

)
(480)

At low z, this is increasing linearly with z, which is intuitive: bigger redshift, more distant.
But at large z this declines as 1/z, since the Universe was a smaller place.

Exercise. At what redshift would the average galaxy appear to be smallest in this model?
(Answer: z = 5/4.)

8.3 The Friedman-Robertson-Walker Metric

Let us start very simply. The ordinary metric for a planar two-dimensional space (“2-space”)
without curvature may be written in cylindrical coordinates as

ds2 = d$2 +$2dφ2 (481)

where the radial $ and angular φ polar coordinates are related to ordinary Cartesian x and
y coordinates by the familiar formulae:

x = $ cosφ, y = $ sinφ (482)

As we have noted, this flat 2-space is not the most general globally symmetric 2-space
possible. The space could, for example, be distorted like the 2-surface of a sphere, yet
retain the symmetry of every point being equivalent. The metric for a spherical surface is
well-known:

ds2 = a2dθ2 + a2 sin2 θdφ2 (483)

where a is the radius of the sphere. Now, we know how to go between cylindrical polar and
spherical coordinates: set $ = a sin θ. This may be viewed as a purely formal transformation
of coordinates, but in our mind’s eye we picture θ in physical terms as the colatitude measured
down from the z axis. But don’t expect to recover (481) from (483) via this simple coordinate
change sin θ = $/a. Instead, we find that the spherical surface metric becomes:

ds2 =
d$2

1−$2/a2
+$2dφ2 (484)
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which is a different space from the planar surface (481) altogether. It is of course the same
spherical surface space we started with by any other name, agreeing with (481) only in the
limit a → ∞. Changing coordinates does not change the geometry, i.e., it does not change
the curvature scalars. A plane may be regarded as the surface of a sphere only in the limit
a→∞.

Let’s stretch ourselves a bit and consider, at a formal level, the closely related metric

ds2 =
d$2

1 +$2/a2
+$2dφ2, (485)

which upon substituing sinhχ = $/a reverts to

ds2 = a2dχ2 + a2 sinh2 χdφ2 (486)

the fundamental symmetry properties of the metric are unaffected by the ±$2 sign flip. The
flip in sign simply changes the sign of the constant curvature surface from positive (convex,
think sphere) to negative (flaring, think saddle). The characteristic form of the metric tensor
component grr = 1/(1 ± $2/a2) will reappear when we go from curved 2-space, to curved
3-space.

8.3.1 Maximally symmetric 3-spaces

It is perhaps best to begin with the conclusion, which ought not to suprise you. The most gen-
eral form of the three dimensional metric tensor that is maximally symmetric—homogeneous
and isotropic about every point—takes the form

− c2dτ 2 = −c2dt2 +R2(t)

(
dr2

1− r2/a2
+ r2dθ2 + r2 sin2 θ

)
(487)

where we allow ourselves the liberty of taking a2 to be positive or negative.

The derivation for a 3-space hypersurface for a sphere in four dimensions is not difficult.
The surface of 4-sphere (Cartesian coordinates w, x, y, z) is given by

w2 + x2 + y2 + z2 = a2 = constant. (488)

Thus, on this surface, a small change in w2 is restricted to satisfy:

d(w2) = −d(x2 + y2 + z2) ≡ −d(r2)→ dw = −rdr/w (489)

with r2 ≡ x2 + y2 + z2. Hence,

(dw)2 =
r2(dr)2

w2
=
r2(dr)2

a2 − r2
(490)

The line element in 4-space is

ds2 = dx2 + dy2 + dz2 + dw2 = dr2 + r2dθ2 + r2 sin2 θ dφ2 + dw2 (491)

and with (dw)2 given by (490), there follows immediately the line element of the 3-surface
of a 4-sphere, analogous to our expression for the ordinary spherical surface metric (483):

ds2 =
dr2

1− r2/a2
+ r2dθ2 + r2 sin2 θdφ2, (492)
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just as we see in equation (487). An alternative form for (492) is sometimes useful without
the singular denominator. Set r = a sinχ. Then

ds2 = a2dχ2 + a2 sin2 χdθ2 + a2 sin2 χ sin2 θdφ2 (493)

Exercise. Would you care to hazard a guess as to what the line element of the 4-surface of
a 5-sphere looks like either in the form of (492) or (493)?

The corresponding negatively curved 3-surface has line elements

ds2 =
dr2

1 + r2/a2
+ r2dθ2 + r2 sin2 θdφ2, (494)

and, with r = sinhχ,

ds2 = a2dχ2 + a2 sinh2 χdθ2 + a2 sinh2 χ sin2 θdφ2 (495)

Not convinced that these are the unique metrics for the most general, maximally sym-
metric forms of these curved spaces? You say you want proof? I’ll give you proof! W72,
Chapter 13. Have fun. (Lite version: HEL06, Chapter 14.) We won’t pursue the uniqueness
question further in these notes, as it is too much of a mathematical diversion (and certainly
not on the syllabus). We will keep physics front and centre.

It is customary in some textbooks to use r′ = r/a as the radial variable, and absorb the
factor of a into the definition of what you mean by the scale factor R(t). If you do that,
then you give up on the convenience of setting the current value of R equal to 1. Dropping
now the ′ on r′, the general FRW metric is written,

− c2dτ 2 = −c2dt2 +R2(t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θ

)
(496)

where the constant k is +1 for a positively curved space, −1 for a negatively curved space,
and 0 for a flat space. This will be our underlying fundamental geometrical model for the
Universe:

g00 = −1, grr = R2(t)/(1− kr2), gθθ = R2(t)r2, gφφ = R2(t)r2 sin2 θ. (497)

Be careful! In (496), R has dimensions of length, and r is dimensionless. In (487), R is
dimensionless and r has dimensions of length.

In section 8.2.2, we used the notation l(z) to denote the integral of cdt/R from some
distant time t to present time t0 in an Einstein-de Sitter model. We will continue to use this
notation for FRW metrics with spatial curvature. Physical distances are then Rl(z), where
R is taken at some time t that depends upon the application of interest. The r− l difference
will appear only when we look at l as a function of the r coordinate in a curved spacetime,

dl = d(sin−1 r) (k = 1), dl = d(sinh−1 r) (k = −1).

But dl = dr for k = 0, which fortunately seems to be our beloved Universe. In dealing with
our Universe, therefore, we will use r or r(z) for our comoving coordinate.

As an example of how to use our formalism, consider the question of how large a volume
of space is being sampled out to a redshift of zm, some maximum value. Photons arriving at
the current epoch t0 with redshift z come from a comoving coordinate

r = c

∫ t0

t

dt′

R(t′)
= c

∫ 1

R

dR′

Ṙ′R′
= c

∫ zm

0

dz

(1 + z)Ṙ(z)
≡ r(z)

114



where Ṙ is given by equation (463) quite generally, expressed in terms of R = 1/(1+z). The
volume of photons within redshift zm is formally given by

V = 4π

∫ r

0

R3 r′2dr′√
1− kr′2

, (498)

a function of r related to redshift by using r = r(zm). But what do we use for R inside
this integral? That depends on the question. If we are interested in the current net volume
of these sources, then R = R0, a constant, and life is simple. If we are interested in the
net volume of all the sources occupied at the time of their emission, then we would use R
as a function of r or z from equation (478) (whichever is simplest) to do the integral. For
example, the current volume V in an E-dS (k = 0, R0 = 1) universe for sources out to a
maximum redshift zm is simply

V =
4π

3

(
2c

H0

)3(
1− 1√

1 + zm

)3

(499)

8.4 Large scale dynamics

8.4.1 The effect of a cosmological constant

Begin first with the Field Equations including the cosmological constant, equation (245):

Rµν −
gµν
2
R = −8πG

c4
Tµν + Λgµν (500)

Recal the stress energy tensor for a perfect fluid:

Tµν = Pgµν + (ρ+ P/c2)UµUν . (501)

We may arrange the right side source term of (500) as follows:

− 8πG

c4
Tµν + Λgµν = −8πG

c4

[
P̃ gµν +

(
ρ̃+

P̃

c2

)
UµUν

]
, (502)

where

P̃ = P − c4Λ

8πG
, ρ̃ = ρ+

c2Λ

8πG
(503)

In other words, the effect of a cosmological constant is to leave the left side of the Field
Equations untouched and to leave the right side of the Field Equations in the form of a
stress tensor for a perfect fluid, but with the density acquiring a constant additive term
c2Λ/8πG and the pressure acquiring a constant term of the opposite sign, −c4Λ/8πG!

This is simple, almost trivial, mathematics, but profound physics. The effect of a cosmo-
logical constant is as if the vacuum itself had an energy density EV = ρV c

2 = c4Λ/8πG and
a pressure PV = −c4Λ/8πG. Does it make sense that the vacuum has a negative pressure,
equal to its energy density but opposite in sign? Yes! By the first law of thermodynamics,
if the vacuum volume expands by dV , the first law states that the change in energy per
unit volume of expansion, which is just dE/dV ≡ ρV c

2, must be −PV , which indeed it is.
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More revealingly, if we recall the form of the stress energy tensor of the vacuum, but without
assuming PV = −ρV c2, then

Tµν (V ) = PV gµν + (ρV + PV /c
2)UµUν , (504)

and the last group of terms would change the form of the vacuum stress energy going from
one constant velocity observer to another. In other words, you could tell if you were moving
relative to the vacuum! That is strictly not allowed. The vacuum stress must always be
proportional to gµν , and to gµν alone. The only way this can occur is if PV = −ρV c2.

An early general relativity advocate, Sir Arthur Eddington was particularly partial to a
cosmological constant, and was fond of commenting that to set Λ = 0 would be to “knock the
bottom out of space.” At the time this was probably viewed as Eddington in his customary
curmudgeon mode; today the insight seems downright prescient. Nowadays, physicists like
to think less in terms of a cosmological constant and place more conceptual emphasis on
the notion of a vacuum energy density. What is the reason for its existence? Why does it
have the value that it does? If ρV is not strictly constant, general relativity would be wrong.
Are the actual observational data supportive of a truly constant value for ρV ? The value
of ρV probably emerged from the same type of “renormalisation process” (for those of you
familiar with this concept) that has produced finite values for the masses for the fundamental
particles. How do we calculate this? These are some of the most difficult questions in all of
physics.

For present purposes, we put these fascinating issues to the side, and continue our devel-
opment of large scale models of the Universe without the formal appearance of a cosmological
constant, but with the understanding that we may add the appropriate contributions to the
density ρ and pressure P to account precisely for the effects of Λ.

8.4.2 Formal analysis

We shall use the Field Equations in terms of the source function Sµν = Tµν − gµνT/2,

Rµν = −8πG

c4
Sµν . (505)

In our comoving coordinates, the only component of the 4-velocity Uµ that does not vanish is
U0 = −c (from the relation g00(U0)2 = −c2 and U0 = g00U

0). The nonvanishing components
of Tµν are then

T00 = ρc2, Tij = Pgij. (506)

Which means
T 0
0 = −ρc2, T ij = δijP, T = T µµ = −ρc2 + 3P (507)

We shall need

S00 = T00 −
g00
2
T =

1

2
(ρc2 + 3P ), Sij =

1

2
gij(ρc

2 − P ) (508)

To calculate R00, begin with our expression for the Ricci tensor, (253):

Rµκ =
1

2

∂2 ln |g|
∂xκ∂xµ

−
∂Γλµκ
∂xλ

+ ΓηµλΓ
λ
κη −

Γηµκ
2

∂ ln |g|
∂xη

where g is the determinant of the metric tensor gµν given by (497). Defining

f(r) = 1/(1− kr2),
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we have
|g| = R6(t) r4 f(r) sin2 θ (509)

For diagonal metrics, Γaab = ∂b(ln gaa)/2 and Γbaa = −(∂bgaa)/2gbb (no sum on a). Therefore
Γλ00 = 0, and our expression for R00 simplifies to

R00 =
1

2

∂2 ln |g|
∂x0∂x0

+ Γη0λΓ
λ
0η =

1

2

∂2 ln |g|
∂x0∂x0

+ Γr0rΓ
r
0r + Γθ0θΓ

θ
0θ + Γφ0φΓφ0φ (510)

With
1

2

∂2 ln |g|
∂x0∂x0

=
3R̈

Rc2
− 3Ṙ2

R2c2
, Γr0r = Γθ0θ = Γφ0φ =

Ṙ

Rc
, (511)

the 00 component of (500) becomes

R̈ = −4πGR

3

(
ρ+

3P

c2

)
(512)

which differs from our Newtonian equation (462) only by an additional, apparently very
small, term of 3P/c2 as an effective source of gravitation. However, during the time when
the Universe was dominated by radiation, this term was important, and even now it turns
out to be not only important, but negative as well! During the so-called inflationary phase,
3P/c2 was hugely important. We will have much more to say about all of this later.

The rr component of the Field Equations is a bit more involved. Ready? With f ′ ≡
df/dr, we prepare a working table in advance of all the results we will need:

Rrr =
1

2

∂2 ln |g|
∂r2

− ∂Γλrr
∂xλ

+ ΓηrλΓ
λ
rη −

1

2
Γηrr

∂ ln |g|
∂xη

(513)

Γrrr =
1

2grr

∂grr
∂r

=
f ′

2f
, Γ0

rr = − 1

2cg00

∂grr
∂t

=
fRṘ

c
, Γr0r =

1

2cgrr

∂grr
∂t

=
Ṙ

Rc
(514)

Γφφr =
1

2gφφ

∂gφφ
∂r

= Γθθr =
1

2gθθ

∂gθθ
∂r

=
1

r
(515)

∂ ln |g|
∂r

=
f ′

f
+

4

r
,

1

2

∂2 ln |g|
∂r2

=
1

2

f ′′

f
− 1

2

(f ′)2

f 2
− 2

r2
,

∂Γ0
rr

∂x0
=

1

c2

(
fṘ2 + fRR̈

)
(516)

∂ ln |g|
∂t

=
6Ṙ

R
,

∂Γrrr
∂r

=
f ′′

2f
− (f ′)2

2f 2
(517)

Putting it all together:

Rrr =
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− ∂Γrrr
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− ∂Γ0
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f
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4
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Thus, with f ′/f = 2krf ,

Rrr = −2fṘ2

c2
− fRR̈

c2
− 2kf = −8πG

c4
Srr = −4πG

c4
grr(ρc

2 − P ) = −4πR2Gf

c4
(ρc2 − P )
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or
2Ṙ2 +RR̈ + 2kc2 = 4πGR2(ρ− P/c2) (518)

Notice that r has disappeared, as it must! (Why must it?) Eliminating R̈ from (518) via
equation (512) and simplifying the result leads to

Ṙ2 − 8πGρR2

3
= −kc2 (519)

This is exactly the Newtonian equation (463) with the constant 2E “identified with” −kc2.
But be careful. The Newtonian version (463) was formulated with R dimensionless. In
equation (519), R has been rescaled to have dimensions of length. To compare like-with-
like we should repeat the calculation with the radial line element of the metric (487). Don’t
panic: this just amounts to replacing k with 1/a2. We then have more properly, 2E = −c2/a2,
carrying dimensions of Ṙ2 or 1/t2. But the major point is that equation (463) is valid in
full general relativity! And, as we have just seen, the dynamical Newtonian energy constant
may be identified with the geometrical curvature of the space.

One final item in our analysis. We have not yet made use of the equation for the conser-
vation of energy-momentum, based on (175) and the Bianchi Identities:

T µν;µ =
1√
|g|
∂(
√
|g|T µν)
∂xµ

+ ΓνµλT
µλ = 0. (520)

This constraint is of course built into the Field Equations themselves, and so adds no new
information to our problem. But we may ask whether use of this equation from the start
might have saved us some labour in getting to (519): it was a long derivation after all. The
answer is an interesting “yes” and “no.”

The ν = 0 component of (520) reads

T µ0;µ =
1√
|g|
∂(
√
|g|T 00)

∂x0
+ Γ0

µλT
µλ = 0. (521)

Only affine connections of the form Γ0
ii (spatial index i, no sum) are present, and with

Γ0
ii = − 1

2g00

∂gii
∂x0

=
1

2

∂gii
∂x0

, T 00 = ρc2, T ii = Pgii =
P

gii
, (NO i SUMS)

equation (521) becomes:

1

R3

∂(R3ρc2)

∂t
+ 3P

Ṙ

R
= 0→ ρ̇+ 3

(
ρ+

P

c2

)
Ṙ

R
= 0. (522)

Notice how this embodies at once the law of conservation of mass (in the large c limit), and
the first law of thermodynamics, dE = −PdV .

Exercise. Justify the last statement, and show that a pure vacuum energy density universe
satisfies (522).

If we now use (522) to substitute for P in (512), after a little rearranging we easily arrive
at the result

d

dt

(
Ṙ2
)

=
8πG

3

d

dt

(
ρR2

)
(523)
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which in turn immediately integrates to (519)! This is surely a much more efficient route
to (519), except...except that we cannot relate the integration constant that emerges from
(523) to the spatial curvature constant k. True, we have a faster route to our final equation,
but with only dynamical information. Equation (519) is after all just a statement of energy
conservation, as seen clearly from our Newtonian derivation. Without explicitly considering
the Ricci Rrr component, we lose the geometrical connection between Newtonian E (just an
integration constant) and −kc2. We therefore have consistency between the energy conser-
vation and Ricci approaches, but not true equivalence. A subtle and interesting distinction.

We may, however, work with the dynamical cosmological equation in its Newtonian form
with absolutely no loss of generality

Ṙ2 − 8πGρR2

3
= 2E, (524)

where E is an energy integration constant, which can now be set by the convenient convention
that R = 1 at the current time t0. We write 2E in terms of observable quantities, H0, the
Hubble constant Ṙ0 and ρ0c

2, the current average value of the energy density of the Universe:

H2
0

(
1− 8πGρ0

3H2
0

)
≡ H2

0 (1− Ω0) = 2E, (525)

where Ω0 parameter is

Ω0 =
8πGρ0
3H2

0

(526)

The Universe is positively curved (closed) or negatively curved (open) according to whether
the measured value of Ω0 is larger or smaller than unity. Defining the critical mass density
ρc by

ρc =
3H2

0

8πG
(527)

the critical energy density in the Universe is ρcc
2. We have not yet assumed anything about

the sources of ρ; they could involve a vacuum energy. The currently best measured value of
H0 (in standard astronomical units) is 67.6 km s−1 Mpc−1,12 or H0 ' 2.2 × 10−18 s1 . This
number implies a critical density of 8.6×10−27 kg (about 5 hydrogen atoms) per cubic meter.
The best so-called “concordance models” all point to an Ω0 = 1, E = 0, universe, but only if
70% of ρ0c

2 comes from the vacuum! About 25% comes from dark matter, which is matter
that is not luminous but whose presence is inferred from its gravitational effects, and just
5% comes from ordinary baryonic matter in the form of gas and stars. We will denote the
current vacuum contribution to Ω as ΩV 0 and the matter contribution as ΩM0. We have in
addition a contribution from radiation, Ωγ0, and while it is quite negligible now, in the early
universe (z ≥ 1500) it was completely dominant, even over the vacuum component. Indeed,
all the Ω’s are time-dependent quantities. The Universe went through a radiation-dominated
phase, followed by a mass-dominated phase, and at about a redshift of 2, it started to switch
to a vacuum-dominated phase, a transition we are currently still experiencing.

We live in interesting times.

12One “megaparsec,” or Mpc is one million parsecs. One parsec (“pc”) is the distance from the solar system
at which the Earth–Sun semi-major axis would subtend an angle of one arcsecond: 1 pc = 3.8056×1013 km,
1 Mpc = 3.8056× 1018 km. Stars are typically separated by 1 pc in galaxies, galaxies from one another by
about 1Mpc.

119



8.5 The classic, matter-dominated universes

Let us return to the good old days, when the idea that the Universe was driven by “the
energy density of the vacuum” was the stuff of Star Trek conventions, not something that
serious-minded physicists spent their time with. The expansion dynamics of the Universe
was thought to be dominated by matter, pure and simple, after a relatively brief phase when
radiation dominated. Matter obeys the constraint that ρ(t)R3(t) remains constant with time.
The dynamical equation of the Universe may then be written

Ṙ2 = H2
0

(
1− ΩM0 +

ΩM0

R

)
(528)

or ∫ R

0

dR′√
1− ΩM0 + (ΩM0/R′)

=

∫ R

0

R′1/2dR′√
(1− ΩM0)R′ + ΩM0

= H0t (529)

The nature of the integral depends upon whether ΩM0 is less than, equal to, or greater than,
1. The case ΩM0 = 1 is trivial and leads immediately to

R =

(
3H0t

2

)2/3

(530)

our Einstein-de Sitter solution (472). According to (524) with E = 0, the average density is
then given explicitly by

ρ =
Ṙ2

R2

3

8πG
=

1

6πGt2
(531)

Consider next the case ΩM0 > 1, that of a Closed Universe. Then (529) may be written:∫ R

0

R′1/2dR′√
1− (1− Ω−1M0)R

′
= Ω

1/2
M0H0t (532)

Set
(1− Ω−1M0)R

′ = sin2 θ′ (533)

Then (532) becomes

2

(1− Ω−1M0)
3/2

∫ θ

0

sin2 θ′ dθ′ =
1

(1− Ω−1M0)
3/2

∫ θ

0

(1− cos 2θ′) dθ′ = Ω
1/2
M0H0t (534)

or
2θ − sin 2θ

2(1− Ω−1M0)
3/2

= Ω
1/2
M0H0t (535)

With η = 2θ, our final solution is in the form of a parameterisation:

R =
1− cos η

2(1− Ω−1M0)
, H0t =

η − sin η

2
√

ΩM0(1− Ω−1M0)
3

(536)

Some readers may recognise these equations for R and H0t as describing a cycloid, which is
the path taken by a fixed point on the circumference of a wheel as the wheel rolls forward.
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Precisely analogous expressions emerge for the case ΩM0 < 1, which are easily verified from
(529):

R =
cosh η − 1

2(Ω−1M0 − 1)
, H0t =

sinh η − η

2
√

ΩM0(Ω
−1
M0 − 1)3

(537)

This is the solution for negative curvature, an Open Universe.

Exercise. Show that the equations analogous to (530), (536) and (537) for the FRW metric
(496) are respectively

R = ω1/3t2/3 (Einstein− deSitter)

R =
ω

c2

(
1− cos η

2

)
, ct =

ω

c2

(
η − sin η

2

)
(closed)

R =
ω

c2

(
cosh η − 1

2

)
, ct =

ω

c2

(
sinh η − η

2

)
(open)

where ω = 8πGρM0R
3
0/3. Show that cdt = Rdη for the last two cases.

Exercise. Show that as η → 0, both (536) and (537) reduce to R = Ω
1/3
0 [3H0t/2]2/3 (the

same of course as [530] for Ω0 = 1), and at late times (537) becomes the “coasting” solution,

R =
√

1− Ω0H0t. This means that a plot of all possible solutions of R(t) versus Ω
1/2
0 H0t

would converge to exactly same solution at early times, regardless of Ω0. Figure (10) shows
this behaviour quite clearly.

What if Ω0 = 0? Show then that R = H0t for all times. Wait. Could a universe really
be expanding if there is nothing in it? Expanding with respect to exactly what, please? See
Problem Set.

8.6 Our Universe

8.6.1 Prologue

Throughout most the 20th century, the goal of cosmology was to figure out which of the
three standard model scenarios actually holds: do we live in an open, closed, or critical
universe? Solutions with a cosmological constant were relegated to the realm of disreputable
speculation, perhaps the last small chapter of a textbook, under the rubric of “Alternative
Cosmologies.” If you decided to sneak a look at this, you would be careful to lock your
office door. All of that changed in 1998-9, when the results of two cosmological surveys of
supernovae (Perlmutter et al. 1998 ApJ, 517, 565; Riess et al. 1999 Astron J., 116, 1009)
produced compelling evidence that the rate of expansion of the Universe is increasing with
time, and that the spatial geometry of the Universe was flat (k = 0), even with what had
seemed to be an under density of matter.

Though something of a shock at the time, for years there had been evidence that some-
thing was amiss with standard models. Without something to increase the rate of the
Universe’s expansion, the measured rather large value of H0 consistently gave an embarras-
ingly short lifetime for the Universe, less than the inferred ages of the oldest stars! (The
current stellar record holder is HE 1523-0901 at a spry 13.2 billion years.) People were aware
that a cosmological constant could fix this, but to get an observationally reasonable balance
between the energy density of ordinary matter and a vacuum energy density seemed like a
desperate appeal to “it-just-so-happens” fine-tuning. But the new millenium brought with
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it unambiguous evidence that this is the way things are: our Universe is about 30% non-
relativistic matter, 70% vacuum energy, and boasts a Euclidian spatial geometry. So right
now it just so happens that there is a bit more than twice as much energy in the vacuum as
there is in ordinary matter. Nobody has the foggiest idea why.

8.6.2 A Universe of ordinary matter and vacuum energy

It is perhaps some consolation that we can give a simple mathematical function for the scale
factor R(t) of our Universe. With E = 0 for a Euclidian space, (524) is

Ṙ =

(
8πGρ

3

)1/2

R (538)

The energy density ρc2 is a combination of nonrelativistic matter ρM , for which ρR3 is a
constant, and a vacuum energy density ρV which remains constant. With ρM0 the current
value of ρM and R0 = 1, ρM = ρM0/R

3 and therefore

ρR2 = ρVR
2 +

ρM0

R
(539)

Substituting (539) into (538) leads to

R1/2 dR√
ρM0 + ρVR3

=

√
8πG

3
dt. (540)

Integration then yields∫
R1/2 dR√
ρM0 + ρVR3

=
2

3

∫
d(R)3/2√
ρM0 + ρVR3

=
2

3

1
√
ρV

sinh−1
(√

ρV
ρM0

R3/2

)
=

√
8πG

3
t (541)

Equation (541) then tells us:

R3/2 =

√
ρM0

ρV
sinh

(
3

2

√
8πGρV

3
t

)
. (542)

In terms of the Ω parameters, we have

ΩM =
8πGρM0

3H2
0

, ΩV =
8πGρV

3H2
0

, (543)

henceforth dropping the 0 subscript on the Ω’s with the understanding that these parameters
refer to current time. The dynamical equation of motion (538) at the present epoch tells us
directly that

ΩM + ΩV = 1. (544)

In terms of the observationally accessible quantity ΩM , the scale factorR becomes

R =
1

(Ω−1M − 1)1/3
sinh2/3

(
3

2

√
1− ΩM H0t

)
, (545)
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or, with ΩM = 0.27,
R = 0.7178 sinh2/3(1.282H0t). (546)

This gives a current age of the Universe t0 of

H0t0 =
2 sinh−1(

√
Ω−1M − 1)

3
√

1− ΩM

=
sinh−1[(0.7178)−3/2]

1.282
= 0.992, (547)

i.e., t0 is almost precisely 1/H0 ' 13.7 billion years. (This calculation ignores the brief period
of the Universe’s history when it was radiation dominated.)

Exercise. Show that the redshift z is related to the time t since the big bang by

z = 1.393 sinh−2/3
(

1.271t

t0

)
− 1

If a civilisation develops 5 billion years after the big bang and we detect their signals(!), at
what redshift would they be coming from?

8.6.3 The parameter q0

As we look back in time the Hubble parameter Ṙ/R may be expanded in a Taylor series in
time:

H(t) =
Ṙ

R
= H0 + (t− t0)

(
R̈

R
−H2

0

)
+ ... (548)

since Ṙ2/R2 at the present is H2
0 . This may be written

H(t) = H0 +H2
0 (t0 − t)(1 + q0) (549)

where

q0 ≡ −
R̈R

Ṙ2
→ − R̈0

H2
0

for R0 = 1 (550)

is known as the deceleration parameter. In units where R0 = 1, q0 = −R̈0/H
2
0 . Then, since

(1 + z)R(t) = 1, to leading order in z, z = H0(t0 − t) and

H(z) = H0[1 + z(1 + q0)] (551)

Note that if q0 < 0, the Universe is accelerating. To illustrate the usefulness of q0, consider
the often needed integral

∫
cdt/R(t). With R0 = 1, t− t0 = δt,

1

R(t0 + δt)
= 1− δtṘ0 + (δt)2(Ṙ2

0 −
R̈0

2
) + ... = 1 + z (552)

hence δt = −z/H0 to leading order and to next order (with (δt)2 = z2/H2
0 in the correction

quaratic term),

− δt = t0 − t =
1

H0

[
z −

(
1 +

q0
2

)
z2
]

+ ... (553)
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Figure 10: R(t) versus time, units of Ω
−1/2
M H−10 , for four model universes. ‘Closed’

is eq. (536); ‘Einstein- de Sitter’ eq. (530); ‘Open’ eq. (537). ‘Closed’ has ΩM = 1.1,
for ‘Einstein–de Sitter’ ΩM = 1, ‘Open’ has ΩM = 0.9. The curve labelled ‘Flat,
Om V= 0.1’, eq. (545), includes a cosmological constant with a vacuum contribution
of ΩV = 0.1, so that ΩM + ΩV = 1 and the spatial geometry is Euclidian.

Next recall equation (478):

l(z) = c

∫ t0

t

dt′

R
= c(t0 − t) +

cH0

2
(t− t0)2 + ... (554)

and using (553):

l(z) =
c

H0

[
z − z2

2
(1 + q0) + ...

]
(555)

Equation (555) is general for any FRW model. It may be seen that q0 embodies the leading
order deviations from a simple expansion model in which l(z) ∝ z, and that it is the only
cosmological parameter that is available to observers.

8.7 Radiation-dominated universe

The thermal history of the early universe is discussed in §8.10; it is useful at this stage,
however, to understand the dynamical expansion of a universe dominated by radiation.

In a universe whose energy density ργc
2 is dominated by radiation (or more generally by

relativistic particles),
ργ ∝ 1/R4.

This follows because the energy density of radiation is proportional to T 4
γ where Tγ is the

radiation temperature, and the temperature has the same evolutionary history of a photon
with energy hν: the frequency ν and Tγ both decrease as 1/R. The current Universe is of
course not radiation-dominated, but for the first several hundred thousand years it was. (See

124



Figure 11: Comparison of R(t) versus Ω
1/2
M H0t for our Universe eq. (545) and an

open universe eq. (537), both with ΩM = 0.27. Crossing of the dotted line R = 1 (at
the current age) occurs earlier for the positive energy open universe, which is about
20% younger than our Universe. This would be too young for the oldest stars. The
positive E value kickstarts the open universe ahead, but it eventually lags behind
when the vacuum energy starts to play a dominant role...when the expansion of
space has produced more vacuum!

§below.) In these early times the dynamical equation of motion (524) is dominated by the
left side of the equation, both of whose terms are very large. The dynamical equation of
motion is then

R2Ṙ2 =
8πGρ0γ

3
= (constant), (556)

where ρ0γc
2 is the current energy density in relativistic particles. This implies that

R(t) ∝ t1/2 (radiation dominated universe). (557)

If we now go back to the dynamical equation of motion, we may solve for ργc
2:

ρ0γc
2 =

3c2

8πG

(
Ṙ2

R2

)
=

3c2

32πGt2
. (558)

We then have an exact expression for what the total energy density in all relativistic particles
must be.

This is rather neat. At at time of one second, the Universe had an energy density of
4 × 1025 J m−3, and that is that. Moreover, since the total energy density is now fixed,
the greater the number of relativistic particle species there was at the time of the early
Universe, the smaller the temperature at a fixed time. During the epoch when hydrogen was
being fused into helium and only a few other low atomic weight nuclei, the abundances were
very sensitive to temperature. This sensitivity, combined with observationally-determined
abundances, has been used to limit the number of types of neutrinos that could have been
present during the era of nucleosynthesis.
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SNe	  

CMB	  

Figure 12: Parameter plane of ΩV versus ΩM assuming no radiation contribution.
Regions of open/closed geometry and currently accelerating/decelerating dynamics
are shown. Also shown are approximate zones of one standard deviation uncertainties
for the distant supernova data (SNe) and —you have to squint—for fluctuations in
the cosmic microwave background radiation (CMB), which came a decade later.
Note the powerful constraint imposed by the latter: we no longer depend on the
SNe data. That the Universe is accelerating is beyond reasonable doubt.

Figure 13: The current age of the Universe H0t0 as a function of ΩM for flat,
matter plus vacuum energy models with negligible radiation. As ΩM approaches
unity, the model recovers the Einstein–de Sitter value H0t0 = 2/3; as ΩM → 0, H0t0
becomes proportional to − ln ΩM (Show!), and we recover a “logarithmic eternity,”
first highlighted by Sir Arthur Eddington.
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8.8 Observational foundations of cosmology

8.8.1 Detection of cosmlogical redshifts

To me, the name of Vesto Melvin Slipher has always conjured up images of some 1930’s
J. Edgar Hoover FBI G-man in a fedora who went after the bad guys. But Vesto was a
mild-mannered and very careful astronomer. If we allow that Edwin Hubble was the father
of modern cosmology, then Slipher deserves the title of grandfather.

In 1912, using a 24-inch reflecting telescope, Slipher was the first person to measure
the redshifts of external galaxies. He didn’t quite know that that was what he had done,
because the notion of galaxies external to our own was not one that was well-formed at
the time. Nebular spectroscopy was hard, tedious work, spreading out the light from the
already very faint, low surface brightness smudges of spiral nebulae through highly dispersive
prisms. Slipher worked at Lowell Observatory, a small, isolated, private outpost in Flagstaff,
Arizona. Percival Lowell, the proprietor, was obsessed at the time with mapping what he
thought were the Martian canals. Slipher was an assiduous worker, but one who was far
from the centres of great astronomical activity. By 1922, he had accumulated 41 spectra of
spiral nebulae, of which 36 showed a shift toward the red end of the spectrum. But he had
no way of organising these data to bring out the linear scaling of the redshift with distance
for the simple reason that he hadn’t any idea what the distances to the nebulae were. Other
observations by Wirtz and Lundmark were at this time showing an apparent trend of greater
redshift with fainter nebulae, but the decisive step was taken by Edwin Hubble. With the
aid of Milton Humason, Hubble found a linear relationship between galactic distance and
redshift (E. Hubble 1929, PNAS, 15, 168.) How did Hubble determine the distances to
the nebulae? Using the new 100-inch telescope on Mt Wilson, Hubble had earlier resolved
individual Cepheid variables, a class of variable star, in the outer arms of the Andromeda
spiral galaxy, as we shall henceforth refer to it. For, in obtaining the distances to the nebulae,
Hubble also showed that they must be galaxies in their own right.

Cepheid variable stars were well-studied in our own galaxy, where it was found that they
have a well-defined relationship between the time period over which the star’s brightness
oscillates, and the absolute mean luminosity of the star. To obtain a distance, one proceeds
as follows. Find a Cepheid variable. Measure its oscillation period. Determine thereby
its true luminosity. Measure the star’s flux (which is all that can actually be measured).
The flux is the true luminosity L divided by 4πr2, where r is the distance to the star. By
measuring the flux and inferring L, deduce r. Simple—if you just happen to have a superb
quality, 100-inch telescope handy. To such an instrument, only Hubble and a small handful
of other astronomers had access13.

8.8.2 The cosmic distance ladder

As observations improved through the 1930’s the linear relation between velocity and dis-
tance, which became known as the Hubble Law, v = H0r, became more firmly established.
There are two major problems with collecting data in support of the Hubble expansion.

First, galaxies need not be moving with the Hubble expansion (or “Hubble flow”): their
motions are affected by neighbouring masses. The best known example of this is the An-

13Much later, in 1952, Hubble’s quantitative results were found to be inaccurate, because Cepheids come in
two quite separate populations, with very different Period-Luminosity relations. This was discovered by W.
Baade, introducing the concept of distinct stellar populations of very different ages into astronomy. It also
completely revised the whole extragalactic distance scale, though it kept intact the linear redshift-distance
relation.
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dromeda galaxy, whose is redshift is in fact a blueshift! It is approaching us (the Milky Way
Galaxy) at about 300 km per second. This problem is greatest for nearby galaxies whose
“peculiar velocity” (deviation from Hubble flow) is a large fraction of its recession velocity.
Second, it is very difficult to establish distances to cosmological objects. We can estab-
lish distances to relatively nearby objects realtively easily, but these galaxies are precisely
the ones affected by large peculiar velocities. Those galaxies unaffected by large peculiar
velocities are the ones whose distances are difficult to establish!

But observational astronomers are resourceful, and they have come up with a number of
ingenious techniques which have served them well. The idea is to create a cosmic “distance
ladder” (perhaps better described as a linked chain) in which you start with direct mea-
surements on certain objects, and use those measurments to calibrate other objects more
distant. Then repeat. Here is how it works.

Start with our solar system. These days, we can bounce radar singals off planets and
measure the time of flight (even testing general relativity in the process, as we have seen) to
get extremely accurate distances. Next, we make use of our knowledge of the astronomical
unit (AU) thus obtained to use the classic technique of trigonometric parallax. This makes
use of the fact that the earth’s motion around the sun creates a baseline of about 2 AU
from which we have a different perspective on nearby stars. We see nearby stars shift in
angular position on the sky relative to their much more distant counterparts. The angular
shift is inversely proportional to the distance from the solar system. We define the unit of
distance known as a parsec (pc) as the distance that 1 AU would subtend 1 second of arc.
We can turn this perspective around and say that the parallax angle, perversely denoted as
π in the astronomical literature and deduced from the shift in a star’s apparent position,
corresponds to a distance to the star of 1/π parsecs when π is in arcseconds. (One parsec is
' 3.085678× 1016 m. Because 1 AU is a defined exact quantity, so is 1 pc.)

The next rung in the ladder is known as spectroscopic parallax. There is no actual
parallax, just an analogue. The idea is that you use the method of trigonometric parallax to
obtain distances stars of a given spectral class. For this, you need to know what the stellar
spectrum looks like in detail. Detailed agreement between spectra mean the same type of
star, with the same mass and luminosity. Knowing the distance to a star of a given spectral
type and measuring its flux, you know the intrinsic luminosity L, since F = L/4πr2 where F
is the measured flux and r the measured distance to the star. Then, when you see a similar
spectrum in a much more distant star, you know its intrinsic luminosity. You then measure
its F , and deduce its distance!

Keep going. Distances to Cepheid variables can be calibrated by spectroscopic parallax,
and these bright stars have, as we have seen, a well-defined period-luminosity relationship.
They are bright enough that they can be seen indivdually in external galaxies. Measure,
thereby, the distances to these external galaxies.

Keep going. In studying the properties of external galaxies, Tully and Fisher showed
that the rotation velocities of spiral galaxies (measured by the Doppler shifts in the moving
stellar spectra) was tightly correlated with the intrinsic luminosity of the galaxy. This
is not terribly surprising in itself: the larger the stellar mass of a galaxy the larger the
luminosity and the larger the mass the larger the rotational velocity. Tully and Fisher crafted
this notion into a widely used tool for establishling the distances to very distant galaxies.
Elliptical galaxies, which are supported by the dispersion of stellar velocities rather than their
systematic rotation were also turned into useful distance indicators. Here the correlation
between luminosity and velocity dispersion is known as the Faber-Jackson relation.

The final step in the cosmic distance ladder involves Type Ia supernovae. Type Ia super-
novae are thought to occur when a white dwarf in a tight binary system accretes just enough
matter from its companion to tip itself over the “Chandrasekhar mass.” (This mass is the
maximum possible mass a white dwarf can sustain by electron degeneracy pressure, about
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1.4 times the mass of the sun.) When this mass is exceeded, the white dwarf implodes, over-
whelmed by its now unsupportable self-gravitational attraction. In the process, carbon and
oxygen nuclei are converted to 56Ni, triggering a thermonuclear explosion that can be seen
quite literally across the Universe. What is nice about type Ia supernovae, from an astro-
nomical perspective, is that they always occur in a white dwarf of the same mass. Therefore
there is little variation in the absolute intrinsic luminosity of the supernova explosion. To
the extent that there is some variation, it is reflected not just in the luminosity, but in the
rise and decay times of the emission, the “light curve.” The slower the decline, the larger
the luminosity. So you can correct for this. This relation has been well calibrated in many
galaxies with well-determined distances.

The Type Ia supernova data were the first to provide compelling evidence that the Uni-
verse was expanding. To understand how this was obtained we need to return to our concept
of flux, F = L/4πr2, and understand how this changes in an expanding, possibly curved,
spatial geometry.

8.8.3 The redshift–magnitude relation

The flux that is measured from a source at cosmological distances differs from its simple
L/4πr2 form for several important reasons. It is best to write down the answer, and then
explain the appearance of each modification. The flux from an object at redshift z is given
by

F(z) =
LR2(t)

4πR4
0l

2(z)
=

L

4π(1 + z)2R2
0l

2(z)
(559)

where l(z) is computed, as always, by c
∫ t
t0
dt′/R(t′), with this definite integral written as a

function of z for the cosmological model at hand. (Recall R(t)/R0 = 1/(1 + z), relating t to
z.) The luminosity distance is then defined by F(z) = L/4πd2L or

dL(z) = (1 + z)R0l(z), (560)

which reduces to the conventional Euclidian distance at small z.

Explanation: The two factors of 1 + z in the denominator of (559) arise from the change
in the luminosity L. First, the photons are emitted with Doppler-shifted energies. But even
if you were measuring only the rate at which the photons were being emitted like bullets,
there is an additional second 1 + z factor, quite separate from the first, due to the emission
interval time dilation. The proper radius of the sphere over which the photons from the
distant source at z are now distributed is R0l(z), where R0 is as usual the current value of
R(t). One is free to use a metric where R0 = 1, but we present the form (559) for complete
generality. For the Einstein-de Sitter universe with R0 = 1,

F(z) =
LH2

0

16πc2(1 + z)(
√

1 + z − 1)2
(Einstein− de Sitter) (561)

The simple Euclidian value of L/4πr2 is recovered at small z by rembering cz = v = H0r,
whereas at high z, all the photons come from the current horizon distance 2c/H0, and the
1/z2 behaviour in F is due entirely to 1 + z Doppler shifts.

A “magnitude” is an astronomical conventional unit used for, well, rather arcane reasons.
It is a logarithmic measure of the flux. Explicitly:

F = F010−0.4m (562)
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where F is the measured flux, F0 is a constant that changes depending upon what wavelength
range you’re measuring. m is then defined as the apparent magnitude. (Note: a larger
magnitude is fainter. Potentially confusing.) The “bolometric magnitude” covers a wide
wavelength range and is a measure of the total flux; in that case F0 = 2.52 × 10−8 J m−2.
Astronomers plot m versus z for many objects that ideally have the same intrinsic luminosity,
like type Ia supernovae. Then they see whether the curve is well fit by a formula like (559)
for an FRW model. It was just this kind of exercise that led to the discovery in 1998-9 by
Perlumtter , Riess and Schmidt that our Universe must have a large value of ΩV : we live in
an accelerating Universe!

Exercise. Show that

F(z) =
LH2

0

4πc2z2
[1 + (q0 − 1)z + ...]

for any FRW model. Thus, with knowledge of L, observers can read off the value of H0

from the dominant 1/z2 leading order behaviour of the redshift-magnitude data, but that
knowledge of q0 comes only once the leading order behaviour is subtracted off.

With the determination of ΩV , the classical problem of the large scale structure of the
Universe has been solved. There were 6 quantities to be determined:

• The Hubble constant, H0 = Ṙ/R at the present epoch.

• The age of the Universe, t0.

• The curvature of the Universe, in essence the integration constant E.

• The ratio Ω0 of the current mass density ρ0 to the critical mass density 3H2
0/8πG.

• The value of the cosmological constant or equivalently, the ratio ΩV of the vacuum
energy density ρV c

2 to the critical energy density.

• The value of the q0 parameter.

Within the context of FRW models, these parameters are not completely independent,
but are related by the dynamical equations for R̈ (512) and Ṙ2 (524). A quick summary:

• H0 ' 67 km s−1 Mpc−1.

• t0 ' 13.7 billion years

• E ' 0

• Ω0 ' 0.27

• ΩV ' 0.73.

• q0 = Ω0/2− ΩV ' −0.6

Exercise. Derive the last result on this list.

This brief list of values hardly does justice to the century-long effort to describe our Uni-
verse with precision. Because astronomers were forced to use galaxies as “standard candles”
(the colloquial term for calibrated luminosity sources), their measuring tools were fraught
with uncertainties that never could be fully compensated for. It was only the combination
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Figure 14: Evidence for an accelerating Universe from type Ia supernovae. The
top figure shows a redshift-magnitude plot for three different FRW models, Ω0 = 1,
ΩV = 0, an Einstein-de Sitter model in mangenta; Ω0 = 0.2, ΩV = 0, an open model,
in black, and Ω0 = 0.3, ΩV = 0.7 an accelerating model, in blue. The bottom panel
shows the same with the inverse square slope removed. The data are much better
fit by the accelerating model.

131



of establishing a truly standard candle via the type Ia supernovae, together the tehcnical
capability of high receiver sensitivity and automated searches that allowed the programme
(“The Supervova Cosmology Project”) to succeed.

Since the 1998/9 breakthrough, cosmologists have not been idle. The development of
extremely sensitive receivers and sophisticated modelling and simulation techniques have
turned the remnant radiation from the big bang itself into a vast treasure trove of information.
In particular, the nature of the tiny fluctuations that are present in the radiation intensity—
more specifically the radiation temperature—allow one to set very tight constraints on the
the large scale parameters of our Universe. Not only are these measurements completely
consistent with the supernova data, the results of the missions known as WMAP and Planck
render them all but obsolete. Figure (12) speaks for itself.

8.9 The growth of density perturbations in an expanding universe

The Universe is expanding and the density of nonrelativistic matter decreasing as 1/R3.
In such a background, as the raw material to form condensed objects is diminishing do
quickly, does gravity even allow the sort of runaway collapse we think of when we envision
a star or a galaxy forming? Determining the fate of a small overdensity or underdensity of
nonrelativistic matter in an FRW universe is a problem that can be approached via (a not
too difficult) analysis.

We require two equations. The first expresses the conservation of ordinary matter. The
mass within a volume V ,

∫
V
ρ dV is changed only if matter flows in or out from the boundaries

of V . The flux of mass (mass per kg per square meter) is ρv. Hence

d

dt

∫
V

ρ dV =

∫
V

∂ρ

∂t
dV = −

∫
∂V

ρv · dA = −
∫
V

∇·(ρv) dV

where ∂V is the volume’s boundary and we have used the divergence. The volume V is
arbitrary, so we much have

∂ρ

∂t
+∇·(ρv) = 0 (563)

which is the equation of mass conservation. Newton’s equation of motion states that if a mass
element of fluid ρdV is accelerating, then it is acted on by a gravitational force −ρdV∇Φ,
where Φ is the associated potential function. In other words, the force equation reads after
cancellation of ρdV , [

∂

∂t
+ (v · ∇)

]
v = −∇Φ (564)

Note that the acceleration measured relative to a space-time coordinate background means
that the “total time derivative” must be used, ∂t + vi∂i in index notation.

The local behaviour of the density is entirely Newtonian. The expansion of the universe
is described by

v =
Ṙ

R
r (565)

a familiar Hubble law. The mass equation then becomes

∂ρ

∂t
+

1

r2
∂

∂r

(
r3ρ

Ṙ

R

)
= 0 (566)
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With the background ρ independent of position,

d ln ρ

dt
+

3Ṙ

R
= 0 (567)

whence ρR3 is a constant, as we know. As for the force equation, a straightforward calculation
yields

∂v

∂t
+ (v · ∇)v =

R̈

R
r (568)

and, as the discussion of §8.1.1 shows that R̈/R = −4πGρ/3, our solution for the background
expansion is correct. The Poisson equation

∇2Φ = 4πGρ (569)

is likewise solved by our solution. (Try Φ = 2πGρr2/3).

We are interested in the behaviour of small disturbances δρ, δv and δΦ on top of this
background:

ρ→ ρ+ δρ, v → v + δv, Φ→ Φ + δΦ (570)

We replace our dynamical variables as shown, and because the δ-quantities are small, we
retain them only through linear order, ignoring quadratic and higher order tems. The mass
equation is

∂δρ

∂t
+∇·(ρδv) +∇·(vδρ) = 0 (571)

Noting that the gradient of ρ vanishes and that the equilibrium v satisfies∇·v = −∂t ln ρ, it
is straightforward to show that the perturbed linearised mass conservation equation simplifies
to [

∂

∂t
+ (v · ∇)

]
δρ

ρ
+∇·δv = 0 (572)

The linearised equation of motion[
∂

∂t
+ v · ∇

]
δv + (δv · ∇)v = −∇δΦ (573)

becomes [
∂

∂t
+ v · ∇

]
δv +

Ṙ

R
δv = −∇δΦ (574)

Now change to comoving coordinates. This is a simple task. Let r = R(t′)r′ and t = t′.
Then r′ (or x′i in index notation) is a comoving spatial coordinate. The partial derivative
transformation is (sum over repeated i):

∂

∂t
=
∂

∂t′
+
∂x′i
∂t

∂

∂x′i
, ∇ =

1

R
∇′, ∂x′i

∂t
= − xi

R2
Ṙ = −vi

R
, (575)

so that
∂

∂t
+ (v · ∇) =

∂

∂t′
, (576)
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which is a time derivative following a fluid element of the unperturbed expansion. Then, our
two equations for mass conservation and dynamics are

∂

∂t′
δρ

ρ
+

1

R
∇′·δv = 0 (577)

∂δv

∂t′
+
Ṙ

R
δv = − 1

R
∇′δΦ (578)

Taking ∇′· of (578) and using (577) leads to

∂2

∂t′2
δρ

ρ
+

2Ṙ

R

∂

∂t′
δρ

ρ
=

1

R2
∇′2δΦ = 4πGρ

(
δρ

ρ

)
(579)

where the last equality is the linearised Poisson equation ∇2δφ = 4πGδρ. For an Einstein-de
Sitter univese, recall that ρ = 1/6πGt2 and Ṙ/R = 2/3t, where we have dropped the primes.

Using the notation δ = δρ/ρ and a dot δ̇ for a time derivative, our differential equation for
the growth of small perturbations in an Einstein de-Sitter universe takes on a very elegant
form:

δ̈ +
4

3t
δ̇ − 2

3t2
δ = 0 (580)

This differential equation has two very simple linearly independent solutions, one where δ
decays as 1/t, the other where it grows as t2/3. (Show!) The important point is that it
displays none of the explosive exponential growth typical of fluid instabilities in a static
background. The growing solution of the small perturbation is t2/3, growing no faster than
the universe expands. This is a pretty torpid tempo. For the musically inclined, think of
something between larghissimo and adagio.

How our Universe grew both its large and small scale structures has long been a great
mystery, one that is remains far from understood. To make things grow in the barren soil of
the Universe, you need to start out with very healthy-sized seeds. The questions of where
those might come from and whether we can see their imprints in the cosmic background
radiation are the topics of the next section.

8.10 The Cosmic Microwave Background Radiation

8.10.1 Prologue

The Universe is expanding, and expanding systems cools adiabatically. That means if we
follow history backwards, the Universe was once extremely hot and dense. The frequency ν
of a photon scales as 1/R and the energy density as 1/R4 because the radiation temperature
Tγ is an average of ν. The energy density of matter (dominated by rest mass) scales as 1/R3,
so going back in time, the Universe must at some point have become radiation dominated.
We will see that this occurred at a redshift of about 1000.

At redshifts larger than 1000, not only was radiation dominant, it was also well-coupled
to matter and thus in a state of complete thermodynamic equilibrium: the radiation set the
matter temperature. In thermodynamic equilibrium, the number density of photons is given
by the Planck function associated with a blackbody spectrum:

n(ν, T ) dν =
(8πν2/c3)dν

exp(hν/kTγ)− 1
(581)
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At about the same epoch that the radiation became subdominant, it also lost coupling
with the matter and therefore was no longer maintained in themal equilibrium via collisions.
Imagine an extreme, but realistic, situation in which the photons evolve with the expansion of
the Universe and but are otherwise untouched. You might expect the shape of the spectrum
to be maintained, but that the number density would perhaps be diluted below that of a true
blackbody (e.g. sunlight on earth). In fact, the number density and effective temperature
of the photons vary in exactly the right way to maintain a true blackbody distribution. The
decreased number density is exactly correct for the cooling temperature.

To see this, start with the spectrum (581) at the time of “last scattering” at time t,
which is the last moment of maintained thermal equilbrium, and let the group of photons
with frequency ν and disperson dν evolve with the Universe till time t′. The first thing to
note is that is the t′ number density n(ν ′, t′, T ′) is diluted by an overall normalisaton factor of
R3(t)/R3(t′) from the original time t blackbody. In addition, each t′ photon that we observe
at frequency ν ′ must have come from a t-frequency of ν = R′ν ′/R (R′ ≡ R(t′)), in the
original blackbody distribution. Thus, to get the more recent time t′ spectrum, simply take
the original time t blackbody distribution, dilute it by R3/R′3, and replace ν everywhere in
the formula by R′ν ′/R:

n(ν ′, t′, T ′)dν ′ =
R3

R′3
(8π/c3)(R′ν ′/R)2d(ν ′R′/R)

exp(hR′ν ′/RkTγ)− 1
=

8πν ′2 dν ′/c3

exp(hν ′/kT ′γ)− 1
(582)

where T ′γ = TγR/R
′, a cooler temperature. The point is that the distribution (582) is still

a blackbody at time t′, but with a new temperature T ′γ that has cooled in proportion to
1/R with the expansion. This is remarkable because there is nothing maintaining thermal
equilibrium. This scaling result follows mathematically for any number spectrum of the
form ν2F (νp/T ) dν, where F is an arbitrary function and p is a real number. There is no
reason why, as a matter of principle, the orginal photon spectrum has to be maintained as a
blackbody, if other interaction physics takes place. For years there were arguments whether
the spectrum was a true blackbody. These were based on observational results from rocket-
borne instrumentation that were later retracted. (It turns out that rocket exhaust is not
helpful when hyper-accurate infrared sky measurements are required.) Moreover, as a matter
of sensible physics, to change the radiation spectrum of the Universe takes a vast amount
of energy! All doubts were erased in 1992 when the COBE (COsmic Background Explorer)
satellite as launched. This satellite had sub mm detectors of unprecedented accuracy, showing
that the backgound radiation was an almost perfect blackbody at Tγ = 2.728K. Figure (15)
summarises the data. The error bars are shown at 400 times their actual value, just in order
to be visible!

The photon distribution is not, however, absolutely exactly a blackbody, for two very
interesting reasons. The first is that the earth is not at rest relative to the CMB frame.
Why should it be? In fact the local group of galaxies seems to be moving at about 630 km
s−1 relative to the CMG, a surprisingly large value. This corresponds to a measured radiation
temperature that is about 2 × 10−3K warmer in one direction and the same amount cooler
in the oppostion direction.

The second reason is that matter has collapsed out of the expanding background, form-
ing galaxies, stars, and great clusters. The seed for these structures could not have formed
recently; there isn’t enough time for them to have grown. They must have been present
during the era when the Universe was radiation-dominated, and matter and radiation inter-
acted strongly. This interaction would have left its imprint at the time of last scattering in
the form of fluctuations of the microwave background temperature. The relative fluctuation
∆T/T would have had to have be, it would seem, at least ∼ 10−3 in order to be able to form
nonlinear structures by the current epoch. Why? Because ∆Tγ/Tγ and ∆ρ/ρ in matter are
comparable and ∆ρ/ρ grows about in proportion to t2/3, the Einstein-de Sitter value, and
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this means it is proportional to the scale factor R. R has grown be about a factor of 1500
since the time of last scattering, whence ∆Tγ/Tγ ∼ 10−3.

The search for these fluctuations proved frustrating. There were no temperature fluctu-
ations found at this level for many years. When COBE and later satellites did find them,
starting in the early 1990’s, they were an order of magnitude smaller. So how does structure
form in the Universe? The answer is that there is more to matter than the usual baryons
we know and love. The Universe is pervaded by what is known as “dark matter,” and this
leaves no imprint on the microwave background. More on the importance of dark matter
later.

8.10.2 An observable cosmic radiation signature: the Gamow argument

The idea that the Universe had a residual radiation field left over from its formation, and that
this radiation is potentially observable, seems to have originated with George Gamow in the
1940’s. Gamow was theoretical physicist with a brilliant common sense instinct that allowed
him to make contributions to a wide variety of problems, from the theory of radioactivity to
DNA coding. He spent many years developing what became known as the Big Bang theory.

Gamow pointed out that Helium is about 25% of the Universe by mass. That is neither
overwhelming nor negligible. It implies that at the time of nucelosynthesis—and Gamow was
convinced that most of the Helium was made this way in the early Universe—the expansion
rate and the nuclear reaction rate were comparable. Too rapid an expansion, no Helium.
Too slow an expansion rate, all the protons get fused into Helium, and there is nothing left
over to make physcists. This turns out to be a remarkably constraining observation, leading
to a prediction that there should be a residual radiation field of about 10 K. Let’s see how
it works.

At some point, the Universe passes downward through the temperature range of ∼ 109

K. When that happens, neutrons n and protons p can combine to form Deuterium nuclei.
The reaction is

n+ p→ D + γ

where γ is a gamma ray. Helium synthesis then follows rapidly. Gamow took equal numbers
of protons, neutrons and electrons. In order to get a 25% yield of Helium, the reaction rate
and the age of the Universe (of order the expansion time) should be comparable. If the cross
section for Deuterium formation is σ (units of area), then the reaction rate per proton due
to an incoming flux nv of neutrons is nvσ (number per unit area per unit time). At time t,
on average about one reaction per proton should have occured, because of the order unity
fraction of Helium—that is the heart of the Gamow argument:

nvσt ∼ 1 (583)

The product σv is nearly independent of v (because the cross section σ depends on v) and,
as Gamow knew from nuclear experiments, about 4.6× 10−26 m3 s−1. As for the time t, we
are interested in the epoch when the temperature Tγ ∼ 109K. Using equation (558) for the
density in relativistic particles, and following Gamow by assuming (not quite correctly, but
let it go) that this was all radiation, the time t is

t =
c

T 2
γ

(
3

32πGa

)1/2

(584)

which amounts to 230 s for Tγ = 109K. This give n very close to 1023 m−3. Gamow estimated
a present day average particle density of about 0.1 per cubic meter based on astronomical
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Figure 15: COBE satellite data showing a perfect fit to a blackbody at 2.728 K. To
be visible, the error bars are shown at 400 times their actual value! When shown
at an American Astronomical Society Meeting, this plot triggered a spontaneous
standing ovation. Units of ν are cm−1, i.e., the wavelength in cm is the reciprocal
of the number on the x axis.
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Figure 16: COBE temperature fluctuations. Top: Temperature dipole variation
dominated by motion of the galaxy. Middle: Residual with kinematic dipole sub-
tracted off. Bottom: Further residual with galactic foreground subtracted off. These
represent primordial fluctuations in the CMB.

estimates, so that the Universe had expanded by a factor of 108 in the scale factor R, reducing
n by 1024. But an expansion of a factor of 108 in R means that the current Tγ should be 10
K! The millimeter detectors that would have been required for this observation were just at
the leading edge of technology in the late 1940s, a by-product of the development of radar
during the Second World War. But Gamow did not pursue this actively, and the prediction
was gradually forgotten.

His argument would be put slightly differently now, but it is in essence correct, and a
brilliant piece of intuitive reasoning.

Exercise. Repeat the Gamow argument with modern cosmological numbers. Keep Tγ = 109K
and the σv value, but note that relativistic species present at the time include not only
photons but three types of neutrinos and three types of antineutrions, each neutrino-anti
neutrino combination contributing (7/8)aT 4

γ to the background energy density. We can
neglect e+ and e− pairs in our relativistic fermion population. Why? The 7/8 factor arises
beacause the neutrinos obey fermi statistics:∫ ∞

0

x3 dx

ex + 1
=

7

8

∫ ∞
0

x3 dx

ex − 1

Can you prove this mathematically without doing either integral explicitly? (Hint: consider
the difference

1

ex − 1
− 1

ex + 1
,

and integrate x3 times the residual.) Note that for each neutrino specie the factor is actually
7/16, because only one spin helicity is present, as opposed to two spin states for photons.
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The neutrinos get back up to 7/8 with their antiparticles, which photons lack.) Take the
current density to be 5% of the critical density 3H2

0/8πG.

In 1965, the problem of determining Tγ0 attracted the attention of an able team of
physicists at Princeton University. They rediscovered for themselves the Gamow argument.
The senior investigator, Robert Dicke, a hugely talented physicist (both theoretical and
experimental), realised that there was likely to be a background radiation field that survived
to the present day. Moreover, it could be detected by an instrument, the Dicke radiometer,
that he himself had invented twenty years before! (A Dicke radiometer is a device that
switches 100 times per second between looking at the sky source and a calibrated thermal
heat bath of liquid helium. This imparts a 100Hz fourier component to the desired signal
and eliminates extraneous variability occuring on longer time scales.)

The A-Team assembled: Dicke, the scientific leader; J. Peebles, the brilliant young the-
orist who would become the world’s leading cosmologist in the decades ahead, and P. Roll
and D. Wilkinson, superb craftsmen who designed and built the contemporary Dicke ra-
diometer. The were all set up to do the observation from the roof of their Princeton office
buliding, when a phone call came from nearby Bell Laboratories. Two radio engineers named
Arno Penzias and Robert Wilson had found a nuisance extraneous signal in their detector,
an instrument designed to receive signals relayed by some of the first commercial television
satellites. (The Telstar series.) They were trying to chase down all sources of backgound
confusion. The “effective radiation temperature” of the unwanted diffuse signal was about
3 K. Penzias and Wilson had no idea what to make of it, but were advised by a colleague to
give the Dicke team at Princeton a call. Those guys are very clever you know, they might
just be able to help.

The 1978 Nobel Prize in Physics went to Penzias and Wilson for the discovery of the
cosmic microwave background radiation.

8.10.3 The cosmic microwave background (CMB): subsequent developments

The initial observations of the CMB were at one wavelength: 7 cm. Needless to say, a
single point does not establish a blackbody spectrum. The task of establishing the broader
spectrum was fraught with difficulties, with many disputed and ultimately withdrawn claims
of large deviations from a blackbody. In 1992 matters were finally laid to rest when the COBE
satellite returned its dramatically undramatic finding that the CMB is, very very nearly, but
not exactly, a blackbody. There are in fact small fluctuations in the temperature, the largest
of which amount to a few parts in 104. This value, it turns out, is just of the order needed
to account for the nonlinear structure in the Universe that we see today, provided that there
is a healthy component of dark matter that does not react with the radiation. This unseen,
and unseeable, dark matter component had been invoked long before the COBE results to
account for the large internal velocities measured in galaxies and within clusters of galaxies.
These velocities are not maintainable without most of the mass of the galaxy (or cluster)
being in the form of dark, non light-emitting or scattering, matter. Now the COBE results
became another indication of the presence of dark matter in the Universe.

The next important result was the Wilkinson Microwave Anisotropy Probe, or WMAP.
This is named for David Wilkinson, the Princeton Researcher who was instrumental in
the earliest CMB studies. With the launch of WMAP in 2003, cosmology truly became a
precision science. WMAP revealed the structure of the tmeperature fluctuations in such
exquisite detail in angular resolution on the sky, it became possible to determine the key
physical parameters of the Universe: H0, Ω0, ΩV , t0 and many others, to several significant
figure accuracy. The Planck satellite was launched in 2009 and provided a further shrinking
of the error bars, higher angular resolution coverage of the CMB on the sky, better frequency
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WMAP	  

Planck	  

Figure 17: WMAP (top) and Planck (bottom) temperature fluctuations, with dif-
ferent colour scales. Think of these as the Universe’s baby pictures. Note the much
higher angular resolution compared with COBE; Planck is another factor of 3 better
than WMAP. The angular information encoded on these smalle scales is valuable as
a means of tightly constraining cosmological parameters.

coverage (very important for subtracting off the effects of the Milky Way Galaxy), and better
constraints on null results (absence of polarisation, for example), but no qualitatively new
physical findings. The story is essentially that revealed by WMAP.

Think of the evolution of the maps and globes of the Earth, from ancient to modern
times. Gross inaccuracies in basic geometry gradually evolved to Googlemap standard over
a period of thousands of years. Contrast this with the observation that, well within the
professional careers of currently active researchers, serious models of the Universe went from
wild misconceptions (e.g. the “steady-state model,” in which the universe supposedly never
changed in appearance and hydrogen atoms were spontaneously created out of the vacuum)
to three-significant-figure accuracy in its structural parameters. By any measure, this is one
of the great scientifc achievements of our time. As with any great scientific advance, its true
meaning and implications will take years to elucidate.

8.11 Thermal history of the Universe

8.11.1 Prologue

The recorded history of civilisation began when Sumerian merchants inscribed grain inven-
tories on clay tablets. (BTW, the concept of “inventory” would not have been possible
without the invention of large scale agriculture, which would not have been possible without
the invention of astronomy. Stick with this for a moment: despite what you’re thinking, I’m
on message...) Etched in the clay matrix, these markings were frozen in time because the
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background clay matrix, once dried, remained unaltered and intact. It turns out that the
Universe has its own gigantic clay tablet, which allowed “inscriptions” first to be imprinted,
then to be preserved, effectively unaltered for 13.7 billion years. We know the inscriptions
as temperature fluctuations, and the clay tablet as the cosmic microwave background.

The temperature fluctuations are a tracer of the initial density fluctuations, which coupled
to the radiation by electron scattering. (Also known as Thompson scattering.) While this
coupling remained strong, the CMB dutifully recorded and re-recorded the evolving changes
in the density. Then, when matter and radiation became decoupled, the pattern imprinted
on the CMB abruptly stopped being recorded. The CMB instead retained only the pattern
imprinted on it at the time of the “last scattering.” It is this pattern that we receive,
redshifted by the expansion of the Universe, in our detectors today. Think of this either
as an ancient inscription passed on through the eons, or more congenially as the Universe’s
baby picture.

Exercise. Let σT be the Thompson cross section for a photon to collide with an electron,
a constant number equal to 6.7 × 10−29 m2. When an electron has moved relative to the
photon gas a distance l such that the swept-out volume lσT captures a single photon, l is
said to be one mean free path (mfp): the average distance between scatterings.

Justify this definition, and show that the scattering rate per electron is nγcσ = c/l. (And
what is nγ here?) In a radiation-dominated Universe, show that the ratio of the photon

scattering mfp to the horizon size grows like
√
t; and the mfp relative to the scale factor R

grows like t. (t as usual is time.)

Exactly how to decipher the CMB inscriptions and turn them into a model of the Universe
is a very complicated business, one that we will only be able to treat very superficially in
this course. We will go about this in two steps. In the first, we will describe what I will
call the “classical theory” of the thermal history of the Universe: how matter and radiation
behaved in each other’s presence from temperatures of 1012 K through 3000K, the time of
recombination. In the second step, we will discuss the “modern theory” of the very early
Universe. This puts a premium on the notion of inflation, a period in the history of the
Universe in which it seems to have undergone a rapid exponential growth phase. First
put forth in 1980, this idea has been the most important theoretical advance in modern
cosmology in recent decades. There are very good theoretical reasons for invoking the process
of inflation, even if the mechanism is not well-understood (not an unusual state of affairs in
science), for there is by now very good observational evidence for it. To my mind, the best
evidence there is for inflation is that we have in fact entered another inflationary stage of
the Universe’s history. Inflation is real, full stop.

In what follows, we will have reason to consider physics on what is known as the “Planck
scale.” These are fundamental values set by the three fundamental dimensional constants
Newton’s G, Planck’s h, and the speed of light c. There are unique dimensional combinations
to form a mass mP , a length lP and a time tP from these constants:

mP =

(
hc

G

)1/2

= 5.456× 10−8 kg (585)

lP =

(
hG

c3

)1/2

= 4.051× 10−35 m (586)

tP = lP/c =

(
hG

c5

)1/2

= 1.351× 10−43 s (587)

These are, in some sense, the limits of our knowledge. It is on these scales that we may
expect quantum gravity effects to be important, and on which we remain quite ignorant. We
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cannot expect to have anything like a classical picture of the early Universe for time t < tP ,
or horizon scales c/H < lP . The Planck mass may not, at first glance, appear remarkable,
but remember the comparison is with elementary particle masses. A proton is close to 1
GeV in rest energy; mP c

2 = 3.06× 1019 GeV.

8.11.2 Helium nucleosynthesis

Let us begin the story when the temperature of the Universe is just under 1012K. This is
very early on, about 10−4s after the big bang. In the next section we will go even before this
interval, but this is a good place to begin for now. At this stage, the Universe consists of a
relativistic cocktail of photons, neutrinos and their antiparticles, muons and their antipart-
ciles and electrons and their antiparticles (positrons). This cocktail is well-mixed (shaken,
not stirred) with all particles, even the neutrinos, in complete thermal equilibrium, freely
created and destroyed.14 There is also a population of protons and neutrons, energetically
unimportant at these temperatures. But keep track of them! They are going to make the
Universe we know and love, including us.

Once the temperature slips below 1012 K, the muons and antimuons annihilate, but
without being able to maintain their populations from production by the other relativistic
populations present. The energy from the photons and e+e− pairs produced in the annhi-
lation are equilibrated amongst these populations, and everyone is heated, including the
neutrinos.

The Universe continues to expand, the temperature falls. Now, neutrons and protons do
not have the same mass. More precisely, with mp the proton mass and mn the neutron mass,

∆mc2 ≡ (mn −mp)c
2 = 1.293 MeV = 2.072× 10−13 J. (588)

This is very small compared with either mnc
2 or mpc

2. Except when we are specifically
concerned with the mass difference or doing very accurate calculations, there is no need
to distinguish mn for mp. Textbooks on statistical mechanics tells us that the ratio of the
probabilities for finding a system in state i or state j depends only on the energies Ei and
Ej of the states, and nothing else. In particular, the ratio of the probability of finding the
system in i to the probability of finding it in j is given by the Boltzmann equation:

Pi
Pj

=
gi
gj

exp

[
−
(
Ei − Ej
kT

)]
(589)

where the g’s are the statistical weights, basically how many distinct states there are with
energy Ei or Ej. (If you’ve forgotten this and don’t have a statistical mechanics textbook
handy, see the Exercise below for a quick justification.) Once we fall below 1011K, the
so-called Boltzmann factor exp(−∆mc2/kT ) starts to differ noticeably from unity, and as
we approach 1010 it becomes small. Since neutrons are more massive than nprotons, they
become more scarce at cooler temperatures. The temperature corresponding to kT = ∆mc2

is 1.5× 1010K. (By way of comparison, for electrons and positrons, mec
2/k = 5.9× 109K.)

Exercise. Let the probability of finding a system in state i be f(Ei), where Ei is the energy
of the state. The ratio of the probability of finding the system in state i versus j is then
f(Ei)/f(Ej). But this ratio must be a function only of the difference of the energies, because
a constant additive constant in energy can’t affect the physics! The potential energy is always

14By using the word “freely,” we ignore the electron and neutrino rest masses.
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defined only up to such a constant. Hence

f(Ei)

f(Ej)
= F (Ei − Ej)

If Ei = Ej + δ, show that if this equation is to hold even to first order in δ, that

f(E) ∝ exp(−βE)

where β is an as yet undetermined constant. We can determine β by physics, e.g. by
demanding that the ideal gas equation of state be satisfed, pressure P equals nkT , where
n is the number density and k is the Boltzmann constant and T the temperature. Then it
follows (show!) β = 1/kT .

The reactions that determine the neutron n proton p balance are

n+ ν ↔ p+ e

n+ e+ ↔ p+ ν̄

n↔ p+ e+ ν̄

The reaction rates for the two body processes are about 0.1 per second per nucleon at
T = 1010K. However, the rate drops rapidly as the thermometer falls. Below 1010K, the
reactions can’t keep up with the expansion rate of the Universe. When this occurs, whatever
the ratio of n/p is, it remains “frozen” with time, as the Universe is too cold to keep the
reactions cooking! At T = 1010K, the Universe is about 1 s old. The n/p ratio at this
temperature is exp(−∆mc2/kT ) ' 0.2, and is frozen in.

Exercise. Show that the early Universe “temperature clock” is given conveniently by

t ' 1/T 2
10,

where t is the time in seconds and T10 the temperature in 1010K. Assume a Universe of
photons, electrons and positrons, and three neutrinos and anti-neutrinos.

This figure of 20% is interesting, because it is neither close to unity nor tiny. Without
further production of neutrons, they will decay in minutes by the third reaction channel.
If all the neutrons had decayed into protons and electrons and antineutrinos, there would
have been no cosmological nucleosynthesis. But just as the neutrons start to slip away as
we approach 109K, the remaining neutrons are rescued from decay by being packed into
stable 4He nuclei. The helium nuclei are perfectly safe radioactive containment vehicles.
Here neutron decay is absolutely forbidden, in essence because the statistical phase space
within the nuclear potential is degenerate. When the neutrons are confined to the nuclear
potential, there are simply no available states to decay into. They are occupied by protons.
It is rather like trying to use Oxford public transportation on a rainy day: SORRY, BUS
FULL.

Back to our story. The neutrons are now scarfed up into He nuclei. This results in a firm
prediction for the observed mass fraction of the Universe, since stellar nucleosynthesis does
not change the number significantly. (By contrast, almost all of the much smaller heavier
element abundances are dominated by stellar nucelosynthesis.) From what we have just seen,
the mass fraction in helium will be

4mp × (n/2)

mp(n+ p)
=

2

1 + p/n
' 0.33 (590)
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Much more detailed, time-dependent calculations (pioneered by Peebles in 1965) give a
number close to 0.27, but the essential physis is captured by our very simple estimate.
There is not very much wiggle room here. We cannot use the precise value of this number,
say, to determine retrospectively what sort of Universe we must live in; it is essnetially the
same for any FRW model. The Big Bang Theory predicts 27% of the mass of the Universe
is in the form of helium. And that, happily, turns out to be very close to what observations
reveal.

8.11.3 Neutrino and photon temperatures

As the temperature slides from 5×109 K to below 109, the electron positron pairs annihilate
into photons,

e+e− → 2γ

but because the temperature falls, the photons do not maintain an equilibrium population
of these e+e− pairs. In other words, there is a conversion of electrons and positrons into
photons. But in thermal equilibrium, the number of photons at a given temperature is fixed.
If you add more of them via e+e− annihilation, the extra photons force a new equilibrium, one
at a higher temperature compatible with the increased photon number. The photons are, in
effect, heated. By contrast, the relativistic neutrinos that are present march blithely along,
enjoying the expansion of the Universe without a care. They don’t care about anybody. This
means that they are cooler than the photons! The question is, by how much?

This turns out to be a relatively simple problem, because if we fix our attention on a
comoving volume of the Universe, the entropy in this volume is conserved by the conversion
of electron-positron pairs into photons. For photons or relativistic electrons/positrons, the
entropy per unit volume is a function only of the temperature. It is most easily calculated
from a standard thermodynamic identity,

E + PV − TS +��µN = 0,

for a gas with zero chemical potential µ. The latter is true of a relativistic gas that freely
creates and annihilates its own particles. So for the entropy per unit volume s,

s ≡ S

V
=

E

V T
+
P

T
(591)

With ρc2 denoting the energy per unit volume and P = ρc2/3 for a relativistic gas,

s =
4ρc2

3T
(592)

With a relativistic energy density always proportional to T 4, the entropy per unit volume
is proportional to T 3, and the entropy in a comoving volume R3 is proportional to (TR)3.
It is conserved with the expansion, in essence because the entropy and particle number are
proportional to one another, and particle number is conserved.

Before the e+e− annihilation, the entropy in volumeR3 in photons, electrons and positrons
is

sR3 =
4a(TR)3

3

(
1 + 2× 7

8

)
=

11a(TR)3before
3

(593)

Afterwards, and after the reestablishment of thermal equilibrium, it is all photons:

sR3 =
4a(TR)3after

3
(594)
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This entire process conserves entropy sR3: it conserves the total particles in photons plus
e+e− pairs. It is therefore reversible: recompress the adiabatic expansion backwards to
produce the pairs. In other words,

4(TR)3after
3

=
11(TR)3before

3
(595)

Now for an interesting point of physics. Whereas the muon-antimuon annihilation heated all
relativistic populations, because the cross sections permitted this at this earlier time when
the Universe was much more dense, the e+e− population annihilation ignores the neutrinos.
The density has now fallen to a level that the neutrinos pass through everything, so their TR
does not increase. The electron-positron pair annihilation must therefore produce different
cosmic background photon and neutrino temperatures. The ratio of neutrino temperature
Tν to photon temperature Tγ is

Tν
Tγ

=

(
4

11

)1/3

= 0.7138 (596)

This would correspond to a current value of Tν = 1.95 K — if the neutrinos remained a
µ = 0 relativistic population for all time. Which we now know they did not. At one time,
people wondered whether there was any possible way to measure this. But a temperature of
1.95K corresponds to an energy kT of 1.7× 10−4 eV, whereas the average mass per neutrino
specie (the best we can measure at the current time) is about 0.1 eV, with a corresponding
temperature of 1160 K. Neutrinos thus became “cold” at a redshift of z ∼ 400. As we shall
see, this is well after hydrogen recombined, but probably before galaxies formed. These
neutrinos are a part, but only a very small part, of the dark matter in galaxies. Even if it
had turned out that neutrinos had zero rest mass, it would have been impossible with present
technology to measure a 2K neutrino background! The physics of this problem remains is
enlightening, and the formal difference in neutrino and photon temperatures surprising. It
merits discussion.

8.11.4 Ionisation of Hydrogen

Between a few hundred seconds, the time of helium synthesis, and a few hundred thousand
years, almost nothing happens to change the character of the Universe. Radiation remains
the dominant source of energy and pressure, and the Universe simply expands with R scaling
like t1/2. The matter and the radiation remain tightly coupled, so that density fluctuations
in the matter correspond also energy fluctuations in the radiation. But at some point, the
Universe cools enough that hydrogen recombines and the matter is no longer an ionsed
plasma, but a neutral gas. At what temperature does this occur? To answer this question,
we need to use an interesting sort of variation of the Boltzmann equation, know as the Saha
equation. It tells us the ionisation fraction as a function of T .

Recall the Boltzmann equation:

Pi
Pj

=
gi
gj

exp

(
−Ei − Ej

kT

)
(597)

For simplicity we will consider a gas of pure hydrogen, and interpret this equation as follows.
State j is the ground state of hydrogen with one electron, the 1s state. Let’s set j to 0 so we
think of neutrality. State i is the ionised state with a bare proton and a free electron with
kinetic energy between E and E+dE. Set j to 1. The electron has two spin states available
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to it, whether bound or free, so this factor of 2 appears in both numerator and denominator,
canceling in the process. Then g0 is unity. We think of g1 as the number of states available
to the electron with energy in the range dE. Do you remember how to do that? In terms of
momentum p (a scalar magnitude here), the number of states per electron around a shell of
thickness dp in momentum space is

4πp2

neh3
dp

where the factor 1/ne represents the volume per electron and h is Planck’s constant. This
is derived in any standard text on statistical mechanics, but if this is not familiar, now is
a good time to have a look at Blundell and Blundell, Concepts of Thermal Physics. The
concept comes from the strategem of putting the electrons in big cube of volume V , counting
the eigenstates (now discrete because of the box walls) for each electron, and then noticing
that the artificial box appears in the calculation only as a volume per electron, which is
just 1/ne. Drawing these threads together, (597) becomes, upon adding up all possible free
electron states,

nenp
n0

= exp

(
− Φ

kT

)
4π

h3

∫ ∞
0

p2 e−p
2/2mekT dp (598)

where Φ is the ionisation potential of hydrogen, me the electron mass, ne the electron density,
np the proton density and n0 the neutral hydrogen density. Note that we have interchanged
the ratio of densities of p and H for their relative probabilities. Now∫ ∞

0

p2 e−p
2/2mekT dp = (2mekT )3/2

∫ ∞
0

x2e−x
2

dx = (2mekT )3/2 × π1/2

4
(599)

The Saha equation becomes

nenp
n0

=

(
2πmekT

h2

)3/2

exp

(
− Φ

kT

)
(600)

The final step is to note that for pure hydrogen, ne = np and thus ne + n0 is the total
hydrogen density nH . This remains unchanged regardless of the ionisation state: if ne goes
up by 1, n0 has gone down by 1. With x = ne/nH , our equation therefore becomes

x2

1− x
=

1

nH

(
2πmekT

h2

)3/2

exp

(
− Φ

kT

)
=

(
2.415× 1021T 3/2

nH

)
exp

(
−1.578× 105

T

)
(601)

in MKS units. The value x = 0.5 is attained at a redshift of about 1400, a temperature of
3800 K. This is remarkable, because it is much less than the formal Boltzmann ionisation
temperature of 1.58×105K. At redshifts less than 1400, the Universe becomes transparent to
photons, the energy density is already dominated by matter. Interestingly, the intergalactic
medium seems to have been reionised shortly after galaxies were able to form at z ∼ 10,
presumably by the very radiation produced by the accretion process that gave rise to these
galaxies. To pursue this active area of current astrophysical research would take us too
far afield at this point. Now that we have a sense of the basics of helium nucleosynthesis
and hydrogen recombination, we return to the very early Universe. It is there that we will
learn about what seems to have been a key process for creating the Universe as we know it:
inflation.
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8.11.5 Inflationary Models

We begin by posing two profound mysteries associated with classical FRW universes: the
horizon problem and the flatness problem.

We have already encountered the first, the horizon problem, on page (111). The CMB is
homogeneous to 1 part in 104 on all angular scales, yet the angular size of the horizon at the
redshift of hydrogen recombination is of the order of the diameter of the full moon. How can
we possibly understand this degree of homogeneity between regions that have never been in
causal contact?

The second problem is known as the flatness problem. Consider the dyanmical equation
of motion in the form

1− 8πGρ

H2
≡ 1− Ω2 =

2E

Ṙ2
(602)

Now if E happens to be zero, Ω is unity for all time. Fair enough. But the measured value
of Ω, at least in terms of ordinary matter, was a number like 25%, including unseen dark
matter, and only 5% for ordinary baryons. A number that is smaller than unity but not
infinitesimally small. Now either Ω2 is very close to unity if E is small and Ṙ large, or Ω is
very small (proportional to 1/RṘ throughout most of the vast history of a matter dominated
universe. But Ω passes though through the value “a number less than but not very different
from unity” during a tiny, fleeting moment of a universe’s history. And this is the period we
just so happen to be observing it? That certainly is a coincidence. We don’t like coincidences
like that.

To see how the concept of inflation can resolve both of these problems, consider the
integral that is done on page (111) to calculate the horizon distance. The problem is that
the horizon length at cosmic time t is very finite, of order c/H(t). Formally, this distance is
proportional to ∫

dt′

R(t′)
=

∫
dR

RṘ
(603)

Imagine that at very small R, the dominant behaviour of Ṙ is Ṙ ∼ Rp, where p is some
number. If p ≥ 0, then the integral diverges like lnR or R−p at small R, and in this case
divergence is good: it is what we want. Then the the horizon problem goes away because the
horizon is unbounded! In essence a small patch of universe, small enough to communicate
with itself completely, can rapidly grow to encompass an arbitrarily large segment of sky.
With p ≥ 0, Ṙ ≥ 0 at small R so that the universe would be accelerating (at at worst not
decelerating!). The problem with standard models is that they are radiation-dominated,
p = −1, and highly decelerating. A matter-dominated universe, p = −1/2, is no help.

What instead appears to have happened is that the Universe, early in its history, went
through a phase of exponential expansion with Ṙ ∼ R, p = +1. As we have seen, the Universe
has begun such an inflationary period recently, at redshifts of order unity. Exponential
expansion is the hallmark of a vacuum energy density ρV , with a corresponding pressure
PV = −ρV c2. This rapid expansion makes an entire Universe from a once very tiny region
that was in complete causal self-contact15. The rapid large expansion also has the effect of
killing off the 2E/Ṙ term in equation (622). In other words it resolves the flatness problem by,
well, flattening the Universe! Think of being on patch of sphere and then having the radius
expand by an enormous factor. The new surface would look very flat indeed. Dynamically,

15Note that the rest of the original universe is still hanging around! Inflationary models therefore lead
naturally to the concept of a “multiverse,” which in itself would help us to understand many otherwise
mysterious cooperations between physical scales.
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(622) shows us that Ω must then be equal to unity to great accuracy. This is just what
observations show.

A nice story, but can we make a case for early inflation? If we are to understand the
physics of the vacuum quantitatively, we need to learn a little about quantum field theory,
the domain of physics where the vacuum makes a starring appearance in a leading role.

Let us start easy, with spin 0 particles. Spin 0 particles, so-called scalar fields, satisfy
the Klein-Gordon equation. In Minkowski spacetime, it looks like

2Φ− µ2Φ = 0, µ2 = (mc/~)2 (604)

where as usual 2 = ∂α∂α, m is the mass of the particle (the “quantum of the field”), and
~ is Planck’s constant over 2π. Now when I solve the Einstein Field Equations, I need to
know what the stress energy tensor Tµν is. For ordinary stuff, this is not a problem:

T µν = Pgµν + (ρ+ P/c2)UµUν

The question is, what the heck is T µν for a field obeying equation (604)? What is the density?
What is the pressure? We are not completely in the dark on this. Electrodynamics is also
a field theory, and there is a perfectly good stress tensor for us. It is perfectly legitimate
to put this stress tensor, like any other, into the right side of the Einstein Field Equations.
With the help of our “4-potential” Aα (space components equal to the usual vector potential
A and time component equal to minus the electrostatic potential), we define the tensor Fαβ:

Fαβ =
∂Aβ
∂xα

− ∂Aα
∂xβ

(605)

and

Tαβ = Fα
γ F

βγ − 1

4
ηαβFγδF

γδ (606)

(The texts of Jackson [1998] or W72 are good references if needed.) There is in fact only
one conserved tensorial combination that is quadratic in the derivatives of the 4-potential.
You’re looking at it. The overall normalisation constant can be determined by looking at the
interaction (the “work done”) between the fields and the particles via the Lorentz equation
of motion.

With this as background, it is a surprisingly simple matter to find the Tαβ for the Klein-
Gordon field, and even to pick out ρ and P . Multiply (604) by ∂βΦ. For ease of future
generality, let’s call the µ2 term dV (Φ)/dΦ, and refer to it as “the potential derivative”.
For the K-G equation, V = µ2Φ2/2. We will shortly consider other forms. The equation
becomes:

∂Φ

∂xβ
∂2Φ

∂xα∂xα
=
dV (Φ)

dΦ

∂Φ

∂xβ
=
∂V

∂xβ
=
∂(ηαβV )

∂xα
(607)

Integrate the left side by parts:

∂Φ

∂xβ
∂2Φ

∂xα∂xα
=

∂

∂xα

(
∂Φ

∂xα
∂Φ

∂xβ

)
− ∂Φ

∂xα
∂2Φ

∂xβ∂xα
(608)

But the final term of (608) is

− ∂Φ

∂xα
∂2Φ

∂xβ∂xα
= −1

2

∂

∂xα

(
ηαβ

∂Φ

∂xγ
∂Φ

∂xγ

)
(609)
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Putting the last three equations together:

∂Tαβ
∂xα

= 0, where Tαβ = −ηαβ
[

1

2

∂Φ

∂xγ
∂Φ

∂xγ
+ V (Φ)

]
+

(
∂Φ

∂xα
∂Φ

∂xβ

)
(610)

Notice that for T00, the rest frame energy density component (ρc2) is

T00 = ρc2 =
1

2c2
Φ̇2 +

1

2
|∇Φ|2 + V (611)

which really does look like an energy density. The first term is a kinetic energy density
(the dot means time derivative), the second the effective potential energy density from the
spring-like coupling that produces the simple harmonic motion of Φ, and the final term is the
potential from an external driver. In textbooks on quantum fields, in Chapter 1 one begins
by examining the quantum mechanics of a collection of masses on springs, because that
problem is not just similar to, but is practically identical with, the problem of the excitation
of massless spin 0 particles. The Hamiltonian density used for this problem is precisely our
expression (611) for ρc2.

To get the rest frame pressure P in terms of Φ, just read off Txx = P (or any other
Cartesian component) assuming |∂xΦ|2 = |∇Φ|2/3 since there is no preferred direction:

P =
1

2c2
Φ̇2 − 1

6
|∇Φ|2 − V (612)

As a check, note that in the massless boson V = 0 limit, (Φ̇/c)2 = |∇Φ|2 (from ω2/c2 = k2)
and P = ρc2/3, which is the correct equation of state16. When Φ is a constant in space and
time, P = −ρc2, the vacuum equation of state.

The big idea now is to upgrade from ηαβ to gµν as per the usual GR prescription, and then
use this form of Tµν in the cosmological equations during the earliest phase of the Universe.
What is the connection between Φ and “real life,” the classical limit? This consists of rapidly
oscillating Φ, both in space and time. We then really do get back to a uniform gas, since
we then average over these rapid oscillations, just as in the classical limit of any quantum
mechanical problem. But in the earliest Universe, we consider near vacuum conditions in
which this averaging is not appropriate. Indeed, to a first approximation, we shall ignore
any spatial structure in Φ, allowing only temporal behaviour! That is far from classical
behaviour. The reason for explicitly identifying a ρ and P from our stress tensor is that it
is now a relatively easy matter to solve the Field Equations with our quantum field Tµν .

The fundamental dynamical equation in the absence of curvature is

H2 =
8πGρ

3
(613)

where H = Ṙ/R. We need a second equation to know how ρ and P depend upon R. This
is the energy conservation equation, (522):

ρ̇+ 3H

(
ρ+

P

c2

)
= 0. (614)

16There is a discrepancy between these formulae (which agree with HEL06, and Kolb & Turner [1990])
and those in Weinberg’s 2008 text Cosmology. Weinberg’s result P = ρc2 (from his equations B.66 and B.67,
page 527) in the limit V = 0 seems incorrect to me. The discrepancy does not affect the discussion here,
with ∇Φ = 0
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Remember that this equation comes from ∂µTµν = 0. But this amounts to solving the Klein-
Gordon equation itself, since the way we formed our stress tensor (610) was by contracting
the K-G equation with a 4-gradient of Φ. So all relevant equations are embodied in (613)
and (614), with (611) and (612) for Φ.

Right. Now then. About V (Φ). What is this V ((Φ)? It helps to have a concrete
mechanical model. If I have a one-dimensional collection of (concrete!) masses on springs,
and φn is the lateral displacment of mass n, the equation of motion is:

φ̈n = −k(φn − φn−1)− k(φn − φn+1) (615)

Now when n is very large and the masses closely spaced with a small separation ∆x, I can
take the limit

φn − φn−1 ' ∆xφ′n−1/2

so that
− k(φn − φn−1)− k(φn − φn+1)→ −k∆x(φ′n−1/2 − φ′n+1/2) (616)

where the spatial x derivative φ′ is formally defined halfway between the integer n’s. A
second use of this limit brings us to

− k∆x(φ′n−1/2 − φ′n+1/2) = k(∆x)2φ′′n (617)

or
∂2φ

∂t2
= c2

∂2φ

∂x2
(618)

where c2 = k(∆x)2 becomes the velocity of a propagating φ disturbance as k gets large and
∆x small. A three-dimensional extension of this argument would introduce nothing new, so
this is a mechanical analogue of the standard wave equation. But it is not the Klein-Gordon
equation. Where is V ?

Do the same problem, but this time hang the masses from strings of length l in a gravi-
tational field g while they slide back and forth on their connecting springs, as in figure [18].
Then, our final partial differential equation becomes

∂2φ

∂t2
= c2

∂2φ

∂x2
− g

l
φ (619)

This is the Klein-Gordon equation. The final term is an external coupling between the dis-
placement φ (or the “field” Φ) and some external interaction. Note: an external interaction.
In the K-G equation, the coefficient representing this interaction g/l is called “mass.” This
sets up Richard Feynman’s famous quotation: “All mass is interaction.” Inertial mass is the
price you pay to jiggle a field against some kind of external coupling, a foreign entanglement
if you will.

We could imagine putting our concrete masses in some kind of a more complicated ex-
ternal force. Maybe gφ/l is only the first term in a Taylor series of, say, g sinφ/l. (Can
you think of mechanical system that would, in fact, have this property?) The point here
is that as long as the equilibrium φ = 0 null displacement state is one that is stable, any
small deviation from φ = 0 will be generically linear in the interaction, and V (φ) (or V (Φ))
quadratic. This is why we think of V in terms of a potential function. We speak casually of
the field being a “ball sitting at the bottom of a potential well.” The oscillation frequency
is, in essence, the mass of the field particle.

So in the real world, what is giving rise to this so-called interaction? Where is the external
pendulum force coming from that is affecting the Φ field? The answer is that is coming from
the vacuum itself.
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Figure 18: Mechanical analogue of the Klein-Gordon equation. Spring-like
coupling between adjacent masses gives rise to the wave equation, while
the pendula produce an acceleration directly proportional to the displace-
ment, not the ∂x derivative thereof. This g/l force is exactly analogous
to the mass term in the KG equation, which evidently arises from similar
“external couplings” of the scalar field Φ. (Only two masses are shown
instead of an infinite continuum.)

Effective Potentials in Quantum Field Theory

One thing you have to understand about the quantum vacuum: it is a jungle out there.

The vacuum is full of fluctuations in the varied collection of harmonic oscillators that
we are pleased to call particles. Depending upon circumstances, the Klein-Gordon equation,
representing only free massive particles, might not capture the dynamics of the scalar field
in question. The scalar field could interact with all these other fields, and since interaction
is mass, perhaps in the process create an effective new mass coefficient. We could easily
imagine a non-linear “pendulum,” coupling to other fields. Then, the mass constant µ2 is
not, in fact, a constant, but would depend on the field strength Φ. In the simplest case, µ2

would depend additively upon Φ2, so that only the magnitude of Φ, not its sign, affects the
distortion of µ2. Then, the resulting potential V (Φ) would take the form

V (Φ) = µ2Φ2/2 + βΦ4 (620)

In fact, for decades before the notion of the inflation became popular, precisely this potential
had been in wide use amongst particle physicists for completely different reasons. If for some
reason µ2 was despite its form a negative quantity, and β positive, then Φ = 0 is not a stable
vacuum solution. The true, stable vacuum state would be the global minimum, Φ2 = |µ2/4β|.
Locally with respect to this minimum, the potential once again appears stable-quadratic,
and we are back to Klein-Gordon...but with another mass coefficient. For understanding
our Universe, it is not the destination of the new equilibrium that is important, it is the
journey we take to reach it: down the potential slide! This is from whence inflation may
orginate—assuming, of course, that we start off at or near the top of the slide.

I know, I know. Try not to be put off by the vagueness of all this. What if? Maybe...
assuming...We imagine that... It is better than it looks. The real V (Φ) may well be a
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Figure 19: V (Φ) potential functions of the form (620). The
upper curve corresponds to µ2 > 0, the lower to µ2 < 0. If
there is a scalar field described by the µ2 < 0 potential in the
early Universe, it could trigger an episode of inflation. Before
cosmological applications, these potential functions were used to
describe ferromagnets, and to explain how symmetry is broken
in fundamental particle physics.

complicated function (lots of interactions), but we have long ago landed in a stable local
parabolic minimum of V , so things now look deceptively, Klein-Gordonly, simple. The idea
here is that it is OK to grope in the dark a bit to try to understand what type of physics might
in principle lie beyond the usual theories. But within reason, of course. As long as certain
ground rules like Lorentz invariance are respected, there is considerable freedom in choosing
the form of the interaction. As noted, the type of quartic potential (620) was already well-
known to particle physicists, who had borrowed it from condensed matter physicists, who
had in turn used it (in the form of a thermodynamic potential) to describe ferromagnets.
This analogy has proven to be enormously useful in particle physics. (The Higgs Boson, for
example.) Just as a ferromagnet can spontaneously magnetise itself, so too can certain types
of particle spontaneously acquire mass. These physically distinct processes turn out to have
very similar mathematics.

In a ferromagnet, the equilibrium state minimises the Gibbs Free Energy G, as is usual
for thermodynamical systems at fixed temperature and pressure. G is a function of the
magnetisation M , and typically takes the form of (620):

G = αM2 + βM4 (621)

At high temperatures, above some critical Tc, both α and β are positive. Below Tc, however,
α changes sign, and it becomes energetically more favourable — G attains a smaller value—
when M2 is finite and equal to −α/2β. The system, in other words, becomes spontaneously
magnetised. A similar mathematical arrangement also produces the phenomenon of super-
conductivity. And in particle physics, this is the core of the argument for how a class of field
particles acquires mass under conditions that are otherwise mysterious.

The slow roll inflationary scenario

The essence of the so-called slow roll inflationary is easily grasped. Start by using (611)
and (612) in (613) and (614). This leads to the equations

H2 =
8πG

3c2

(
V +

Φ̇2

2c2

)
(622)
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and

Φ̈ + 3HΦ̇ + c2
dV

dΦ
= 0 (623)

The idea is that the gross form of the potential V (Φ) itself changes while the Universe
expands and cools, going from the top form of figure (19) early on to the bottom form as
things cool, much as a ferromagnet’s free energy does when the temperature changes from
T > Tc to T < Tc. Moreover, if V is very flat, so that dV/dΦ is small, then Φ̇ is also small
by equation (623) and there is an extended period when (622) is simply

H =
Ṙ

R
'
√

8πGV0
3c2

(624)

where V0 is the (approximately) constant of V (Φ). R grows exponentially,

R ∝ exp

(√
8πGV0

3c2
t

)
(625)

and the Universe enters its inflationary phase. Φ meanwhile grows slowly, but it does grow,
and eventually, after many e-foldings, the inflation stops when the minimum of V (Φ) is
reached. It was Alan Guth, a particle physicist, who put together this picture in 1980,
and brought to the fore the concept of inflation as a phase of the history of the early
Universe. In particular, he argued that the peculiar model potentials then in widespread
use to understand ferromagnets and symmetry breaking in particle physics, might also be
relevant to fundamental problems in cosmology.

Exercise. The slow-roll equations of inflationary cosmology, from (622) and (623), are

H2 =

(
Ṙ

R

)2

=
8πGV

3c2
, Φ̇ = −

(
c5

24πGV

)1/2
dV

dΦ
.

What are the conditions for their validity? Next, try a potential of the form

V (Φ) = V0(1− ε2Φ2)2,

where ε is small and V0 constant. Plot V as a function of Φ. Show that this V satisfies the
slow-roll constraints, and solve the above differential equations for R(t) and Φ(t) with no
further approximations.

The theoretical arguments for the mechanism of inflation are not based on fundamental
theory (at least not yet). They are what physicists call “phenomenological.” That means
they are motivated by the existence of an as yet unexplained phenomenon, and rely on the
detailed mathematical exploration of a what-if theory to see how the ideas might lead to
the behaviour in question. Perhaps the theory, if framed carefully, will explain something it
wasn’t specifically designed to do. That would be encouraging! Inflation models have this
property, which is why there are very attractive.

Here is an example. During the period of inflation, small fluctuations go through two
types of behaviour in sequence. At first, they oscillate, like a sound wave. But as the
Universe rapidly expands, at some point the peak of a wave and the trough of a wave find
themselves outside of each other’s horizons! A wave can’t possibly oscillate coherently under
those conditions, so the disturbance remains “frozen.”

But the rapid inflation eventually stops while the Universe is still practically a newborn
baby. Then, the expansion no longer is accelerating, but decelerating, and enough time
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Figure 20: Top: The temperature power spectrum of fluctuations (known as “TT
spectrum” in the literature) as a function of angular scale from recent Planck data.
(The bottom plot is a measure of the discrepancy between the data and a model,
and does not concern us here.) The excellent model fit in the top plot is strong
evidence for inflation.

passes so that the horizon once again can encompass a wavelength. The oscillation can
then restart. Suppose that between this (very early) moment of restart when the oscillation
starts with zero velocity, and the time of hydrogen recombination (several hundred thousand
years later), when we see the imprint of the fluctuation in the radiation, there is one full
contraction of the oscillation. (Or one full expansion as well.) This half-period of oscillation
correponds to a particular wavelength. For this particular wavelength we would expect to see
a peak when we plot the spectrum of fluctuations at all wavelengths. And then another peak
for the wavelength of full expansion. And so on. The so-called power spectrum17 in figure
(19) shows a sequence of peaks on certain angular scales on the sky. In order to exist as well-
defined entitites, instead of just a smear, these peaks need to have ocillations recommence
at nearly the same time. This is possible only because of inflation. During inflation, the
rapid expansion prevents the random oscillations that would otherwise be present. It then
allows the dance to begin again from zero velocity. This happens very early on, once the
rapid expansion has slowed and the oscillations “enter the horizon.” The coherent release at
only very slightly different very early times (for different wavelengths) is what makes these
peaks possible: their mere existence is powerful evidence for inflation.

Let us recap. The concept of an early inflationary period of the Universe explains both
why there is such uniformity in the CMB temperature across the sky and why the Universe is
flat. Indeed, it explains why there is an FRW metric in the first place. But there is subtlety
as well in the predictions of inflation, including statistical predictions of where the power
spectrum should have its peaks. There is much more that, alas, we don’t have time to go

17If T (θ, φ) is the CMB temperature as a function of angle, and T is its fourier transform in wavenumber
space, the power spectrum is |T |2.
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into in this course. There are firm predictions for how large scale structure in the Universe
evolves—how galaxies cluster—from the intial seed fluctuations. These rely on the notion
of Cold Dark Matter taking part in the gravitational response. Cold Dark Matter (CDM)
is cold in the sense that it responds readily to gravitational perturbations, forming the bulk
of the mass distribution in galaxies and clusters. Though we don’t know very much about
CDM, there are reasons to think that it may be some kind of weakly interacting massive
particle, and there are searches underway to try to detect such particles via their (perhaps)
more easily found decay products. But it all must begin with some kind of inflationary
process. There really is no other explanation for how vast streches of the Universe could
even have been in causual contact. Inflation is a powerful, unifying concept without which
we can not make sense of even the most basic cosmological observations. And don’t forget:
the Universe is inflating right now! We are living through mild inflation that will, with time,
become much more dramatic.

But why? From whence? What is the underlying imperative? While there are some
promising ideas afoot, we still don’t really know how and why inflation occured. Maybe
somebody reading these notes will settle the matter.18

8.11.6 A Final Word

Astrophysics can be a very a messy and speculative business. But every once and a while,
something truly outstanding is accomplished. The development of stellar structure and
evolution is one such triumph. This led to a new field of science: nuclear astrophysics, and
ultimately a precision theory for the origin of the chemical elements. We figured out where
atoms come from and even how to make them ourselves, a stunning achievement. Another
milestone is the blossoming of the theory of black holes, brilliantly confirmed in the last year
by the LIGO detection of gravitational radiation from merging black hole binaries. Surely
the development of precision cosmology, the discovery and construction of a model of the
Universe must rank as one of the great advances in science, on a par with the Crick-Watson
DNA model, not just technical but transformative. We have taken the full measure of the
entire Universe. What we thought of a generation ago as the stuff of the Universe is only 5%
of the stuff of the Universe, and the concept of inflation suggests that a incomprehensibly
vast multiverse is a viable description of the true reality. To be sure, important questions
remain, and thank goodness for that. But we know the age, we know the dynamics, and we
know the gross history of the Universe. That is a breathtaking accomplishment, one that
will happen only once in our existence as a species.

End of notes February 16, 2017.

18I’m quite serious: given the historical track record, when this problem is solved, it would not be at all
surprising to me that it is by someone who was an Oxford undergraduate.
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