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Recommended Texts

Hobson, M. P., Efstathiou, G., and Lasenby, A. N. 2006, General Relativity: An Introduction
for Physicists, (Cambridge: Cambridge University Press) Referenced as HELOG6.

A very clear, very well-blended book, admirably covering the mathematics, physics, and
astrophysics of GR. Excellent presentation of black holes and gravitational radiation. The
explanation of the geodesic equation and the affine connection is very clear and enlightening.
Not so much on cosmology, though a nice introduction to the physics of inflation. Overall, my
favourite text on this topic. (The metric has a different sign convention in HEL0O6 compared
with Weinberg 1972 & MTW [see below], as well as these notes. Be careful.)

Weinberg, S. 1972, Gravitation and Cosmology. Principles and Applications of the General
Theory of Relativity, (New York: John Wiley) Referenced as W72.

What is now the classic reference by the great man, but lacking any discussion whatsoever
of black holes, and almost nothing on the geometrical interpretation of the equations. The
author is explicit in his aversion to anything geometrical: gravity is a field theory with a
mere geometrical “analogy” according to Weinberg. But there is no way to make sense of the
equations, in any profound sense, without immersing onself in geometry. More suprisingly,
given the author’s skill set, I find that many calculations are often performed awkwardly,
with far more effort and baggage than is required. The detailed sections on classical physical
cosmology are its main strength. Weinberg also has a more recent graduate text on cosmology
per se, (Cosmology 2007, Oxford: Oxford University Press). This is very complete but at an
advanced level.

Misner, C. W., Thorne, K. S., and Wheeler, J. A. 1973, Gravitation, (New York: Freeman)
Referenced as MTW.

At 1280 pages, don’t drop this on your toe, not even the paperback version. MTW, as it is
known, is often criticised for its sheer bulk, its seemingly endless meanderings, its cuteness,
and its laboured strivings at building mathematical and physical intuition at every possible
step. But look. I must say, in the end, there really is a lot of very good material in here,
much that is difficult to find anywhere else. It is a monumental achievement. It is also the
opposite of Weinberg: geometry is front and centre from start to finish, and there is lots and
lots of black hole and gravitational radiation physics, 404 years on more timely than ever.
I very much recommend its insightful discussion on gravitational radiation, now part of the
course syllabus. There is a “Track 17 and “Track 2” for aid in navigation; Track 1 contains
the essentials.

Hartle, J. B. 2003, Gravity: An Introduction to Einstein’s General Theory of Relativity, (San
Francisco: Addison-Wesley)

This is GR Lite, at a very different level from the previous three texts. But for what it is
meant to be, it succeeds very well. Coming into the subject cold, this is not a bad place to
start to get the lay of the land, to understand the issues in their broadest context, and to be
treated to a very accessible presentation. This is a difficult subject. There will be times in
your study of GR when it will be difficult to see the forest for the trees, when you will feel
overwhelmed with the calculations, drowning in a sea of indices and Riemannian formalism.
Everything will be all right: just spend some time with this text.



Ryden, Barbara 2017, Introduction to Cosmology, (Cambridge: Cambridge University Press)

Very recent and therefore up-to-date second edition of an award-winning text. The style is
clear and lucid, the level is right, and the choice of topics is excellent. Less GR and more
astrophysical in content but with a blend appropriate to the subject matter. Ryden is always
very careful in her writing, making this a real pleasure to read. Warmly recommended.

A few other texts of interest:

Binney J, and Temaine, S. 2008, Galactic Dynamics, (Princeton: Princeton University Press)
Masterful text on galaxies with an excellent cosmology treatment in the appendix. Very
readable, given the high level of mathematics.

Longair, M., 2006, The Cosmic Century, (Cambridge: Cambridge University Press) Excel-
lent blend of observations, theory and history of cosmology, as part of a more general study.
Good general reference for anyone interested in astrophysics.

Landau, L., and Lifschitz, E. M. 1962, Classical Theory of Fields, (Oxford: Pergamon)
Classic advanced text; original and interesting treatment of gavitational radiation. Dedicated
students only!

Peebles, P. J. E. 1993, Principles of Physical Cosmology, (Princeton: Princeton University
Press) Authoritative advanced treatment by the leading cosmologist of the 20th century, but
in my view a difficult and sometimes frustrating read.

Shapiro, S., and Teukolsky S. 1983, Black Holes, White Dwarfs, and Neutron Stars, (Wiley:
New York) Very clear text with a nice summary of applications of GR to compact objects
and good physical discussions. Level is appropriate to this course.



Notational Conventions & Miscellany

Spacetime dimensions are labelled 0, 1,2,3 or (Cartesian) ct,x,y, z or (spherical) ct,r, @, ¢.
Time is always the 0-component. Beware of extraneous factors of ¢ in 0-index quantities,
present in e.g. T% = pc?, dz®= cdt, but absent in e.g. ggo = —1. (That is one reason why
some like to set ¢ = 1 from the start.)

Repeated indices are summed over, unless otherwise specified. (Einstein summation conven-
tion.)

The Greek indices &, A\, i, v etc. are used to represent arbitrary spacetime components in all
general relativity calculations.

The Greek indices «, 3, etc. are used to represent arbitrary spacetime components in special
relativity calculations (Minkowski spacetime).

The Roman indices i, j, k are used to represent purely spatial components in any spacetime.

The Roman indices a, b, ¢, d are used to represent fiducial spacetime components for mnemonic
aids, and in discussions of how to perform index-manipulations and/or permutations, where
Greek indices may cause confusion.

x is used to denote a generic dummy index, always summed over with another x.

The tensor n%° is numerically identical to Nap With —1,1, 1, 1 corresponding to the 00, 11, 22, 33
diagonal elements.

Viewed as matrices, the metric tensors g,, and g"” are always inverses. The respective
diagonal elements of diagonal g,, and g"” metric tensors are therefore reciprocals.

¢ almost always denotes the speed of light. It is occasionally used as an (obvious) tensor
index. c¢ as the velocity of light is only rarely set to unity in these notes, and if so it is
explicitly stated. (Relativity texts often set ¢ = 1 to avoid clutter.) Newton’s G is never
unity, no matter what. And don’t you even think of setting 27 to unity.

Notice that it is “Lorentz invariance,” but “Lorenz gauge.” Not a typo, two different blokes.



Really Useful Numbers

c = 2.99792458 x 10® m s™! (Exact speed of light.)

¢ = 8.9875517873681764 x 10'® m? s72 (Exact!)

a = 7565723 x 10716 J m~3 K=* (Blackbody radiation constant.)
G =6.67384 x 107" m3 kg™! s72 (Newton’s G.)

M = 1.98855 x 10*° kg (Mass of the Sun.)

re = 6.955 x 10* m (Radius of the Sun.)

GM = 1.32712440018 x 10*® m3 s72 (Solar gravitational parameter; much more accurate
than either G or M, separately.)

2G M /c* = 2.9532500765 x 10 m (Solar Schwarzschild radius.)
GM¢/c*re = 2.1231 x 107% (Solar relativity parameter.)

Mg = 5.97219 x 10?* kg (Mass of the Earth)

re = 6.371 x 10° m (Mean Earth radius.)

G Mg = 3.986004418 x 10 m? s=2(Earth gravitational parameter.)
2G My /c* = 8.87005608 x 10~® m (Earth Schwarzschild radius.)
GMg/Prg = 6.961 x 1071 (Earth relativity parameter.)

1 AU = 1495978707 x 10"'m (1 Astronomical Unit by definition.)
1pc = 3.085678 x 10 m (1 parsec.)

Hy = 100k km s™* Mpc™' (Hubble constant. h ~ 0.7. H;' = 3.085678h~! x 10'7s=
9.778h~1 x 10% yr.)

For diagonal g,

1 99aa

ry, =14, = S O (a = b permitted, NO SUM)
1 Ogw
4y, = —-— 2% b, N M
. 20 D (a #b, NO SUM)

Iy, =0, (a,b,c distinct)

Ricci tensor:
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Ry, +T7,0 — FULL SUMMATION, g = det g,
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Most of the fundamental ideas of
science are essentially simple, and
may, as a rule, be erpressed in a

language comprehensible to everyone.

— Albert Einstein

1 An overview

1.1 The legacy of Maxwell

We are told by the historians that the greatest Roman generals would have their most
important victories celebrated with a triumph. The streets would line with adoring crowds,
cheering wildly in support of their hero as he passed by in a grand procession. But the
Romans astutely realised the need for a counterpoise, so a slave would ride with the general,
whispering in his ear, “All glory is fleeting.”

All glory is fleeting. And never more so than in theoretical physics. No sooner is a triumph
hailed, but unforseen puzzles emerge that couldn’t possibly have been anticipated before the
breakthrough. The mid-nineteenth century reduction of all electromagnetic phenomena to
four equations, the “Maxwell Equations,” is very much a case in point.

Maxwell’s equations united electricity, magnetism, and optics, showing them to be differ-
ent manifestations of the same field. The theory accounted for the existence of electromag-
netic waves, explained how they propagate, and that the propagation velocity is 1/, /€opio (€o

is the permitivity, and o the permeability, of free space). This combination is numerically
precisely equal to the speed of light. Light is electromagnetic radiation! The existence of
electromagnetic raditation was then verified by brilliant experiments carried out by Heinrich
Hertz in 1887, in which the radiation was directly generated and detected.

But Maxwell’s theory, for all its success, had disquieting features when one probed. For
one, there seemed to be no provision in the theory for allowing the velocity of light to change
with the observer’s velocity. The speed of light is aways 1/,/€pio. A related point was
that simple Galilean invariance was not obeyed, i.e. absolute velocities seemed to affect the
physics, something that had not been seen before. Lorentz and Larmor in the late nineteenth
century discovered that Maxwell’s equations did have a simple mathematical velocity trans-
formation that left them invariant, but it was not Galilean, and most bizarrely, it involved
changing the time. The non-Galilean character of the transformation equation relative to
the “aetherial medium” hosting the waves was put down, a bit vaguely, to electromagnetic
interactions between charged particles that truly changed the length of the object. In other
words, the non-Galilean transformation were somehow electrodynamical in origin. As to the
time change...well, one would just have to put up with it as an aetherial formality.

All was resolved in 1905 when Einstein showed how, by adopting as a postulates (i)
that the speed of light was constant in all frames (as had already been indicated by a body
of irrefutable experiments, including the famous Michelson-Morley investigation); (ii) the
abandonment of the increasingly problematic aether medium that supposedly hosted these
waves; and (iii) reinstating the truly essential Galilean notion that relative uniform velocity
cannot be detected by any physical experiment, that the “Lorentz transformations” (as
they had become known) must follow. All equations of physics, not just electromagnetic
phenomena, had to be invariant in form under these Lorentz transformations, even with
its peculiar relative time variable. The non-Galilean transformations were purely kinematic
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in this view, having nothing in particular to do with electrodynamics: they were much
more general. These ideas and the consequences that ensued collectively became known as
relativity theory, in reference to the invariance of form with respect to relative velocities.
The relativity theory stemming from Maxwell’s equations is rightly regarded as one of the
crown jewels of 20th century physics. In other words, a triumph.

1.2 The legacy of Newton

Another triumph, another problem. If indeed, all of physics had to be compatible with
relativity, what of Newtonian gravity? It works incredibly well, yet it is manifestly not
compatible with relativity, because Poisson’s equation

V20 = 4rGp (1)

implies instantaneous transmission of changes in the gravitational field from source to poten-
tial. (Here ® is the Newtonian potential function, G the Newtonian gravitational constant,
and p the mass density.) Wiggle the density locally, and throughout all of space there must
instantaneously be a wiggle in ®, as given by equaton (1).

In Maxwell’s theory, the electrostatic potential satisfies its own Poisson equation, but the
appropriate time-dependent potential obeys a wave equation:

10?9 p
QCD__ — _ 2
v c? Ot2 €’ (2)

and solutions of this equation propagate signals at the speed of light c. In retrospect, this is
rather simple. Mightn’t it be the same for gravity?

No. The problem is that the source of the signals for the electric potential field, i.e. the
charge density, behaves differently from the source for the gravity potential field, i.e. the mass
density. The electrical charge of an individual bit of matter does not change when the matter
is viewed in motion, but the mass does: the mass increases with velocity. This seemingly
simple detail complicates everything. Moreover, in a relativisitic theory, energy, like matter,
is a source of a gravitational field, including the distributed energy of the gravitational field
itself! A relativisitic theory of gravity would have to be nonlinear. In such a time-dependent
theory of gravity, it is not even clear a priori what the appropriate mathematical objects
should be on either the right side or the left side of the wave equation. Come to think of it,
should we be using a wave equation at all?

1.3 The need for a geometrical framework

In 1908, the mathematician Hermann Minkowski came along and argued that one should
view the Lorentz transformations not merely as a set of rules for how coordinates (including a
time coordinate) change from one constant-velocity reference frame to another, but that these
coordinates should be regarded as living in their own sort of pseudo-Euclidian geometry—a
spacetime, if you will: Minkowski spacetime.

To understand the motivation for this, start simply. We know that in ordinary Euclidian
space we are free to choose any coordinates we like, and it can make no difference to the
description of the space itself, for example, in measuring how far apart objects are. If (z,y)
is a set of Cartesian coordinates for the plane, and (z/,y’) another coordinate set related to
the first by a rotation, then

dz® + dy? = da” + dy? (3)
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i.e., the distance between two closely spaced points is the same number, regardless of the
coordinates used. dz? + dy? is said to be an “invariant.”

Now, an abstraction. There is nothing special from a mathematical viewpoint about
the use of dx? 4 dy? as our so-called metric. Imagine a space in which the metric invariant
was dy? — dz?. From a purely mathematical point of view, we needn’t worry about the
plus/minus sign. An invariant is an invariant. However, with dy? — dz? as our invariant, we
are describing a Minkowski space, with dy = cdt and dz an ordinary space interval, just as
before. The fact that c2dt?> —dz? is an invariant quantity is precisely what we need in order to
guarantee that the speed of light is always constant—an invariant! In this case, c2dt? — da?
is always zero for light propagation along x, whatever coordinates (read “observers”) are
involved, and more generally,

Adt* —da* —dy* —dz* =0 (4)

will guarantee the same in any direction. We have thus taken a kinematical requirement—
that the speed of light be a universal constant—and given it a geometrical interpretation in
terms of an invariant quantity (a “quadratic form” as it is sometimes called) in Minkowski
space. Rather, Minkowski’s spacetime.

Pause. As the French would say, “Bof.” And so what? Call it whatever you like. Who
needs obfuscating mathematical pretence? Eschew obfuscation! The Lorentz transform
stands on its own! That was very much Einstein’s initial take on Minkowski’s pesky little
meddling with his theory.

However, it is the geometrical viewpoint that is the more fundamental. In Minkowski’s
1908 paper, we find the first mention of 4-vectors, of relativistic tensors, of the Maxwell
equations in manifestly covariant form, and the realisation that the magnetic and vector
potentials combine to form a 4-vector. This is more than “Uberfliissige Gelehrsamkeit”
(superfluous erudition), Einstein’s dismissive term for the whole business. In 1912, Einstein
changed his opinion. His great revelation, his big idea, was that gravity arises because
the effect of the presence of matter in the universe is to distort Minkowski’s spacetime.
Minkowski spacetime is physical, and embedded spacetime distortions manifest themselves
as what we view as the force of gravity. These same distortions must therefore become, in
the limit of weak gravity, familiar Newtonian theory. Gravity itself is a purely geometrical
phenomenon.

Now that is one big idea. It is an idea that will take the rest of this course—and beyond—
to explain. How did Einstein make this leap? Why did he change his mind? Where did this
notion of geometry come from?

From a simple observation. In a freely falling elevator, or more safely in an aircraft
executing a ballistic parabolic arch, one feels “weightless.” That is, the effect of gravity can
be made to locally disappear in the appropriate reference frame—the right coordinates. This
is because gravity has exactly the same effect on all types mass, regardless of composition,
which is precisely what we would expect if objects were responding to background geometrical
distortions instead of an applied force. In the effective absence of gravity, we locally return
to the environment of undistorted (“flat,” in mathematical parlance) Minkowski spacetime,
much as a flat Euclidian tangent plane is an excellent local approximation to the surface
of a curved sphere. This is why it is easy to be fooled into thinking that the earth is
flat, if your view is local. “Tangent plane coordinates” on small scale road maps locally
eliminate spherical geometry complications, but if we are flying to Hong Kong, the earth’s
curvature is important. Einstein’s notion that the effect of gravity is to cause a geometrical
distortion of an otherwise flat Minkowski spacetime, and therefore that it is always possible
to find coordinates in which these local distortions may be eliminated to leading order, is
the foundational insight of general relativity. It is known as the FEquivalence Principle. We
will have more to say on this topic.
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Spacetime. Spacetime. Bringing in time, you see, is everything. Who would have thought
of it? Non-Euclidean geometry as developed by the great mathematician Bernhard Riemann
begins with just the notion we’ve been discussing, that any space looks locally flat. Rieman-
nian geometry is the natural language of gravitational theory, and Riemann himself had the
notion that gravity might arise from a non-Fuclidian curvature in three-dimensional space.
He got nowhere, because time was not part of his geometry. It was the (underrated) genius
of Minkowski to incorporate time into a purely geometrical theory that allowed Einstein to
take the crucial next step, freeing himself to think of gravity in geometrical terms, without
having to ponder over whether it made any sense to have time as part of a geometrical
framework. In fact, the Newtonian limit is reached not from the leading order curvature
terms in the spatial part of the geometry, but from the leading order “curvature” (if that is
the word) of the time dimension.

Riemann created the mathematics of non-Euclidian geometry. Minkoswki realised that
natural language of the Lorentz transformations was neither electrodynamical, nor even
really kinematic, it was geometrical. But you need to include time as a component of the
geometrical interpretation! Einstein took the great leap of realising that gravity arises from
the distortions of Minkowski’s flat spacetime created by the existence of matter.

Well done. You now understand the conceptual framework of general relativity, and that
is itself a giant leap. From here on, it is just a matter of the technical details. But then, you
and I also can paint like Leonardo da Vinci. It is just a matter of the technical details.
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From henceforth, space by itself and
time by itself, have vanished into the
merest shadows, and only a blend of

the two exists in its own right.

— Hermann Minkowsk:

2 The toolbox of geometrical theory: special relativity

In what sense is general relativity “general?” In the sense that since we are dealing with
an abstract spacetime geometry, the essential mathematical description must be the same
in any coordinate system at all, not just those related by constant velocity reference frame
shifts, nor even just those coordinate transformations that make tangible physical sense
as belonging to some observer or another. Any mathematically proper coordinates at all,
however unusual. Full stop.

We need the coordinates for our description of the structure of spacetime, but somehow
the essential physics (and other mathematical properties) must not depend on which coordi-
nates we use, and it is no easy business to formulate a theory which satisfies this restriction.
We owe a great deal to Bernhard Riemann for coming up with a complete mathematical
theory for these non-Euclidian geometries. The sort of geometry in which it is always pos-
sible to find coordinates in which the space looks locally smooth is known as a Riemannian
manifold. Mathematicians would say that an n-dimensional manifold is homeomorphic to n-
dimensional Euclidian space. Actually, since our invariant interval c?dt? — da? is not a simple
sum of squares, but contains a minus sign, the manifold is said to be pseudo-Riemannian.
Pseudo or no, the descriptive mathematical machinery is the same.

The objects that geometrical theories work with are scalars, vectors, and higher order
tensors. You have certainly seen scalars and vectors before in your other physics courses,
and you may have encountered tensors as well. We will need to be very careful how we define
these objects, and very careful to distinguish them from objects that look like vectors and
tensors (because they have the appropriate number of components) but actually are not.

To set the stage, we begin with the simplest geometrical objects of Minkowski spacetime
that are not just simple scalars: the 4-vectors.
2.1 The 4-vector formalism

In their most elementary form, the familiar Lorentz transformations from “fixed” laboratory
coordinates (t,z,y, z) to moving frame coordinates (¢, 2',y/, 2) take the form

ct' = ~(ct —vx/c) = v(ct — Bx) (5)
o' =y(x = vt) =y(x — fet) (6)
Y=y (7)

2=z (8)

where v is the relative velocity (taken along the x axis), ¢ the speed of light, 8 = v/c and

1 1 ()

TE v i

14




is the Lorentz factor. The primed frame can be thought of as the frame moving with an
object we are studying, that is to say the object’s rest frame. To go backwards to find (z,t)
as a function (2/;t), just interchange the primed and unprimed coordinates in the above
equations, and then flip the sign of v. Do you understand why this works?

Ezercise.  Show that in a coordinate free representation, the Lorentz transformations are
ct' =~(ct — B+ x) (10)
(=1
32
where ¢ = v is the vector velocity and boldface x’s are spatial vectors. (Hint: This is not nearly

as scary as it looks! Note that 3/ is just a unit vector in the direction of the velocity and sort
out the components of the equation.)

r =x+

(B-x)B—ctB (11)

Ezercise. The Lorentz transformation can be made to look more rotation-like by using hyperbolic
trigonometry. The idea is to place equations (5)—(8) on the same footing as the transformation of
Cartesian position vector components under a simple rotation, say about the z axis:

2’ = xcosf + ysinf (12)
y' = —xsinf + ycosf (13)
2=z (14)
Show that if we define

B = tanh(, (15)

then
v =cosh(, ~f =sinh(, (16)

and
ct' = ct cosh ¢ — xsinh ¢, (17)
2’ = —ctsinh ¢ + x cosh . (18)

What happens if we apply this transformation twice, once with “angle” ¢ from (z,t) to (2/,¢'), then
with angle £ from (2/,t) to (2”,t")? How is (z,t) related to (2”,t")?

Following on, rotations can be made to look more Lorentz-like by introducing

1

a=tanf, I = Ny (19)

Then show that (12) and (13) become
' =T(z+ ay) (20)
Y =Ty - ox) (21)

Thus, while a having a different appearance, the Lorentz and rotational transformations have
mathematical structures that are similar.

Of course lots of quantities besides position are vectors, and it is possible (indeed de-
sirable) just to define a quantity as a vector if its individual components satisfy equations
(12)—(14). Likewise, we find that many quantities in physics obey the transformation laws of
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equations (5-8), and it is therefore natural to give them a name and to probe their proper-
ties more deeply. We call these quantities 4-vectors. They consist of an ordinary vector V',
together with an extra component —a “time-like” component we will designate as V0. (We
use superscripts for a reason that will become clear later.) The“space-like” components are
then V1, V2 V3. The generic form for a 4-vector is written V<, with o taking on the values
0 through 3. Symbolically,

Ve = (V' V) (22)
We have seen that (ct, @) is one 4-vector. Another, you may recall, is the 4-momentum,

p* = (E/c,p) (23)

where p is the ordinary momentum vector and E' is the total energy. Of course, we speak of
relativisitic momentum and energy:

p="ymv, E =ymc (24)
where m is a particle’s rest mass. Just as
(ct)? — 2° (25)
is an invariant quantity under Lorentz transformations, so too is
E? — (pc)* = m*c* (26)
A rather plain 4-vector is p* without the coefficient of m. This is the 4-velocity U“,
U =~(c,v) (27)

Note that in the rest frame of a particle, U® = ¢ (a constant) and the ordinary 3-velocity
components U = 0. To get to any other frame, just use (“boost with”) the Lorentz trans-
formation. (Be careful with the sign of v). We don’t have to worry that we boost along one
axis only, whereas the velocity has three components. If you wish, just rotate the axes, after
we’ve boosted. This sorts out all the 3-vector components the way you’d like, and leaves the
time (“0”) component untouched.

Humble in appearance, the 4-velocity is a most important 4-vector. Via the simple trick
of boosting, the 4-velocity may be used as the starting point for constructing many other
important physical 4-vectors. Consider, for example, a charge density py, which is at rest.
We may create a 4-vector which, in the rest frame, has only one component: pyc is the lonely
time component and the ordinary spatial vector components are all zero. It is just like U?,
only with a different normalisation constant. Now boost! The resulting 4-vector is denoted

J* = v(cpo,vpo) (28)

The time component gives the charge density in any frame, and the 3- vector components are
the corresponding standard current density J! This 4-current is the fundamental 4-vector
of Maxwell’s theory. As the source of the fields, this 4-vector source current is the basis for
Maxwell’s electrodynamics being a fully relativistic theory. J° is the source of the electric
field potential function ®, and J is the source of the magnetic field vector potential A.
Moreover, as we will shortly see,

A% = (P, A/c) (29)

is itself a 4-vector! From here, we can generate the electromagnetic fields themselves from
the potentials by constructing a tensor...well, we are getting a bit ahead of ourselves.
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2.2 More on 4-vectors

2.2.1 Transformation of gradients

We have seen how the Lorentz transformation express 2/ as a function of the x coordinates.
It is a simple linear transformation, and the question naturally arises of how the partial
derivatives, 0/0t, 0/0x transform, and whether a 4-vector can be constructed from these
components. This is a simple exercise. Using

ct = (ct' + Ba') (30)
v = (&' + fet) (31)
we find o oto oro 0 B
x
ov “ovor oo Ton T s (32)
o 9rd oo 0 10
o0 “ovor ovar or T ea (33)
In other words,
19 19 9
cov :7(E§+5£) (34)
) o 10
e —’Y(%‘l'ﬁza) (35)
and for completeness,
o 0
o ~ oy )
o 0
— = (37)

This is not the Lorentz transformation (5)—(8); it differs by the sign of v. By contrast,
coordinate differentials dz® transform, of course, just like z¢:

cdt’ = ~(edt — Bdx), (38)
dr' = ~y(dx — Bedt), (39)
dy' = dy, (40)
dz' = dz. (41)

This has a very important consequence:

O T (00 e e (24 1
dt%—kd:}ﬁ%—v {(dt ﬂc)(at+ﬁcax)+(dx Bcdt)(ax%—ﬁcat)}, (42)

or simplifying,

, 0 , 0 9 9 0 0 0 0
dt By +dx o = (1-75%) dtat + d:vax dt@t +dasa$ (43)
Adding y and z into the mixture changes nothing. Thus, a scalar product exists between dx®
and 0/0x“ that yields a Lorentz scalar, much as dx - V, the ordinary complete differential, is
a rotational scalar. It is the fact that only certain combinations of 4-vectors and 4-gradients
appear in the equations of physics that allows these equations to remain invariant in form
from one reference frame to another.

It is time to approach this topic, which is the mathematical foundation on which special
and general relativity is built, on a firmer and more systematic footing.

17



2.2.2 Transformation matrix

We begin with a simple but critical notational convention: repeated indices are summed over,
unless otherwise explicitly stated. This is known as the FEinstein summation convention,
invented to avoid tedious repeated summation »’s. For example:

0 ) ) ) )
dlE % = dta -+ dl’% + dya—y + dZ% (44)

I will often further shorten this to dx®d,. This brings us to another important notational
convention. I was careful to write d,, not 0% Superscripts will be reserved for vectors,
like dx® which transform like (5) through (8) from one frame to another (primed) frame
moving a relative velocity v along the z axis. Subscripts will be used to indicate vectors that
transfrom like the gradient components in equations (34)—(37). Superscipt vectors like dz®
are referred to as contravariant vectors; subscripted vectors as covariant. (The names will
acquire significance later.) The co- contra- difference is an important distinction in general
relativity, and we begin by respecting it here in special relativity.

Notice that we can write equations (38) and (39) as

[—cdt'] = y([—cdt] + Bdzx) (45)
dz' = ~(dz + f[—cdt]) (46)
so that the 4-vector (—cdt, dx, dy, dz) is covariant, like a gradient! We therefore have
dz® = (cdt,dz,dy, dz) (47)
dre = (—cdt,dz, dy, dz) (48)

It is easy to go between covariant and contravariant forms by flipping the sign of the time
component. We are motivated to formalise this by introducing a matrix 7,z defined as

-1 0 0 0

Nap = (49)

o O O
OO =
O = O
_— O O

Then dz, = n.sdz” “lowers the index.” We will write n°? to raise the index, though it is a
numerically identical matrix. Note that the invariant spacetime interval may be written

Adr? = Adt? — da® — dy? — d2? = _naﬁdxadxﬁ (50)

The time interval dr is just the “proper time,” the time shown ticking on the clock in the
rest frame moving with the object of interest (since in this frame all spatial differentials dz’
are zero). Though introduced as a bookkeeping device, 7,4 is an important quantity: it goes
from being a constant matrix in special relativity to a function of coordinates in general
relativity, mathematically embodying the departures of spacetime from simple Minkowski
form when matter is present.

The standard Lorentz transformation may now be written as a matrix equation, dz'® =
A%, dz?, where
B )

v =By 0 0 da®

o« 35 | =By ~v 00 dz!
Apdrm=1"09" 0 10 dz? (51

0 0 01 dx?



A%y is symmetric in a and 3. (A possible notational ambiguity is difficult to avoid here:

[ and v used as subscripts or superscripts are of course never velocity variables!) Direct
matrix multiplication gives:

A o = Ny (52)
(Do it, and notice that the n matrix must go in the middle...why?) Then, if V' is any

contravariant vector and W, any covariant vector, V*W,, must be an invariant (or “scalar”)

because
VW, = VW Pnge = A VI W g0 = VIW e = VIW, (53)

For covariant vectors, for example 9,, the transformation is 0, = A? 95, where AZ, is
the same as A” | but the sign of 3 reversed:

v By 00
ia | By v 00
M=10 0 10 (54)
0 0 01
Note that o s
AN =62, (55)

where d5 is the Kronecker delta function. This leads immediately once again to V'“W; =
VeW,.

Notice that equation (38) says something rather interesting in terms of 4-vectors. The
right side is just proportional to —dz*U,,, where U, is the (covariant) 4-vector corresponding
to ordinary velocity v. Consider now the case dt’ = 0, a surface in ¢, x,y, z, spacetime cor-
responding to simultaneity in the frame of an observer moving at velocity v. The equations
of constant time in this frame are given by the requirement that dz® and U, are orthogonal.

Ezercise. Show that the general Lorentz transformation matrix is:

v —Bz *'\/ﬁy -8
A®, — _’Yﬂm 1+ (7 - 1)[52/32 (A/ - 1)[3:1:/311/52 (7 - 1)[3162*/[52 (56)
7 =By (v =1)BuBy/B> 1+ (v=1)B;/6* (v —1)B,B:/B

=B (y=D1BuB:/B*  (v=1)B,B:/82 1+ (y-1)BZ/5°

Hint: Keep calm and use (10) and (11).

2.2.3 Tensors

There is more to relativistic life than vectors and scalars. There are objects called tensors,
with more that one indexed component. But possessing indices isn’t enough! All tensor
components must transform in the appropriate way under a Lorentz transformation. Thus,
a tensor 7% transforms according to the rule

T = A% NPT, (57)

while .
wp = NGA ST, (58)

and of course .
T = A% AT, (59)
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You get the idea. Contravariant superscript use A, covariant subscript use A.

Tensors are not hard to find. Remember equation (52)7 It works for /NXo‘ﬁ as well, since it
doesn’t depend on the sign of 8 (or its magnitude for that matter):

~aﬁ/'i€v77a6 = nﬂ'}’ (60)

S0 1ap is a tensor, with the same components in any frame! The same is true of 05, a mized

tensor (which is the reason for writing its indices as we have), that we must transform as

follows: ~ -
A A0, = ANy = 0. (61)

Here is another tensor, slightly less trivial:
W = yeu” (62)

where the U’s are 4-velocities. This obviously transforms as tensor, since each U obeys its
own vector transformation law. Consider next the tensor

T = po(uu’) (63)

where the () notation indicates an average of all the 4-velocity products u®u” taken over
a whole swarm of little particles, like a gas. (An average of 4-velocities is certainly itself a
4-velocity, and an average of all the little particle tensors is itself a tensor.) p, is a local rest
density, a scalar number. (Here, 7 is not an index.)

The component T% is just pc?, the energy density of the swarm, where p (without the
r) includes both a rest mass energy and a thermal contribution. (The latter comes from
averaging the v factors in the u® = ~c.) Moreover, if, as we shall assume, the particle
velocities are isotropic, then 7% vanishes if a # (3. Finally, when o = 3 # 0, then T% (no
sum!) is by definition the pressure P of the swarm. (Do you see why this works when the
u® are relativistic?) Hence, in the frame in which the swarm has no net bulk motion,

pc2 0 0 0

N 0 P O 0

Tﬁ:oopo (64)
0 0 0 P

This is, in fact, the most general form for the so-called energy-momentum stress tensor for
an isotropic fluid in the rest frame of the fluid.

To find 7% in any frame with 4-velocity U® we could adopt a brute force method and
apply the A matrix twice to the rest frame form, but what a waste of effort that would be!
If we can find any true tensor that reduces to our result in the rest frame, then that tensor
is the unique stress tensor. Proof: if a tensor is zero in any frame, then it is zero in all
frames, as a trivial consequence of the transformation law. Suppose the tensor I construct,
which is designed to match the correct rest frame value, may not be (you claim) correct in all
frames. Hand me your tensor, the one you think is the correct choice. Now, the two tensors
by definition match in the rest frame. I'll subtract one from the other to form the difference
between my tensor and your tensor. The difference is also a tensor, but it vanishes in the
rest frame by construction. Hence this “difference tensor” must vanish in all frames, so your
tensor and mine are identical after all! Corollary: if you can prove that the two tensors are
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the same in any one particular frame, then they are the same in all frames. This is a very
useful ploy.

The only two tensors we have at our disposal to construct 7% are n®® and U°U?, and
there is only one linear superposition that matches the rest frame value and does the trick:

T = Pp*f + (p+ P/A)UU? (65)

This is the general form of energy-momentum stress tensor appropriate to an ideal fluid.

2.2.4 Conservation of T°°

One of the most salient properties of T is that it is conserved, in the sense of

o1
7o =0 (66)

Since gradients of tensors transform as tensors, this must be true in all frames. What,
exactly, are we conserving?

First, the time-like O-component of this equation is

%{72 (p+PC—Z2)} +V. [72 <p+§) ’U] =0 (67)

which is the relativistic version of mass conservation,

% + V-(pv) = 0. (68)

Elevated in special relativity, it becomes a statement of energy conservation. So one of the
things we are conserving is energy. (And not just rest mass energy by the way, thermal
energy as well!) This is good.

The spatial part of the conservation equation reads

o[, P ) , P or
R S T E

You may recognise this as Euler’s equation of motion, a statement of momentum conserva-
tion, upgraded to special relativity. Conserving momentum is also good.

What if there are other external forces? The idea is that these are included by expressing
them in terms of the divergence of their own stress tensor. Then it is the total 7% including,
say, electromagnetic fields, that comes into play. What about the force of gravity? That, it
will turn out, is on an all-together different footing.

You start now to gain a sense of the difficulty in constructing a theory of gravity com-
patible with relativity. The density p is part of the stress tensor, and it is the entire stress
tensor in a relativistic theory that would have to be the source of the gravitational field,
just as the entire 4-current J¢ is the source of electromangetic fields. No fair just picking
the component you want. Relativistic theories work with scalars, vectors and tensors to
preserve their invariance properties from one frame to another. This insight is already an
achievement: we can, for example, expect pressure to play a role in generating gravitational
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fields. Would you have guessed that? Our relativistic gravity equation maybe ought to look
something like :

192G
2 Ot?
where G* is some sort of, I don’t know, conserved tensor guy for the...spacetime geome-
try and stuff? In Maxwell’s theory we had a 4-vector (A%) operated on by the so-called

“d’Alembertian operator” V2 — (1/¢)29?/0t?* on the left side of the equation and a source
(J*) on the right. So now we just need to find a G* tensor to go with 7"”. Right?

Actually, this really is a pretty good guess. It is more-or-less correct for weak fields, and
most of the time gravity is a weak field. But...well...patience. One step at a time.

ViGH —

— (70)
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Then there occurred to me the
‘glicklichste Gedanke meines Lebens,’
the happiest thought of my life, in the
following form. The gravitational field
has only a relative existence in a way

similar to the electric field gemerated

by magnetoelectric induction. Because !

for an observer falling freely from the
roof of a house there exists—at least
m  his  immediate surroundings—no

gravitational field.

— Albert Einstein

3 The effects of gravity

The central idea of general relativity is that presence of mass (more precisely the presence
of any stress-energy tensor component) causes departures from flat Minkowski spacetime
to appear, and that other matter (or radiation) responds to these distortions in some way.
There are then really two questions: (i) How does the affected matter/radiation move in
the presence of a distorted spacetime?; and (ii) How does the stress-energy tensor distort
the spacetime in the first place? The first question is purely computational, and fairly
straightforward to answer. It lays the groundwork for answering the much more difficult
second question, so let us begin here.

3.1 The Principle of Equivalence

We have discussed the notion that by going into a frame of reference that is in free-fall, the
effects of gravity disappear. In this era in which space travel is common, we are all familiar
with astronauts in free-fall orbits, and the sense of weightlessness that is produced. This
manifestation of the Equivalence Principle is so palpable that hearing total mishmashes
like “In orbit there is no gravity” from an over-eager science correspondent is a common
experience. (Our own BBC correspondent in Oxford Astrophysics, Prof. Christopher Lintott,
would certainly never say such a thing.)

The idea behind the equivalence principle is that the m in ' = ma and the m in the
force of gravity F, = mg are the same m and thus the acceleration caused by gravity, g, is
invariant for any mass. We could imagine, for example, that F' = m;a and F, = m,g, where
mg is some kind of “massy” property that might vary from one type of body to another
with the same m;. In this case, the acceleration a is m,g/my, i.e., it varies with the ratio of
inertial to gravitational mass from one body to another. How well can we actually measure
this ratio, or what is more to the point, how well do we know that it is truly a universal
constant for all types of matter?

The answer is very, very well indeed. We don’t of course do anything as crude as directly
measure the rate at which objects fall to the ground any more, a la Galileo and the tower
of Pisa. As with all classic precision gravity experiments (including those of Galileo!) we

'With apologies to any readers who may actually have fallen off the roof of a house—safe space statement.
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Figure 1: Schematic diagram of the E6tvos experiment. A barbell shape, the red object
above, is hung from a pendulum on the Earth’s surface (big circle) with two masses of two
different types of material, say copper and lead. Each mass is affected by gravity pulling
it to the centre of the earth (g) with a force proportional to a gravitational mass mg,
and a centrifugal force porportional to the inertial mass my, due to the earth’s rotation
(c). Forces are shown as blue arrows. Any difference between the inertial to gravitational
mass ratio (in copper and lead here) will produce an unbalanced torque from the g and
c forces about the axis of the suspending fibre of the barbell.

use a pendulum. The first direct measurement of the gravitational to inertial mass actually
predates relativity, the so-called E6tvos experiment (after Baron Lorand E6tvos, 1848-1919).

The idea is shown in schematic form in figure [1]. Hang a pendulum from a string, but
instead of hanging a big mass, hang a rod, and put two masses of two different types of
material at either end. There is a force of gravity toward the center of the earth (g in the
figure), and a centrifugal force (¢) due to the earth’s rotation. The net force is the vector
sum of these two, and if the components of the acceleration perpendicular to the string
of each mass do not precisely balance, and they won't if m,/m; is not the same for both
masses, there will be a net torque twisting the masses about the string (a quartz fibre in the
actual experiment). The fact that no such twist is measured is an indication that the ratio
my/my does not, in fact, vary. In practise, to achieve high accuracy, the pendulum rotates
with a tightly controlled period, so that the masses would be sometimes hindered by any
putative torque, sometimes pushed forward by this torque. This would imprint a frequency
dependence onto the motion, and by using fourier signal processing, the resulting signal at
a particular frequency can be tightly constrained. Experiment shows that the ratio between
any difference in the twisting accelerations on either mass and the average acceleration must
be less than a few parts in 10'% (Su et al. 1994, Phys Rev D, 50, 3614). With direct laser
ranging experiments to track the Moon’s orbit, it is possible, in effect, to use the Moon and
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Earth as the masses on the pendulum as the ey rotate around the Sun! This gives an accuracy
an order of magnitude better, a part in 10! (Williams et al. 2012, Class. Quantum Grav.,
29, 184004), an accuracy comparable to measurmg the distance to the Sun to within the size
of your thumbnail.

There are two senses in which the Equivalence Principle may be used, a strong sense and
weak sense. The weak sense is that it is not possible to detect the effects of gravity locally in
a freely falling coordinate system, that all matter behaves identically in a gravitational field
independent of its composition. Experiments can test this form of the Principle directly.
The strong, much more powerful sense, is that all physical laws, gravitational or not, behave
in a freely falling coordinate system just as they do in Minkowski spacetime. In this sense,
the Principle is a postulate which appears to be true.

If going into a freely falling frame eliminates gravity locally, then going from an inertial
frame to an accelerating frame reverses the process and mimics the effect of gravity—again,
locally. After all, if in an inertial frame

d*x
and we transform to the accelerating frame z’ by x = 2’ + gt?/2, where g is a constant, then
d*x’
dt?

which looks an awful lot like motion in a gravitational field.

One immediate consequence of this realisation is of profound importance: gravity affects
light. In particular, if we are in an elevator of height h in a gravitational field of local
strength g, locally the physics is exactly the same as if we were accelerating upwards at g.
But the effect of this on light is then easily analysed: a photon released upwards reaches a
detector at height h in a time h/c, at which point the detector is moving at a velocity gh/c
relative to the bottom of the elevator (at the time of release). The photon is measured to
be redshifted by an amount gh/c?, or ®/c* with ® being the gravitational potential per unit
mass at h. This is the classical gravitational redshift, the simplest nontrivial prediction of
general relativity. The gravitational redshift has been measured accurately using changes in
gamma ray energies (RV Pound & JL Snider 1965, Phys. Rev., 140 B, 788).

The gravitational redshift is the critical link between Newtonian theory and general
relativity. It is not, after all, a distortion of space that gives rise to Newtonian gravity at
the level we are familiar with, it is a distortion of the flow of time.

3.2 The geodesic equation

We denote by &% our freely falling inertial coordinate frame in which the effects of gravity
are locally absent. In this frame, the equation of motion for a particle is

dQ fa

dr?

=0 (73)

with

Adr? = —n,pde®de’ (74)
being the invariant time interval. (If we are doing light, then dr = 0, but ultimately it
doesn’t really matter. Either take a limit from finite d7, or use any other parameter you
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fancy, like your wristwatch. In the end, we won’t use 7 or your watch. As for dé?®, it is just
the freely-falling guy’s ruler and his wristwatch.) Next, write this equation in any other set
of coordinates you like, and call them z#. Our inertial coordinates £* will be some function

or other of the z* so
B dzee _d 0&* dxt
dr2 dr \Oz+ dr

where we have used the chain rule to express d¢®/dr in terms of dz#/dr. Carrying out the
differentiation,

(75)

& dPat n 0%¢x  dat dav
Ozt dr? OxkOzv dr dr
where now the chain rule has been used on 9£*/dz#. This may not look very promising.

But if we multiply this equation by dz*/9¢%, and remember to sum over o now, then the
chain rule in the form
oz 0

g€ gan 00

rescues us. (We are using the chain rule repeatedly and will certainly continue to do so,
again and again. Make sure you understand this, and that you understand what variables
are being held constant when the partial derivatives are taken. Deciding what is constant is
just as important as doing the differentiation!) Our equation becomes

(76)

(77)

d?z* \ dzt dx”
dr? wodr dr 0 (78)
where o o
p 977 0% (79)

wo a_fa(?xﬂax”

is known as the affine connection, and is a quantity of central importance in the study of
Riemannian geometry and relativity theory in particular. You should be able to prove, using
the chain rule of partial derivatives, an identity for the second derivatives of £ that we will
use shortly: )
(03
oxrdxy  dxr M

(How does this work out when used in equation [76]7)

No need to worry, despite the funny notation. (Early relativity texts liked to use
gothic font Q5’\ for the affine connection, which must have imbued it with a nice steam-
punk terror. ) There is nothing especially mysterious about the affine connection. You use
it all the time, probably without realising it. For example, in cylindrical (r,0) coordinates,
when you use the combinations #—r02 or r6+276 for your radial and tangential accelerations,
you are using the affine connection and the geodesic equation. In the first case, Iy, = —r;
in the second, '’y = 1/r. (What happened to the 27)

Ezercise. Prove the last statements using £* = rcos0,&Y = rsinf.

Ezercise. On the surface of a unit-radius sphere, choose any point as your North Pole, work in
colatitude 6 and azimuth ¢ coordinates, and show that locally near the North Pole £ = 6 cos ¢,
&Y = fsin ¢. It is in this sense that the £ coordinates are tied to a local region of the space near
the North Pole point. In our freely-falling coordinate system, the local coordinates are tied to a
point in spacetime.
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3.3 The metric tensor
In our locally inertial coordinates, the invariant spacetime interval is

Adr? = —n,pdE*dE”, (81)
so that in any other coordinates, d¢® = (9&/dx*)dz* and

a 5B

where
B 0E> O¢ p
I = 0 G

(83)

is known as the metric tensor. The metric tensor embodies the information of how coordinate
differentials combine to form the invariant interval of our spacetime, and once we know g,,,,

we know everything, including (as we shall see) the affine connections F;\W. The object of
general relativity theory is to compute g,, for a given distribution of mass (more precisely,

a given stress energy tensor), and a key goal of this course is to find the field equations that
enable us to do so.

3.4 The relationship between the metric tensor and affine connec-
tion

Because of their reliance of the local freely falling inertial coordinates {*, the g,, and F;\W
quantities are awkward to use in their present formulation. Fortunately, there is a direct
relationship between Ff;l, and the first derivatives of g, that will allow us to become free of

local bondage, permitting us to dispense with the £* altogether. Though their ezistence is
crucial to formulate the mathematical structure, the practical need of the £’s to carry out
calculations is minimal.

Differentiate equation (83):

09 2> 9gP g™ 9*¢Ph
9rr 1B N Hav + 0 5 D o (84)

Now use (80) for the second derivatives of &:

Ogu _  0€°0E°, | 0gnog

= s A 087 A 85
Dx> 1P pe ggv M T TG Gae M (85)
All remaining ¢ derivatives may be absorbed as part of the metric tensor, leading to
09,
8;)\ = gPVrgx,u + guprl))\u (86)

It remains only to unweave the I'’s from the cloth of indices. This is done by first adding
g, /0x* to the above, then subtracting it with indices p and v reversed.

ag;w 89)\1/ ag)\u

oo T o g = I T 9+ 9Ty Pl — 0P — Pl (8T)
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Remembering that I' is symmetric in its bottom indices, only the g,, terms survive, leaving

aguu 89)\y ag)xu
— = 2g,,I"”
ox? * ox+  Oxv Iev™ x (88)

Our last step is to mulitply by the inverse matrix ¢g*?, defined by
9" gov = 0y, (89)

leaving us with the pretty result

o _ 97 (aguu + 89)\11 . agku) . (90>

KA oz ok oxV

Notice that there is no mention of the ¢’s. The affine connection is completely specified by
g"” and the derivatives of g, in whatever coordinates you like. In practise, the inverse matrix
is not difficult to find, as we will usually work with metric tensors whose off diagonal terms
vanish. (Gain confidence once again by practising the geodesic equation with cylindrical
coordinates ¢, = 1, ggo = r* and using [90.]) Note as well that with some very simple index
relabeling, equation (88) leads directly to the mathematical identity

, dztda® (8gw, 18g>\u) da* da*

= S _ 1
o dr dr dr dr (o1)

oxr 2 Oxv

We'll use this in a moment.

vo

FExercise. Prove that ¢¥? is given explicitly by

AV 9O
Vo op 01" O

ST deog

Ezercise. Prove the identities of page 6 of the notes for a diagonal metric g,

1 'Jaa .
=T = %un %C;b (a = b permitted, NO SUM)
1 a(]bb
Iy, = b, NO SUM
w 29(1(1 dl (a # ’ )

b. =0, (a,b,c distinct)

be

3.5 Variational calculation of the geodesic equation

The physical significance of the relationship between the metric tensor and affine connection
may be understood by a variational calculation. Off all possible paths in our spacetime
from some point A to another B, which leaves the proper time an extremum (in this case, a
maximum)? The motivation for this formulation is obvious: “The shortest distance between
two points is a straight line,” and the equations for this line-geodesic are d*¢;/ds* = 0 in
Cartesian coordinates. This is an elementary property of Euclidian space. We may ask what
is the shortest distance between two points in a more general curved space as well, and
this question naturally lends itself to a variational approach. What is less obvious is that
this mathematical machinery, which was fashioned for generalising the spacelike straight line
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equation d*¢?/ds* = 0 to more general non-Euclidian geometries, also works for generalising

a dynamical equation of the form d?¢'/dr? = 0, where now we are using invariant timelike
intervals, to geodesics embedded in distorted Minkowski geometries.

We describe our path by some external parameter p, which could be anything really,
perhaps the time on your very own wristwatch in your rest frame. (I don’t want to start
with 7, because dr = 0 for light.) Then the proper time from A to B is

Bar 1 (P dat dzv\'?
Tup= | —-d :—/ (— ——) d 92
AB/AdppcA 9o p (92)

Next, vary z* to 2* + dz* (we are regarding z* as a function of p remember), with dz*
vanishing at the end points A and B. We find

n —1/2 n n
5TAB——/ ( dazt dz” ) (_@gwéx/\dx dz” . dozt dx” )dp (93)

I dp dp ox? dp dp I = an dp dp

(Do you understand the final term in the integral?)

Since the leading inverse square root in the integrand is just dp/dr, §Tap simplifies to

dg dz" dx” doxH dx¥
Tap = — Y 52 — 20— —— 4
OTap = / ( 8$>‘ dr dr - ) ar, (54)

and p has vanished from sight. We now integrate the second term by parts, noting that the
contribution from the endpoints has been specified to vanish. Remembering that

dgr,  dx? gy,

dr — dr 0z°’ (95)
we find 5 ,
1 10g,, dz* dx¥  Ogy, dx° dx¥ d“x
6T upn = — a ,—— | 6z d 96
A8 c/A ( 2 9z dr dT+a$U dr dr T de) A (96)
or B 2
1 109,  Ogy,\ dat dz” Az
6Tup = — ———E y st d 97
AB c/A {( 28:6A+8:c#> dr dr 9 dTZ} var (97)
Finally, using equation (91), we obtain
1 [B/de"da” Az
6Tup = - — =TV 4+ —— ) gn|d2xrd 98
AB C/A |:<d7’ dr W+d72>g/\] ©ar (98)

Thus, if the geodesic equation (78) is satisfied, 6T 4p = 0 is satisfied, and the proper time is
an extremum. The name “geodesic” is used in geometry to describe the path of minimum
distance between two points in a manifold, and it is therefore gratifying to see that there is
a correspondence between a local “straight line” with zero curvature, and the local elimina-
tion of a gravitational field with the resulting zero acceleration, along the lines if the first
paragraph of this section. In the first case, the proper choice of local coordinates results in
the second derivative with respect to an invariant spatial interval vanishing; in the second
case, the proper choice of coordinates means that the second derivative with respect to an
invariant time interval vanishes, but the essential mathematics is the same.
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There is often a very practical side to working with the variational method: it can be
much easier to obtain the equations of motion for a given g, this way than to construct them
directly. For example, the method quickly produces all the non-vanishing affine connection
components, just read them off as the coefficients of (dx*/d7)(dz"/dT). You don’t have to
find them by trial and error. These quantities are then available for any variety of purposes
(and they are needed for many).

Here is another trick. You should have little difficulty showing that if we apply the
Euler-Lagrange variational method directly to the following functional L,

_ NVERY
L= gua"t”,

where the dot is d/dr, the resulting Euler-Lagrange equation

a(ory o
dr \ 0z° oxr

is just the standard geodesic equation of motion! This is often the easiest way to proceed.

Indeed, in classical mechanics, we all know that the equations of motion may be derived
from a Lagrangian variational principle of least action, an integral involving the difference
between kinetic and potential energies. This doesn’t seem geometrical at all. What is the
connection with what we’ve just done? How do we make contact with Newtonian mechanics
from the geodesic equation?

3.6 The Newtonian limit

We consider the case of a slowly moving mass (“slow” of course means relative to ¢, the
speed of light) in a weak gravitational field (GM/rc* < 1). Since cdt >> |dz|, the geodesic

equation greatly simplfies:
d?xH cdt\?
772 + T, (%) =0. (99)

row o dgoy O
Yov Jov goo
by = =g - 100
0 =59 (8(Cdt) * J(cdt) 82:”) (100)
In the Newtonian limit, the largest of the g derivatives is the spatial gradient, hence
1 ., 9900
Iy~ —=g""— 101
00 29 Oz (101)
Since the gravitational field is weak, g, differs very little from the Minkoswki value:
Gap = Tap + ha,B’ ha,@ < 17 (102)
and the pu = 0 geodesic equation is
d*t  10hg [dt\?
42272} =0 103
dr? * 2 Ot \dr (103)

Clearly, the second term is zero for a static field, and will prove to be tiny when the gravita-
tional field changes with time under nonrelativistic conditions—we are, after all, calculating
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the difference between proper time and observer time! Dropping this term we find that ¢
and 7 are linearly related, so that the spatial components of the geodesic equation become

dPx A

[saac Newton would say:
Tz go 0 (105)
dt? o
with ® being the classical gravitational potential. The two views are consistent if
2P 2P
hoo = —2 o= (1 + ?) (106)

In other words, the gravitational potential force emerges as a sort of centripital term, similar
in structure to the centripital force in the standard radial equation of motion. This is a
remarkable result. It is by no means obvious that a purely geometrical geodesic equation
can serve the role of a Newtonian gravitational potential gradient force equation, but it
can. Moreover, it teaches us that the Newtonian limit of general relativity is all in the time
component, hgg. It is now possible to measure directly the differences in the rate at which
clocks run at heights separated by 100 m or so on the Earth’s surface.

The quantity hgo is a dimensionless number of order v?/c?, where v is a velocity typical
of the system, an orbital speed or just the square root of a potential. Note that hgyy is
determined by the dynamical equations only up to an additive constant. Here we have
chosen the constant to make the geometry Minkowskian at large distances from any matter.
At the surface of a spherical object of mass M and radius R,

M\ (R
hoo ~ 2 x 1076 (V@) (79) (107)

where My, is the mass of the sun (about 2 x 103 kg) and R, is the radius of the sun (about

7 x 108 m). As an exercise, you may wish to look up masses of planets and other types
of stars and evaluate hg. What is its value at the surface of a white dwarf (mass of the
sun, radius of the earth)? What about a neutron star (mass of the sun, radius of Oxford)?
How many decimal points are needed to see the time difference in two digital clocks at a one
meter separation in height on the earth?

We are now able to relate the geodesic equation to the principle of least action in classical
mechanics. In the Newtonian limit, our variational integral becomes

/ [(1 +28/P)di* — d|a|?] (108)
(Remember our compact notation: dt? = (dt)?, d|x|?> = (d|z|)?.) Expanding the square root,

P v?
/c(1+c—2—@+...) dt (109)

where v? = (d|z|/dt)?>. Thus, minimising the Lagrangian (kinetic energy minus potential
energy) is the same as maximising the proper time intervall What an unexpected and
beautiful connection.
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What we have calculated in this section is nothing more than our old friend the gravi-
tational redshift, with which we began our formal study of general relativity. The invariant
spacetime interval d7, the proper time, is given by

cdr? = —g,,dztdz” (110)
For an observer at rest at location x, the time interval registered on a clock will be

dr(x) = [—goo(x)]"*dt (111)
where dt is the time interval registered at infinity, where —ggg — 1. (Compare: the “proper
length” on the unit sphere for an interval at constant 6 is sin 6d¢, where d¢ is the length
registered by an equatorial observer.) If the interval between two wave crest crossings is

found to be dr(y) at location y, it will be dr(x) when the light reaches x and it will be dt
at infinity. In general,

dr(y)  [ow()]"?
dr(x) B {goo(x)] ’ (112)
and in particular
) V) gy (13)

where v = 1/d7(R) is, for example, an atomic transition frequency measured at rest at the
surface R of a body, and v(o0) the corresponding frequency measured a long distance away.
Interestingly, the value of gyy that we have derived in the Newtonian limit is, in fact, the
exact relativisitic value of gy around a point mass M! (A black hole.) The precise redshift

formula is /2
2GM
Voo = (1 - he ) v (114)

The redshift as measured by wavelength becomes infinite from light emerging from radius
R = 2GM/c?*, the so-called Schwarzschild radius (about 3 km for a point with the mass of
the sun!).

Historically, general relativity theory was supported in its infancy by the reported detec-
tion of a gravitational redshift in a spectral line observed from the surface of the white dwarf
star Sirius B in 1925 by W.S. Adams. It “killed two birds with one stone,” as the leading
astronomer A.S. Eddington remarked. For it not only proved the existence of white dwarf
stars (at the time controversial since the mechanism of pressure support was unknown), the
measurement also confirmed an early and important prediction of general relativity theory:
the redshift of light due to gravity.

Alas, the modern consensus is that the actual measurements were flawed! Adams knew
what he was looking for and found it. Though he was premature, the activity this apparently
positive observation imparted to the study of white dwarfs and relativity theory turned out
to be very fruitful indeed. But we were lucky. Incorrect but well regarded single-investigator
observations have in the past caused much confusion and needless wrangling, as well as years
of wasted effort.

The first definitive test for gravitational redshift came much later, and it was terrestrial:
the 1959 Pound and Rebka experiment performed at Harvard University’s Jefferson Tower
measured the frequency shift of a 14.4 keV gamma ray falling (if that is the word for a gamma
ray) 22.6 m. Pound & Rebka were able to measure the shift in energy—just a few parts in

10'*—by what was at the time the new and novel technique of Mdssbauer spectroscopy.
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Ezercise. A novel application of the gravitational redshift is provided by Bohr’s refutation of
an argument put forth by Einstein purportedly showing that an experiment could in principle be
designed to bypass the quantum uncertainty relation AE At > h. The idea is to hang a box
containing a photon by a spring suspended in a gravitational field g. At some precise time a
shutter is opened and the photon leaves. You weigh the box before and after the photon. There is
in principle no interference between the arbitrarily accurate change in box weight and the arbitrarily
accurate time at which the shutter is opened. Or is there?

1.) Show that box apparatus satisfies an equation of the form

Mi=—-Mg— kx
where M is the mass of the apparatus, = is the displacement, and k is the spring constant. Before
release, the box is in equilibrium at x = —gM/k.

2.) Show that the momentum of the box apparatus after a short time interval At from when the
photon escapes is

op = _gom sin(wAt) ~= —gdmAt
w

where dm is the (uncertain!) photon mass and w? = k/M. With dp ~ gdmAt, the uncertainty
principle then dictates an uncertain location of the box position dx given by gdm dxAt ~ h. But
this is location uncertainty, not time uncertainty.

3.) Now the gravitational redshift comes in! Show that if there is an uncertainty in position dz,
there is an uncertainty in the time of release: §t ~ (gdx/c?)At.

4.) Finally use this in part (2) to establish 6E 6t ~ h with 6E = dmc?.

Why does general relativity come into nonrelativistic quantum mechanics in such a fundamental
way? Because the gravitational redshift is relativity theory’s point-of-contact with classical New-
tonian mechanics, and Newtonian mechanics when blended with the uncertainty principle is the
start of nonrelativistic quantum mechanics.

A final thought

We Newtonian beings, with our natural mode of thinking in terms of forces and responses,
would naturally say “How interesting, the force of gravity distorts the flow time.” This is
the way I have been describing the gravitational redshift throught this chapter. But Einstein
has given us a more profound insight. It is not that gravity distorts the flow of time. An
Einsteinian being, brought up from the cradle to be comfortable with a spacetime point-of-
view, would, upon hearing this comment, cock their head and say: “What are you talking
about? Newtonian gravity ¢s the distortion of the flow of time. It is a simple geometric
distortion that is brought about by the presence of matter.” This is a better way to think
of it. The nearby effect of weak gravity is indeed a distortion in the flow of time; the distant
effect of weak gravity is gravitational radiation, and this, we shall see, is a distortion of space.
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4 Tensor Analysis

Further, the dignity of the science
seems to require that every possible
means be explored itself for the solution
of a problem so elegant and so cele-
brated.

— Carl Friedrich Gauss

A mathematical equation is valid in the presence of general gravitational fields when
i.) It is a valid equation in the absence of gravity and respects Lorentz invariance.

ii.) It preserves its form, not just under Lorentz transformations, but under any coordinate
transformation, x — x’.

What does “preserves its form” mean? It means that the equation must be written in terms
of quantities that transform as scalars, vectors, and higher ranked tensors under general
coordinate transformations. From (ii), we see that if we can find one coordinate system in
which our equation holds, it will hold in any set of coordinates. But by (i), the equation
does hold in locally freely falling coordinates, in which the effect of gravity is locally absent.
The effect of gravity is strictly embodied in the two key quantities that emerge from the
calculus of coordinate transformations: the metric tensor g,, and its first derivatives in Ff;l,.

This approach is known as the Principle of General Covariance, and it is a very powerful
tool indeed.

4.1 Transformation laws

The simplest vector one can write down is the ordinary coordinate differential dx*. If 2/* =
a'"(z), there is no doubt how the dz'* are related to the dx*. It is called the chain rule, and
it is by now very familiar:

ox't
oxv
Be careful to distinguish between the coordinates x*, which can be pretty much anything,

and their differentials dxz*, which are true vectors. Indeed, any set of quantities V* that
transforms in this way is known as a contravariant vector:

da'™ = dz” (115)

oz'*
s — v
V=SV (116)

The contravariant 4-velocity, which is a 4-vector, is simply V# = dx*/dr, a generalisation of
the special relativistic d€®/dr. A covariant vector, by contrast, transforms as

v ox"

I axlu v

(117)

“CO LOW, PRIME BELOW.” (Sorry. Maybe you can do better.) These definitions of

contravariant and covariant vectors are consistent with those we first introduced in our
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discussions of the Lorentz matrices Aj and /~\g in Chapter 2, but now generalised from
specific linear transformations to arbitrary transformations.

The simplest covariant vector is the gradient 9/0x* of a scalar ®. Once again, the chain
rule tells us how to transform from one set of coordinates to another—we’ve no choice:

0P ox” 0P

ox'H - ox'* Oxv

(118)

The generalisation to tensor transformation laws is immediate. A contravariant tensor TH”
transforms as

ox'" oz
T = —— Tr° 119
oxP 0x° (119)
a covariant tensor 7, uv as
oxP Ox°
/ _
2 ax,“ 31:”’ po (120)
and a mixed tensor T* as
a I a o
= 22 o (121)

v Qxp Oz C
The generalisation to mixed tensors of arbitrary rank should be self-evident.
By this definition the metric tensor g, really is a covariant tensor, just as its notation
would lead you to believe, because
, o> 0¢P B 0E* OEP Oxr OxP oz OxP
Juwr =108 5 g = 10 Gux 90 9z v — I G G

(122)

and the same for the contravariant g"”. But the gradient of a vector is not, in general, a
tensor or a vector:

ov»r 9 <(99[:’A V”) O G OVY 9?2 Oxf

— = v 12
ox'H ox'™ \ Ox” ox? Oz JxP  OxPOx¥ Ox'™ v (123)

The first term is just what we would have wanted if we were searching for a tensor trans-
formation law. But oh those pesky second order derivatives—the final term spoils it all.
This of course vanishes when the coordinate transformation is linear (as when we found that
vector derivatives are perfectly good tensors under the Lorentz transformations), but not in
general. We will show in the next section that while the gradient of a vector is in general
not a tensor, there is an elegant solution around this problem.

Tensors can be created and manipulated in many ways. For example, direct products of
tensors are tensors:

Wh = THS,,. (124)

A linear combination of tensors of the same rank multiplied by scalars is obviously a tensor
of unchanged rank. A tensor can lower its index by multiplying by g,, or raise it with g":

0x® Ox dx™ Ox'P 0x? Ox'P
o — I ilvp _ KT or
B = G0 = dz'm Oz’ Ozt Ox™ gaxT™" = oz’ O™ JorT’ (125)

which indeed does transform as a tensor of mixed second rank, 7/7. To clarify: multiplying
T by any covariant tensor S,, generates a mixed tensor M}, but we adopt the very useful
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convention of keeping the name 77 when multiplying by S, = g,,, and thinking of the index
as “being lowered.” (And of course index-raising for multiplication by g*.)
Mixed tensors can “contract” to scalars. Start with 7. Then consider the transforma-
tion of 7%
o oz’ OxP
Qv Ox'm
Le, T" is a scalar T'. Exactly the same type of calculation shows that T/ is a vector T",
and so on. Remember to contract “up—down:” T, =T, not T"* =T.

T =80T =T, (126)

The generalisation of the familiar scalar dot product between vectors A* and B* is
A'B,, = g, A*BY. We are often interested in just the spatial part of 4-vectors, the 3-vector

A?. Then, in a non-Euclidian 3-space, the local angle between two vectors may be written
as the ratio A o
AZBZ' gijAsz

A = 5 = 12
cos AG (AJAJ' BkBk)1/2 (gklAkAl gmanBn)l/Q ( 7)

the analogue of A - B/(|A||B|). If we are given two parameterised curves, perhaps two

orbits z'(p) and y*(p), and wish to know the angle between them at some particular point,
this angle becomes

(@925 grge)'? (gadkd! gragmym)'/?

cos A = *Yi it Y
where the dot notation denotes d/dp. Do you see why this is so?

4.2 The covariant derivative

Recall the geodesic equation
d?z> ., dxtdz”
dr? "dr dr

The left hand side has one free index component, and the right hand side surely is a vector:
the trivial zero vector. Since this equation is valid in any coordinates, the left side needs
to transform as a vector. What is interesting is that neither of the two terms by itself is a
vector, yet somehow their sum transforms as a vector.

= 0. (128)

Rewrite the geodesic equation as follows. Denote dz*/dr, a true vector, as V*. Then

ovA
oxH

v { + rgyvyl =0 (129)

Ah ha! Since the left side must be a vector, the stuff in square brackets must be a tensor: it
is contracted with a vector V# to produce a vector—namely zero. The square brackets must
contain a mixed tensor of rank two. Now, Fﬁy vanishes in locally free falling coordinates,
in which we know that simple partial derivatives of vectors are indeed tensors. So this
prescription tells us how to upgrade the notion of a partial derivative to the status of a
tensor: to make a tensor out of a plain old partial derivative, form the quantity

ovA

Ay — A
S YA (130)
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the so called covariant derivative. Following convention, we use a semicolon to denote co-
variant differentiation. (Some authors get tired of writing out ordinary partial derivatives
and so use a comma for this (e.g V,Vu)’ but it is more clear to use full partial derivative

notation, and we shall abide by this in these notes, if not always in lecture.) The covariant
derivative is a true tensor, taking on a plain partial derivative form only in local freely falling
coordinates. We therefore have our partial derivative generalisation to tensor form!

You know, this is really too important a result not to check in detail. Perhaps you
think there is something special about the geodesic equation, or something special about
our V. In addition to this concern, we need to understand how to construct the covariant
derivative of covariant vectors, and of more general tensors. (Talk about confusing. Notice
the use of the word “covariant” twice in that last statement in two very different senses.
Apologies for this awkward, but completely standard, mathematical nomenclature.) If you
are already convinced that the covariant derivative really is a tensor, just skip down to right
after equation (137). You won’t learn anything more than you already know in the next long
paragraph, and there is a lot of calculation.

The first thing we need to do is to establish the transformation law for F;\W. This is just
repeated application of the chain rule:

A oz 9% 920z 9 [ 0x” OE” (131)
BT Qg 9z Qxp OE« O \ Oz OxC
Carrying through the derivative,
o 020z (Ox7 dxT O™ 0%z O™ (132)
m 9re 9o \ Oz O 0xTOxe  Ox'rdx! OxC

Cleaning up, and recognising an affine connection when we see one, helps to rid us of these
meddlesome &’s:
n 02 0xm 92 02 OPaf

N o 133
e Qxe Oz Ox™ 77 OQxP Jx'tOxv (133)
This may also be written
- oz O™ Ox° ) OxP Ox° %™ (134)
a Oxr Ox'™ Ox'v ox' 0x'™ Qx°OxP
Do you see why? (Hint: Either integrate d/0x'* by parts or differentiate the identity
oz dxP )
oxe Oxv V'
Hence oz 927 0 ozP 0x® 0%z '\ 0x'
T o P O T 'V
Ay = (S 2 e T v 135
w <633P dx'r ox™v 77 Q™ Qa'm Qxrdx® ) Oxn (135)
and spotting some tricky sums over 0z’ that turn into Kronecker delta functions,
oz 9x7 0z 9%
T V" = —— V7 — Ve 136
i Oxr Ox'm ™7 ox'* QxPOx° (136)

Finally, adding this to (123), the unwanted terms cancel just as they should. We thus obtain

oV oz dzP (OVV
e ( I,V ) , (137)

F/)\ V/l/ —
thw oz Oz’
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as desired. This combination really does transform as a tensor ought to.

It is now a one-step process to deduce how covariant derivatives work for covariant vectors.

Consider R

ov y
WV, = oo + LoV (138)
which is a perfectly good covariant vector. Integrating by parts the first term on the right,
and then switching dummy indices A and v in the final term, this expression is identical to

8(VAV,\) N 5
e -V o s YN (139)
Since the first term is the covariant gradient of a scalar (zero actually, because VAV, = —c?

in local inertial coordinates and it’s a scalar, so its always ¢?), and the entire expression must
be a good covariant vector, the term in square brackets must be a purely covariant tensor
of rank two. We have very quickly found our generalisation for the covariant derivative of a
covariant vector: oV,

Ot

That this really is a vector can also be directly verified via a calculation exactly similar to
our previous one for the covariant derivative of a contravariant vector.

Vi = = — T2V, (140)

Covariant derivatives of tensors are now simple to deduce. The tensor 7% must formally
transform like a contravariant wvector if we “freeze” one of its indices at some particular
component and allow the other to take on all component values. Since the formula must be
symmetric in the two indices,

8T)\/<

T‘;if — a + 1-\)\ Tvk + FH T}\l/ (141)
and then it should also follow
0T, , .
ks = W - ,\#Tm - F,WTAV (142)
and of course o7
T
A v v A
TH 7 Ot V,LLTH F,unTI/ (143)

The generalisation to tensors of arbitrary rank should now be self-evident. To generate the
affine connection terms, freeze all indices in your tensor, then unfreeze them one-by-one,
treating each unfrozen index as either a covariant or contravariant vector, depending upon
whether it is down or up. Practise this until it is second-nature.

We now can give a precise rule for how to take an equation that is valid in special
relativity, and upgrade it to the general relativistic theory of gravity. Work exclusively with
4-vectors and 4-tensors. Replace 1ag with g,.,. Take ordinary derivatives and turn them into
covariant derivatives. Voila: your equation is set for the presence of gravitational fields.

It will not have escaped your attention, I am sure, that applying (142) to g,, produces

G
Guvh = 6_::)\ - ngFZ)\ - gupl—‘ﬁ,\ =0 (144)

where equation (86) has been used for the last equality. The covariant derivatives of g,
vanish. This is exactly what we would have predicted, since the ordinary derivatives of 7,3
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vanish in special relativity, and thus the covariant derivative of g,, should vanish in the
presence of gravitational fields. It’s just the general relativistic upgrade of 0n,5/0xY = 0.

Here are two important technical points that are easily shown. (You should do so explic-
itly.)
i.) The covariant derivative obeys the Leibniz rule for products. For example:

(T“VU)\H);p = Z'L;;VU)\H + TMVU)\H;pa
ave v,
oo Vg

ii.) The operation of contracting two tensor indices commutes with covariant differentiation.
It does not matter which you do first. Check it out in the second example above.

(VNVH);V = VM(VM);V + VM(V#)W =V

(I's cancel!)

4.3 The affine connection and basis vectors

The reader may be wondering how this all relates to our notions of, say, spherical or polar
geometry and their associated sets of unit vectors and coordinates. The answer is: very
simply. Our discussion will be straightforward and intuitive, rather than rigorous.

A vector V' may be expanded in a set of basis vectors,
V =Vt (145)

where we sum over the repeated a, but a here on a bold-faced vector refers to a particular
vector in the basis set. The VV* are the usual vector contravariant components: old friends,
just numbers. Note that the sum is not a scalar formed from a contraction! We’ve used
roman letters here to help avoid that pitfall.

The covariant components are associated with what mathematicians are pleased to call
a dual basis:
V =Ve’ (146)

Same V' mind you, just different ways of representing its components. If the e’s seem a
little abstract, don’t worry, just take them at a formal level for the moment. You've seen
something very like them before in elementary treatments of vectors.

The basis and the dual basis are related by a dot product rule,
€. e’ =0 (147)

This dot product rule relates the vectors of orthonormal bases. The basis vectors transform
just as good old vectors should:

ox® . 01
e, = 5p7a b e’ = S e’. (148)
Note that the dot product rule gives
V.V =V"e,-e® = VWV, = V4V, (149)

as we would expect. On the other hand, expanding the differential line element ds,

ds® = e dx®-epdr’ = ey -epdr®dr® (150)
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so that we recover the metric tensor

Jab = €q*€p (151)

Exactly the same style calculation gives
9" = e*eb (152)

These last two equations tell us first that g, is the coefficient of e® in an expansion of the
vector e in the usual basis:
€y, = gabe“, (153)

and tell us second that g? is the coefficient of e, in an expansion of the vector e’ in the dual
basis:

e’ = g%, (154)
We’ve recovered the rules for raising and lowering indices, in this case for the entire basis
vector.

Basis vectors change with coordinate position, as pretty much all vectors do in general.
We define an thrice-indexed object object T by

Oe
4 =T 155
= The, (155)
so that
Fgc =e’o.e, = 8C(ea-eb) —e,-0.e" = —e,-0.e". (156)

(Remember the shorthand notation 0/0x¢ = d,..) The last equality gives the expansion

e’

e = TP e” (157)
Consider 0.9, = 0.(e,-€p). Using (155),
Ocfar = (0c€0)-€p + €q-(0.€1) = ' g€y + e, T ey, (158)
or finally
Ocgab = Uaegas + UheGad, (159)

exactly what we found in (86)! This leads, in turn, precisely to (90), the equation for the
affine connection in terms of the g partial derivatives. We now have a more intuitive under-
standing of what the I'’s really represent: they are expansion coefficients for the derivatives
of basis vectors, which is how we are used to thinking of the extra acceleration terms in
non Cartesian coordinates when we first encounter them in our first mechanics courses. In
Cartesian coordinates, the I'?, just go away.

Finally, consider
0.(VPey) = (0,V®) ey + VP0,e, = (0,V")ey, + VPTE e, (160)
Taking the dot product with e?:

e’-0,(V’e,) = 0,V + VT, =V, (161)
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just the familiar covariant derivative of a contravariant vector. This one you should be able
to do yourself:

eq0a(Vie?) = 0,Vy — ViT%, = Vg, (162)
the covariant derivative of a covariant vector. This gives us some understanding as to why
the true tensors formed from the partial derivatives of a vector V' are not simply 9,V ¢ and
0,Vy, but rather e?-0,(V'e;) and e4-0,(V;€’) respectively. Our terse and purely coordinate
notation avoids the use of the e bases, but at a cost of missing a deeper and ultimately

simplifying mathematical structure. We can see an old maxim of mathematicians in action:
good mathematics starts with good definitions.

4.4 Volume element

The transformation of the metric tensor g,, may be thought of as a matrix equation:

oz  Ox?

/ = —_— —
g/“’ o o'k Gk ox'"

(163)

Remembering that the determinant of the product of matrices is the product of the deter-

minants, we find
2

Oz g (164)

oz’
where ¢ is the determinant of g,, (just the product of the diagonal terms for the diagonal

metrics we will be using), and the notation |0x’/0x| indicates the Jacobian of the transfor-
mation x — 2’. The significance of this result is that there is another quantity that also
transforms with a Jacobian factor: the volume element d*x.

/

g:

/
diz’ = 2—:; diz. (165)
This means 92| a2’
x| |Ox
V—g d's = /=g | | 9r d*z = /=g d'x. (166)

In other words, v/—g d*x is the invariant volume element of curved spacetime. The minus
sign is used merely as an absolute value to keep the quantities positive. In flat Minkowski
space time, d*z is invariant by itself.

Euclidian example: in going from Cartesian (¢ = 1) to cylindrical polar (¢ = R?) to
spherical coordinates (g = r*sin?#6), we have dv dydz = RARdz d¢ = r*sin 0 dr df dp. You
knew that. For a diagonal g, our formula gives a volume element of

V0 911922933900|dx’ da® da® da®,

just the product of the proper differential intervals. That also makes sense.

4.5 Covariant div, grad, curl, and all that

The ordinary partial derivative of a scalar transforms generally as covariant vector, so in this
case there is no distinction between a covariant and standard partial derivative. Another

easy result is
ov, oV,

oxv  Oxr’

Viw = Vo =

(167)
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(The affine connection terms are symmetric in the two lower indices, so they cancel.) More
interesting is

oVH
V=57 + T v (168)
where by definition
9" (O09pu | O9px  Ogun
=9 pu A 99u 1
pAT 9 <8a:)‘ * Ozt OxP (169)

Now, g"” is symmetric in its indices, whereas the last two ¢ derivatives combined are anti-
symmetric in the same indices, so that combination disappears entirely. We are left with
w _ 9" 09
HAT 9 Ot

In this course, we will be dealing entirely with diagonal metric tensors, in which yu = p for
nonvanishing entries, and g is the reciprocal of g,,. In this simple case,
101n|g|

2 Ox*

where g is as usual the determinant of g,,, here just the product of the diagonal elements.
Though our result seems specific to diagonal g,,,, W72 pp. 106-7, shows that this result is

true for any g,,.”

(170)

T
L=

(171)

The covariant divergence (168) becomes

o L 0(/lglv*) (172)

e \/m Ot

a neat and tidy result. Note that

/\/]g]d% VE=0 (173)

if V# vanishes sufficiently rapidly) at infinity. (Why?)

We cannot leave the covariant derivative without discussing 7"/, the covariant divergence
of T". (And similarly for the divergence of T".) Conserved stress tensors are, after all,
general relativity’s “coin of the realm.” We have:

g = STy o T, =
T Ok + HA + BA , Of viw T

and using (171), we may condense this to

oT+
oz

+ 10,1, -1, T (174)

w gl O = gl oar

For an antisymmetric contravariant tensor, call it A", the last term of the first equality
drops out because I' is symmetric in its lower indices:

1 0 Thv 1 0 T
—_— (v/lg] )+PZ)\TW\7 or TH — (Vlg| V)_PQVT*;. (175)

1 9(4/|g|A*
AV = (VglA™) if A" antisymmetric. (176)

s \/W OxH

2Sketchy proof for the mathematically inclined: For matrix M, trace Tr, differential §, to first order
in § we have §lndet M = Indet(M + §M) — Indet M = Indet MY (M + §M) = Indet(l + M~15M) =
In(1+ Tr M~16M) = Tr M~15M. Can you supply the missing details?
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4.6 Hydrostatic equilibrium
You have been patient and waded through a sea of indices, and it is time to be rewarded.
We will do our first real physics problem in general relativity: hydrostatic equilibrium.

In Newtonian mechanics, you will recall that hydrostatic equilibrium represents a balance
between a pressure gradient and the force of gravity. In general relativity this is completely
encapsulated in the condition

Yy =0

applied to the energy-momentum stress tensor (65), upgraded to covariant status:
T" = Pg" + (p + P/*)U*U (177)
Our conservation equation is
v v aP 2 v
O:Tf; :g“ %"‘ [(p+P/c )U”U }

where we have made use of the Leibniz rule for the covariant derivative of a product, and
the fact that the g, covariant derivative vanishes. Using (175):

8P+ 1
dzr  |g|M/? O

(178)

W

0=g"

[lg]'/2(p + P/)UMU"] + Ty (p+ P/ UMY (179)

In static equilibrium, all the U components vanish except U°. To determine this, we use
g UrU" = —¢? (180)

the upgraded version of special relativity’s 7,sU*U? = —c?. Thus,

(U%)? = ——, (181)
Joo
and with w g
v _ 9 9900
'ty = T (182)
our equation reduces to
8P 81n|g00]1/2
0=g"|— *+P)——— 183
9 g D) 0 (183)
Since g, has a perfectly good inverse, the term in square brackets must be zero:
oP 91 1/2
OF 4 (pet 4+ p) Lol (184)

oxH

This is the general relativistic equation of hydrostatic equilibrium. Compare this with the
Newtonian counterpart:

OxH

VP +pVd =0 (185)

The difference for a static problem is the replacement of p by p+ P/c? for the inertial mass

density, and the use of In|gg|'/? for the potential (to which it reduces in the Newtonian
limit).

43



If P= P(p), P'=dP/dp, equation (184) may be formally integrated:

P'(p)dp

————— +1n /2 — constant. 186
| Pt e+l (50
Ezercise. Solve the GR equation of hydrostatic equilibrium exactly for the case |goo| = (1 —

2GM/rc?)'/? (e.g., near the surface of a neutron star) and P = Kp? for v > 1.

4.7 Covariant differentiation and parallel transport

In this section, we view covariant differentiation in a different light. We make no new
technical developments, rather we understand the content of the geodesic equation in a
different way. Start with a by now old friend,

d?z* ., dxt dz”
—_— = 0. 187
dr? modr dr (187)

Writing da? /d7 as the vector it is, V*, to help our thinking a bit,

(188)

a covariant formulation of the statement that the vector V* is conserved along a geodesic
path. But the covariance property of this statement has nothing to do with the specific
identity of V* with dz*/dr. The full left-side of this equation is a genuine vector for any V>

as long as V* itself is a bona fide contravariant vector. The right side simply tells us that the
fully covariant left side expression is zero. (In our particular example, because momentum
is conserved.) Therefore, just as we “upgrade” from special to general relativity the partial
derivative,

ove v X Ty A
we upgrade the derivative along a path z(7) in the same way by multiplying by dz*/dr and
summing over the index u:

e dv> de* DV
—+ D V= 190
dr ~ dr T dr Dt (190)
DV?/Dr is a true vector; the transformation
DV 9z DVH
=& (191)

Dr Ozt Dt

may be verified directly. (The inhomogeneous contributions from the I" transformation and
the derivatives of the derivatives of the coordinate transformation coefficients cancel in a
manner exactly analogous to our original covariant partial derviative calculation.)

Exactly the same reasoning is used to define the covariant derivative for a covariant
vector,

dVy daxt DV,
o By = 20 192
dr M dr Dt (192)
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and for tensors, e.g.:
a1y dz” dz” DTy
I, ——T§ —Th —T¢ A
dr o dr = o dr T Dt

(193)

When a vector or tensor quantity is carried along a path that does not change in a
locally inertially reference frame (d/dr = 0), this statment becomes in arbitrary coordinates
D/Dt = 0, the same physical result expressed in a covariant language. (Once again this
works because of identical agreement in the inertial coordinates, and then zero is zero in any
coordinate frame.) The condition D/D71 = 0 is known as parallel transport. A steady vector,
for example, may always point along the y axis as we move it around in the zy plane, but its
r and 6 components will have to change in order to keep this true! How those components
change is the content of the parallel transport equation.

Now, if we do a round trip and come back to our exact starting point, does a vector have
to have the same value it began with? You might think that the answer must be yes, but it
turns out to be more complicated than that. Indeed, it is a most interesting question...

The stage is now set to introduce the key tensor embodying the gravitational distortion
of spacetime.
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5 The curvature tensor

The properties which distinguish space
from other conceivable triply-ertended
magnitudes are only to be deduced
from experience...At every point the
three-directional measure of curvature
can have an arbitrary value if only the
effective curvature of every measurable
region of space does not differ notice-

ably from zero.

— G. F. B. Riemann

5.1 Commutation rule for covariant derivatives

The covariant derivative shares many properties with the ordinary partial derivative: it is a
linear operator, it obeys the Leibniz rule, and it allows true tensor status to be bestowed upon
partial derivatives under any coordinate transformation. A natural question arises. Ordinary
partial derivatives commute: the order in which they are taken does not matter, provided
suitable smoothness conditions are present. Is the same true of covariant derivatives? Does
Ve, equal VI 7

Just do it.
ovH

VE = reve=mTr 194
Hea e + vo o ( )

Then 5w
Ty, = =+ 110 - T, T, (195)

) 8.1‘7—

or
oV 0 ovY ovH

T:, = Y VA + T v -1y —— + 1V 196
o;T 81‘785E0 + 8177- ( Ao >+ vT (axg + Ao > oT (827” + Av ( )

The first term and the last group (proportional to I'V_) are manifestly symmetric in ¢ and
7, and so will vanish when the same calculation is done with the indices reversed and then
subtracted off. A bit of inspection shows that the same is true for all the remaining terms
proportional to the partial derivatives of V#. The residual terms from taking the covariant
derivative commutator are

ory ary
To!'L;T - Tf;cr = [87);—0 - 87);— + FﬁTPKU - Flle’FKT:| V)\v (197>
which we may write as
TY, —TF, =R", V (198)

Now the right side of this equation must be a tensor, and V* is an arbitrary vector, which

means that RY__ needs to transform its coordinates as a tensor. That it does so may also
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be verified explicitly in a nasty calculation (if you want to see it spelt out in detail, see W72
pp-132-3). We conclude that

R,u — arl)fa _ aF/;T
ATT DT ox°

+ FI;TFKO' - FﬁUFKT (199)

is indeed a true tensor, and it is called the curvature tensor. In fact, it may be shown (W72
p. 134) that this is the only tensor that is linear in the second derivatives of g, and contains
only its first and second derivatives.

Why do we refer to this mixed tensor as the “curvature tensor?” Well, we begin to
answer this by noting that it vanishes in ordinary flat Minkowski spacetime—we simply
choose Cartesian coordinates to do our calculation. Then, because R",_ _ is a tensor, if it is
zero in one set of coordinates, it is zero in all. Commuting covariant derivatives makes sense
in this case, since they amount to ordinary derivatives. So distortions from Minkowski space

are essential.

Ezercise. What is the (much simpler) form of R", _ in local inertial coordinates? It is often
convenient to work in such coordinates to prove a result, and then generalise it to arbitrary
coordinates using the the fact that R, _ is a tensor.

5.2 Parallel transport

Our intuition sharpens with the yet more striking example of parallel transport. Consider a
vector V) whose covariant derivative along a curve x(7) vanishes. Then,

dV)\ dx”

Consider next a tiny round trip journey over a closed path in which V) is changing by the
above prescription. If we remain in the neighbourhood of some point X”, with z” passing
through X* at some instant 7y, 2°(79) = X?, we Taylor expand as follows:

ory,

'Y (x) =T (X) + (2 — X7) xr + ... (201)

Viz(T)] =V (X) +dV, + ... =V, (X) + (2 — X”)I‘ZP(X)VU(X) + ... (202)
(where x” — X* is dz” from the parallel transport equation), whence
1 I p p ors, o K

5 (x)Vy(x) =8, V, + (¥ — XP)V, X + 17,05, | + - (203)

where all quantities on the right (except z!) are evaluated at X. Integrating
dVy =T% (2)V,(z) dz” (204)

around a tiny closed path ¢, and using (204) and (203), we find that there is a change in
the starting value AV), arising from the term linear in z* given by

aFUV g v
AV, = ( e T Fupr;g) v, ]{ a2’ dzx (205)
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The integral § x’dz” certainly doesn’t vanish. (Try integrating it around a unit square
in the zy plane.) But it is antisymmetric in p and v. (Integrate by parts and note that
the integrated term vanishes, being an exact differential.) That means the part of the I'T
term that survives the pr summation is the part that is antisymmetric in (p, ). Since any
object depending on two indices, say A(p, V), can be written as a symmetric part plus an
antisymmetric part,

S 1A ) + AW )]+ 5[A(p, 1) — Alv, )],
we find )
AV = QRUAVPVU 7{ xf dz” (206)
where i
R%,, = (% — 21;95 + 17,1, — rgyr‘;p) (207)

is precisely the curvature tensor. Parallel transport of a vector around a closed curve does
not change the vector, unless the enclosed area has a nonvanishing curvature tensor. In fact,
“the enclosed area” can be given a more intuitive if we think of integrating around a very
tiny square in the pv hyperplane. Then the closed loop integral is just the directed area
dxPdz”:

1

AV, = 5 opVodx’ dx". (208)

The conversion of a tiny closed loop integral to an enclosed surface area element reminds us
a bit of Stokes theorem, and it will not be surprising to see that there is an analogy here to
the identity “divergence of curl equals zero”. We will see this shortly.

Fxercise. A laboratory demonstration. Take a pencil and move it round the surface
of a flat desktop without rotating the pencil. Moving the pencil around a closed path,
always parallel to itself, will not change its orientation. Now do the same on the surface of a
spherical globe. Take a small pencil, pointed poleward, and move it from the equator along
the 0° meridian through Greenwich till you hit the north pole. Now, once again parallel to
itself, move the pencil down the 90°E meridian till you come to the equator. Finally, once
again parallel to itself, slide the pencil along the equator to return to the starting point at
the prime meridian.

Has the pencil orientation changed from its initial one? Explain.

Curvature®, or more precisely the departure of spacetime from Minkowski structure,
reveals itself through the existence of the curvature tensor R?,,,. If spacetime is Minkowski-

flat, every component of the curvature tensor vanishes. An important consequence is that
parallel transport around a closed loop can result in a vector or tensor not returning to
its orginal value, if the closed loop encompasses matter (or its energy equivalent). An
experiment was proposed in the 1960’s to measure the precession of a gyroscope orbiting the
earth due to the effects of the spacetime curvature tensor. This eventually evolved into a
satellite known as Gravity Probe B, a $750,000,000 mission, launched in 2004. Alas, it was
plagued by technical problems for many years, and its results were controversial because of
unexpectedly high noise levels (solar activity). A final publication of science results in 2011
claims to have verified the predictions of general relativity to high accuracy, including an
even smaller effect known as “frame dragging” from the earth’s rotation, but my sense is

3“Curvature” is one of these somewhat misleading mathematical labels that has stuck, like “imaginary”
numbers. The name implies an external dimension into which the space is curved or embedded, an unnec-
essary complication. The space is simply distorted.
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that there is lingering uneasiness in the physics community regarding the handling of the
noise. Do an internet search on Gravity Probe B and judge for yourself!

When GPB was first proposed in the early 1960’s, tests of general relativity were very
few and far between. Any potentially observable result was novel and worth exploring. Since
that time, experimental GR has evolved tremendously. We live in a world of gravitational
lensing, exquisitely sensitive Shapiro time delays, and beautiful confirmations of gravitational
radiation, first via the binary pulsar system PSR1913+16, and now the recent direct signal
detection of GW150914 via advanced LIGO. All of these will be discussed in later chapters.
At this point it borders on the ludicrous to entertain serious doubt that the crudest leading
order general relativity parallel transport prediction is correct. (In fact, it looks like we have
seen this effect directly in close binary pulsar systems.) Elaborately engineered artificial
gyroscopes, precessing by teeny-tiny amounts in earth orbit don’t seem very exciting any
more to 21st century physicists.

5.3 Algebraic identities of R’

5.3.1 Remembering the curvature tensor formula.

It is helpful to have a mnemonic for generating the curvature tensor. The hard part is
keeping track of the indices. Remember that the tensor itself is just a sum of derivatives of
I', and quadratic products of I'. That part is easy to remember, since the curvature tensor
has “dimensions” of 1/z% where x represents a coordinate. To remember the coordinate
juggling of R%, , start with:

8FZC * a
Ord + 1ﬂbc dx
where the first abed ordering is simple to remember since it follows the same placement in
R% ;. and * is a dummy variable. For the second I'T' term, remember to just write out
the lower bed indices straight across, making the last unfilled space a dummy index *. The
counterpart dummy index that is summed over must then be the upper slot on the other I,
since there is no self-contracted I' in the full curvature tensor. There is then only one place
left for upper a. To finish off, just subtract the same thing with ¢ and d reversed. Think of
it as swapping your CD’s. We arrive at:

ory, oy,

Oz oxc

Rabcd = + FZC 3* - PZng* (209)

5.4 Ry, fully covariant form

The fully covariant form of the stress tensor can be written so that it involves only second-
order derivatives of g,, and products of I's, with no I' partial derivatives. The second-order
g-derivatives, which are linear terms, will be our point of contact with Newtonian theory
from the full field equations. But hang on, we have a bit of heavy weather ahead.

We define

R}\}LVH - g)\aRU‘uy,{ (210>
or
org, org.
Ry = ra |5 = =25 + T, T7, — TR, (211)

Remembering the definition of the affine connection (90), the right side of (211) is
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9xra 9 e OGpu i 9Gpv _ Gy 9 d g° G 4 G _ o
oxY oxH oxr 2 Oxv ox"s oxH oxr

+ a0 (TUAIT, — ThIT,) (212)

prs v
The z" and ¥ partial derivatives will operate on the g term and the g-derivative terms. Let
us begin with the second group, the dg/dx derivatives, as it is simpler. With ¢,,¢7” = (5;)\,
the terms that are linear in the second order g derivatives are

1 829)\1/ N aQQ,uV o 829/\n 829/m
2 \ Oxk0xr  Oxrc0x>  OxvOxr  OxvOx

(213)

If you can sense the beginnings of the classical wave equation lurking in these linear second
order derivatives, the leading terms when g,, departs only a little from 7,,, then you are
very much on the right track.

We are not done of course. We have the terms proportional to the x and v derivatives
of ¢g??, which certainly do not vanish in general. But the covariant derivative of the metric
tensor gy, does vanish, so invoke this sleight-of-hand integration by parts:

a.gUp o a.g>\0' o
Dogur = 9" G = 97 TCirgno + Tlrgin) (214)

where in the final equality, equation (142) has been used. By bringing ¢°” out from the
partial derivative, it recombines to form affine connections once again. All the remaining
terms of R),,, from (212) are now of the form ¢gI'T":

— (T\Gno + L) Ty + (Toagno + Do) T + 900 (Uil — TinPo) (215)
It is not obvious at first, but with a little colour coding and index agility to help, you should

be able to see four of these six gI'T" terms cancel out— the second group with the fifth, the
fourth group with the sixth—leaving only the first and third terms:

Ino (FZ/\FZH - FZ)\FZJ/) (216)
Adding together the terms in (213) and (216), we arrive at

L Pon P Pove | P
5( 2 . )+gm, (T, 17, —T0T2,)  (217)

R vk — -
Au oxc0xt  Ozrdx>  OxvOxt  Ox¥Ox)

Ezercise. What is R, in local inertial coordinates?

Note the following important symmetry properties for the indices of Ry,,.. Because they
may be expressed as vanishing tensor equations, they may be established in any coordinate
frame, so we choose a local frame in which the I' vanish. They are then easily verified from
the terms linear in the g derivatives in (217):

Ry = Ruix (symmetry) (218)
Ry = —Ruywn = =R = Ry (antisymmetry) (219)
R}\}U/,‘i + R}\H}LV + R)\fou =0 (CYCHC) (220)
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5.5 The Ricci Tensor

The Ricci tensor is the curvature tensor contracted on its (raised) first and third indices,
R, ;- In terms of the covariant curvature tensor:

R, = gA”RM,m = g’\”RW,\M (by symmetry) = g”)‘RV,WL = R, (221)

so that the Ricci tensor is symmetric.

The Ricci tensor is an extremely important tensor in general relativity. Indeed, we shall
very soon see that 12, = 0 is Einstein’s Laplace equation. There is enough information here
to calculate the deflection of light by a gravitating body or the advance of a planet’s orbital
perihelion! What is tricky is to guess the general relativistic version of the Poisson equation,

and no, it is not R, proportional to the stress energy tensor 7),,. (It wouldn’t be very tricky
then, would it?) Notice that while R)‘W,i = 0 implies that the Ricci tensor vanishes, the
converse does not follow: R, = 0 does not necessarily mean that the full curvature tensor

(covariant or otherwise) vanishes.

Ezercise. Fun with the Ricci tensor. Prove first that

or? or?
o LA UK n A 7 A
By = ot Or T F;L/\le - Fliffr)\ﬂ'

Next show that R R R
R;m =g I/Ru,)\u/-c =g VR)\;MV =49 VR/MH,V:

and that gA“'RAWN = ¢"" Ry = 0. Why does this mean that R, is the only second rank
covariant tensor that can be formed from contracting R),,,.7

We are not quite through contracting. We may form the curvature scalar
R= Rl (222)

another very important quantity in general relativity.

Ezercise. The curvature scalar is unique. Prove that
R = vA He R . VA He R
=99 \we — — 9 4 UAVE

and that R 4
g uguhR)\uum = 0.

Justify the title of this exercise.

5.6 The Bianchi Identities

The covariant curvature tensor obeys a very important differential identity, analogous to
div(curl)=0. These are the Bianchi identities. We prove the Bianchi identities in our
favourite freely falling inertial coordinates with I' = 0, and since we will be showing that a
tensor is zero in these coordinates, it is zero in all coordinates. In I' = 0 coordinates,

18 azg)w B 829uu . 829>\H + aQQ/Ln
20x" \ Oxk0xt  Oxc0z*  OxrOx”  OxvOz?

(223)

Rypwrn =
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The Bianchi identities follow from cycling s goes to v, v goes to 1, n goes to k. Leave A and
w1 alone. Repeat. Add the original Ry, and the two cycled expressions together. You will
find that this gives

Rkulmm + Rkunvm + Rkumﬁu =0 (224)

An easy way to check the bookkeeltz)ing on this is just to pay attention to the g’s: once
you've picked a particular value of 0%g,, in the numerator, the other dx¢ indices downstairs
are unambiguous, since as coordinate derivatives their order is immaterial. The first term
in (224) is then just shown: (gay, —9u, —9xx: 9un). Cycle to get the second group for the
second Bianchi term, (gx;, —guy, —9avs gu). The final term then is (gxe, —Guw: —9rn: Gun)-
Look: every ¢ has its opposite when you add these all up, so the sum is clearly zero.

We would like to get equation (224) into the form of a single vanishing covariant tensor
divergence, for reasons that will soon become very clear. Toward this goal, contract A with
v, remembering the symmetries in (219). (E.g.: in the second term on the left side of [224],
swap v and n before contracting, changing the sign.) We find,

R;m;n - me + Rywm;u =0 (225)
Next, contract p with k:
R,-R\ , —R", =0 (226)

(Did you understand the manipulations to get that final term on the left? First set things up with:
Ruunn;u = gyaRau/@n;V = _gVURuamn;y
Now it is easy to raise p and contract with x:

VO DU ____vo _ _ pv
9 Ry = —9" Ronw = —R",)

Cleaning things up, our contracted identity (226) becomes:
(6p R —2R"),. = 0. (227)

Raising 1 (we are allowed, of course, to bring ¢"" inside the covariant derivative to do this—
why?), and dividing by —2 puts this identity into its classic “zero-divergence” form:

<R“” - g’“’g) -0 (228)
g

The generic tensor combination A* — gh” A /2 will appear repeatedly in our study of gravi-
tational radiation.

Einstein did not know equation (228) when he was struggling mightily with his theory,
but to be fair neither did most mathematicians! The identities were actually first discov-
ered by the German mathematician A. Voss in 1880, then independently in 1889 by Ricci.
These results were then quickly forgotten, even, it seems, by Ricci himself. Bianchi then
rediscovered them on his own in 1902, but they were still not widely known in the mathe-
matics community in 1915. This was a pity, because the Bianchi identities have been called
the “royal road to the Gravitational Field Equations 7 by Einstein’s biographer A. Pais. It
seems to have been the mathematician H. Weyl who in 1917 first recognised the importance
of the Bianchi identitites for relativity, but the particular derivation we have followed was
not formulated until 1922, by Harward.

The reason for the identities” importance is precisely analogous to Maxwell’s understand-
ing of the restrictions that the curl operator imposes on the field it generates, and to why the
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displacement current needs to be added to the equation V X B = pupJ. Taking the diver-
gence of this equation gives zero identically on the left—the divergence of the curl is zero—so
the right hand source term must also have a vanishing divergence. In other words, it must
become a statement of some sort of physical conservation law. Maxwell needed and invoked a
physical “displacement current,” (1/c¢*)0E/dt, and added it to the right side of the equation.
The ensuing physical conservation law corresponded to the conservation of electric charge,
now built into the fundamental formulation of Maxwell’s Equations. Here, we shall use the
Bianchi identities as an analogue (and it really is a precise mathematical analogue) of “the
divergence of the curl is zero,” a geometrical constraint that ensures that the Gravitational
Field Equations have conservation of the stress energy tensor automatically built into their
fundamental formulation, just as Maxwell’s Field Equations have charge conservation built
into their underlying structure. What is good for Maxwell is good for Einstein.
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6 The Einstein Field Equations

In the spring of 1913, Planck and
Nernst had come to Zirich for the
purpose of sounding out Einstein about
his possible interest in moving to
Berlin...Planck [asked him] what he
was working on, and Finstein described
general relativity as it was then. Planck
said ‘As an older friend, I must advise
you against it for in the first place
you will not succeed; and even if you

succeed, no one will believe you.’

— A. Pais, writing in ‘Subtle is the
Lord’

6.1 Formulation

We will now apply the principle of general covariance to the gravitational field itself. What
is the relativistic analogue of V2® = 47Gp? We have now built up a sufficiently strong
mathematical arsenal from Riemannian geometry to be able to give a satisfactory answer to
this question.

We know that we must work with vectors and tensors to maintain general covariance, and
that the Newtonian-Poisson source, p, is a mere component of a more general stress-energy
tensor 7, (in covariant tensor form) in relativity. We expect therefore that the gravitional
field equations will take the form

G =CT, (229)

where G, is a tensor comprised of g,, and its second derivatives, or products of the first
derivatives of g,,. We guess this since i) we know that in the Newtonian limit the largest
component of g,, is the gog ~ —1 — 2®/c* component; ii) we need to recover the Poisson
equation; and iii) we assume that we are seeking a theory of gravity that does not change its
character with scale: it has no characteristic length associated with it where the field changes
fundamentally in character. The last condition may strike you as a bit too restrictive. Who
ordered that? Well, umm...OK, we now know this is actually wrong. It is wrong when applied
to the Universe at large! But it is the simplest assumption that we can make that will satisfy
all the basic requirements of a good theory. We’ll come back to the general relativity updates
once we have operating system GR1.0 installed.

Next, we know that the stress energy tensor is conserved in the sense of 75" = 0. We
also know from our work with the Bianchi identities of the previous section that this will
automatically be satisfied if we take G, to be proportional to the particular linear combi-
nation
guR

2

(Notice that there is no difficulty shifting indices up or down as considerations demand: our
index shifters g,,, and g"” all have vanishing covariant derivatives and can moved inside and

G x R, —
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outside of semi-colons.) We have determined the field equations of gravity up to an overall

normalisation:

R
R, — 2

=CT,, (230)

The final step is to recover the Newtonian limit. In this limit, 7},, is dominated by Tgo, and
g can be replaced by 7,5 when shifting indices. The leading order derivative of g,, that
enters into the field equations comes from

2¢

9002—1—§

where ® is the usual Newtonian potential. In what follows, we use i, j, k to indicate spatial
indices, and 0 will always be reserved for time.

The trace of equation (230) reads (raise p, contract with v):
1
R—4xSR=—R=CT. (231)

Substituting this for R back in the original equation leads to

G T
2

R,, =C <TW - ) = (S, (232)

which defines the so-called source function, a convenient grouping we shall use later:

S = Th — g T/2. (233)
The 00 component of of (232) is
T
Roo=C (Too - go; ) (234)

In the Newtonian limit, the trace 7= T" is dominated by the 0 term, TY, and raising and
lowering of the indices is done by the 7, weak field limit of g,,.

0 T T, 2
Ry = C (Too - 77002 0) —C (Too - ﬂ) — o0 _ ol (235)

where p is the Newtonian mass density. Calculating Ry, explicitly,
ROO = RVOI/O = nAVRA()VO (236)
We need only the linear part of R),,. in the weak field limit:

1 < 82gz\u azguu a2g>\n + 829/15 )

: _ (237)

R = Orrdzt  Oxndr>  Oxvdzr | OxvOx

and in the static limit with © = x = 0, only the final term on the right side of this equation

survives: )
1 0%goo

Ryovo = 2 DO (238)

55



Finally,
1 92900 1 1
R, :)\VRV:_)\V :—V2 - _
00 =1 Ltxowo 277 0o’ 2 Joo 2
This happily agrees with the Poisson equation if C' = —87G/ct. Hello Isaac Newton. As
Einstein himself put it: “No fairer destiny could be allotted to any physical theory, than that
it should of itself point out the way to the introduction of a more comprehensive theory, in
which it lives on as a limiting case.” We therefore arrive at the Einstein Field Equations:

2
v — OP°

(239)

1 8rG
Gp,y = RNV - §gpyR - _7Tpu (240)

The Field Equations first appeared in Einstein’s notes on 25 November 1915, just over a
hundred years ago, after an inadvertent competition with the mathematician David Hilbert,
triggered by an Einstein colloquium at Gottingen. (Talk about being scooped! Hilbert
actually derived the Field Equations first, by a variational method, but rightly insisted on
giving Einstein full credit for the physical theory. Incidentally, in common with Einstein,
Hilbert didn’t know the Bianchi identities.)

It is useful to also exhibit these equations explicitly in source function form. Contracting
w and v,

8t
and the field equations become
81G 1 8t
R}LV = —7 <T}LV - §g,U4VT) = _75uy (242)
where as before,
1
S,ul/ = T,ul/ - 59MVT7 (243)

a “Bianchified form” of the stress tensor. In vacuo, the Field Equations reduce to the
analogue of the Laplace Equation:
R, = 0. (244)

One final point. If we allow the possibility that gravity could change its form on different
scales, it is always possible to add a term of the form +Ag,, to G, where A is a constant
(positive by convention), without violating the conservation of 7},, condition. This is because
the covariant derivatives of g, vanish identically, so that T, is still conserved. Einstein,
pursuing the consequences of his theory for cosmology, realised that his Field Equations did
not produce a static universe. This is bad, he thought, everyone knows the Universe is static.
So he sought a source of static stabilisation, adding an offsetting, positive A term to the right
side of the Field Equations:

1 8tG
ij — igm,R = _C_4T'wj -+ Agwj (245)
and dubbed A the cosmological constant. Had he not done so, he could have made a spec-
tacular prediction: the Universe is dynamic, a player in its own game, and must be either
expanding or contracting.* With the historical discovery of an expanding univese, Einstein
retracted the A term, calling it “the biggest mistake of my life.”

4Even within the context of straight Euclidian geometry and Newtonian dynamics, uniform expansion of
an infinite space avoids the self-consistency problems associated with a static model. I've never understood
why this simple point is not emphasised more.
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Surprise. We now know that this term is, in fact, present on the largest cosmological
scales, and on these scales it is not a small effect. It mimics (and may well be) an energy
density of the vacuum itself. It is measured to be 70% of the effective energy density in the
Universe. It is to be emphasised that A must be taken into account only on the largest scales,
over which the locally much higher baryon and dark matter inhomogeneities are lowered
by effective smoothing; A is otherwise quite negligible. The so-called biggest mistake of
Einstein’s life was therefore quadratic in amplitude: one factor of error for introducing A for
the wrong reason, the second factor for retracting A for the wrong reason!

Except for cosmological problems, we will always assume A = 0.

6.2 Coordinate ambiguities

There is no unique solution to the Field Equation because of the fact that they have been
constructed to admit a new solution by a transformation of coordinates. To make this point
as clear as possible, imagine that we have worked hard, solved for the metric g,,,, and in turns

out to be plain old Minkowski space.” Denote the coordinates as t for the time dimension
and «, 3, v for the spatial dimensions. Even if we restrict ourselves to diagonal g,,,, we might
have found that the diagonal entries are (—1,1,1,1) or (—1,1,a2,1) or (—1,1, a2, a?sin? )
depending upon whether we happen to be using Cartesian (z,y, z), cylindrical (R, ¢, z),
or spherical (r, 6, ¢) spatial coordinate systems. Thus, we always have the freedom to work
with coordinates that simplify our equations or that make physical properties of our solutions
more transparent.

This is particularly useful for gravitational radiation. You may remember when you
studied electromagnetic radiation that the equations for the potentials (both A and ®)
simplified considerably when a particular gauge was used—the Lorenz gauge. A different
gauge could have been used and the potential would have looked different, but the fields
would have been the same. The same is true for gravitational radiation, in which coordinate
transformations play this role, but in a very peculiar way: we change the components of g,
as though a coordinate transformation were taking place, but we actually keep our working
coordinates the same! What seems like an elementary blunder is actually perfectly correct,
and will be explained more fully in Chapter 7.

For the problem of determining g, around a point mass—the Schwarzschild black hole—
we will choose to work with coordinates that look as much as possible like standard spherical
coordinates.

6.3 The Schwarzschild Solution

We wish to determine the form of the metric tensor g, for the spacetime surrounding a point
mass M by solving the equation R,, = 0, subject to the appropriate boundary conditions.

Because the spacetime is static and spherically symmetric, we expect the invariant line
element to take the form

— Pdr? = =B Adt* + Adr® + C dQ? (246)
where d€2 is the (undistorted) solid angle,

d? = db* + sin? 0 d¢?

SDon’t smirk. If we're using awkward coordinates, it can be very hard to tell. You’ll see.
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and A, B, and C are all functions of the radial variable. We may choose our coordinates so
that C' is defined to be 72 (if it is not already, do a coordinate transformation r? = C(r)
and then drop the ’). A and B will then be some unknown functions of 7 to be determined.
Our metric is now in “standard form:”

—cdr?* = —B(r) dt* + A(r) dr® + r* (d6* + sin® 0 d¢?) (247)
We may now read the components of g,,:
g = —B(r) Grr = A(r) Gog = 1° Gop = 72sin’ 0 (248)
and its inverse g"",
gt =—-B"(r) g =A"(r) g% =72 g%% = r7?(sinf) 2 (249)
The determinant of g,, is —g, where

g=r*ABsin*0 (250)

We have seen that the affine connection for a diagonal metric tensor will be of the form

1 09aa
re, =r, =—
ab ba 29aa oxb
no sum on a, with a = b permitted; or
1 Ogw
ry, =————"
b 2G4q OT®

no sum on a or b, with a and b distinct. The nonvanishing components follow straightfor-
wardly:

B/
=Tt =
tr rt 2B
., B . A . rsin? @
te=oq Tm=gg tw="3 ="
1
% =r) == TY% =—sinf cosf
"0 or = b0 sin ¢ cos
1
rgrzrqu:; [y =T, = cotf (251)

where A" = dA/dr, B' = dB/dr. We will also make use of this table to compute the orbits
in a Schwarzschild geometry.

Next, we need the Ricci Tensor:

A A
_or, o),

_ pA A A
By = R = =22 = S84 T, — T, (252)
Remembering equation (171), this may be written
1 02 In g ari\m P;m 0 lng

Ry = (253)

Z — rm.r» —
2 Oxr Oz oz Tt sy
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Right. First R;. Remember, static fields.

ary,

R, = ——1
tt or

+ Ty, — 4TS,

o (B )
(Y e nn

or \2A
_ 8 B/ t r 1t F:talng
__E (2A)+F F —i—FttFtr—? 87-
B// B/Al B/Z B/2 B/ Al B 4
:*(ﬁ)+mp+MBﬂmB—m<z+%+ﬂ
This gives
B// B/ B/ A/ BI
_ el (T 254
Ry 2A+4A(B+A) A (254)
Next, R,,:
19%Ing 017, n oy L7.0lng
=57~ Tt e
19 (4 B 4\ 0 (A A (A B 4
S — o) - = I — = (5 +=+-
2 r %+B+r> ﬂa/égij 4A(A+B+r)
B" 1(B\*> 2 2 > 2 1 /A\* AB A
= (=) - =+ (T 7 )+ (17 re) —= (=) - - =
2B 2(3) S () )+ () + () =3 (F) ~ s
A'B’

_B// 1 /B 2 %—i_ B N A’ +%/+ 1 / A
2B 2\ B 4B2?  AA?  f2 0 2 A) 4AB rA

So that finally
B// 1 B/ A/ B/ A/
a2 )= 2
(5+%) (255)

Tired? Well, here is a spoiler: all we will need for the problem at hand is Ry and R, so

you can now skip to the end of the section. For the true fanatics, we are just getting warmed
up! On to Ryg:

Rgg = agg aar 3 Fg/\ré\n - FZ@F?W
REIR S
_ d(c;; 9) n % <A> + YT + 27:4 aj;;g
— _ﬁ jl Zé + 5T + ToTas + T T + 27:4 (ill, * % * é)
_ _@ + % _ ;—ﬁ; + Tyl g + T5, Lo + (F&)Q + %
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1 3 rA’ 2 rB’

_ 1+ e A 2 2
BT A Y A R Y
The trigonometric terms add to —1. We finally obtain
1 r A B
i (AL 2
Rye +A+2A< A—I—B) (256)

R, is the last nonvanishing Ricci component. No whining now! The first term in (252)
vanishes, since nothing in the metric depends on ¢. Then,

A

or 81n| |
_ ¢¢ A ¢> g
Fos == oz +FZAP¢”_ 2 Qan
or'g, 8F 1 Jdln|g| 1 Oln |g|
_ e b9 0 A L g 1loe g
==~ gp T oo TTols + ToT8s — 5To—5= — 5Tk
0 (rsm8) 0 7 U0 £ T9, 1% + T 17 1 T%,T
+1 00 eﬁlnsinze n 1 [rsin®0 A n B’ n 4
—sinf cos —— + — —+ —+ -
2 00 2 A A B r

— sir;{}ﬁ/_ rA’sin® e—i—eesz’é’—sinz 9—7%112 —cost0— sirj e—eesz’g—i-eeszﬂ—FTSinZ i (il + El + é)

A2 2A A B
r A B 1 .
= sin% 6 [214 (_Z+ B) +Z_ 1] = sin? Ry

The fact that Ry = sin® @ Rgp and that R,, = 0 if p and v are not equal are consequences
of the spherical symmetry and time reversal symmetry of the problem repsectively. If the
first relation did not hold, or if R;; did not vanish when 7 and j were different spatial
coordinates, then an ordinary rotation of the axes would change the relative form of the
tensor components desplte the spherical symmetry. This is impossible. If R;; = R;; were
non-vanishing (¢ is again a spatial index), the coordinate transformation ' = —t would
change the components of the Ricci tensor. But a static 12, must be invariant to this form
of time reversal coordinate change. (Why?) Note that this argument is not true for Ry.
(Why not?)

Learn to think like a mathematical physicist in this kind of a calculation, taking into
account the symmetries that are present, and you will save a lot of work.

FExercise. Self-gravitating masses in general relativity. We are solving in this section
the vacuum equations R, = 0, but it is of great interest for stellar structure and cosmology
to have a set of equations for a self-gravitating spherical mass. Toward that end, we recall
equation (242):

87G G
TS#V = —7 <

P 1, - )

v
c " 2

Let us evaluate Sy, for the case of an isotropic stress energy tensor of an ideal gas in its rest
frame. With
Jit = _Ba Grr = Aa Joo = 7)27 Gop = 72 sin’ 97

the stress-energy tensor
le - Pg;w + (/) + P/C2>U;LU1/7
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where U, is the 4-velocity, show that, in addition to the trivial condition
U =Uy=U,; =0,
we must have U; = —cv/B (remember equation [180]) and that

B . A . 2
Siw=5BP+p), Sy =5~ P), Sw=7(p - P)

We will develop the solutions of R, = —87GS,,/c* shortly.

Enough. We have more than we need to solve the problem at hand. To solve the equations
R,, = 0 is now a rather easy task. Two components will suffice (we have only A and B to

solve for after all), all others then vanish identically. In particular, work with R, and Ry,
both of which must separately vanish, so

- 1 (A B
oo | J ( ):0 (257)

ATB T Ta\aT B
whence we find
AB = constant = 1 (258)

where the constant must be unity since A and B go over to their Minkowski values at large
distances. The condition that Ry = 0 is now from (254) simply

2B’
B"+ == =0, (259)

which means that B is a linear superposition of a constant plus another constant times 1/r.
But B must approach unity at large r, so the first constant is one, and we know from long ago
that the next order term at large distances must be 2®/c? in order to recover the Newtonian

limit. Hence,
~1
Bo1-2GM A_(1—2GM) (260)

re? rc?

The Schwarzschild Metric for the spacetime around a point mass is exactly

rc2 rc?

2GM 2GM\ ™
—ctdr? = — (1 _ ) cdt* + (1 _ % ) dr® 4+ r2df* + r* sin® 0 do* (261)

This remarkable, simple and critically important exact solution of the Einstein Field Equa-
tion was obtained in 1916 by Karl Schwarzschild from the trenches of World War I. Tragically,
Schwarzschild did not survive the war,® dying from a skin infection five months after finding
his marvelous solution. He managed to communicate his result fully in a letter to Einstein.
His last letter to Einstein was dated December 22, 1915, some 28 days after the formulation
of the Field Equations.

Fxercise. The Tolman-Oppenheimer-Volkoff Equation. Let us strike again while the
iron is hot. Referring back to the previous exercise, we repeat part of our Schwarzschild

6The senseless WWI deaths of Karl Schwarzschild for the Germans and of Henry Moseley (of Oxford) for
the British were incalculable losses for science. Schwarzschild’s son Martin, a 4-year-old at the time of his
father’s death, also became a great astrophysicist, developing much of the modern theory of stellar evolution.
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calculation, but with the source terms S, retained. Form a familiar combination once
again:

(P + pc?)

R.. Ry 1 (A’ B’) &G (& S,.T) &G

AT B - a\a "B T\ A

C

Show now that adding 2Ry /r* eliminates the B dependence:

Rrr 4 Rtt 2R99 _ 2AI 2 2 _ 167TG[)

A B+ r2 W_T_?—i_ArQ_ c?
Solve this equation for A and show that the solution with finite A(0) is

M) T M= /0 dmp(r'y 1 di”

r

Ar) = (1 -

Finally, use the equation Rpy = —8G7Sgy/c* together with hydrostatic equilibrium (184)
(for the term B’/B in Ryy) to obtain the celebrated Tolman-Oppenheimer-Volkoff equation
for the interior structure of general relativistic stars:

dP  GM(r)p P Amr3 P C2GM(r)\
dr 72 (1 - E) (1 i M(r)c? ! re?

This is a rather long, but completely straightforward, exercise.

Students of stellar structure will recognise the classical equation hydrostatic equilibrium
equation for a Newtonian star, with three correction terms. The final factor on the right is
purely geometrical, the radial curvature term A from the metric. The corrective replacement
of p by p+ P/c? arises even in the special relativistic equations of motion for the inertial

density; for inertial purposes P/c? is an effective density. Finally the modification of the
gravitating M (r) term (to M(r)+4mr3P/c?) also includes a contribution from the pressure,

as though an additional effective mass density 3P(r)/c* were spread throughout the interior
spherical volume within r, even though P(r) is just the local pressure. Note that in massive
stars, this pressure could be radiative.

6.4 The Schwarzschild Radius

It will not have escaped the reader’s attention that at

2GM

c2

r = Rg (262)

the metric becomes singular in appearance. Rg is known as the Schwarzschild radius. Nu-
merically, normalising M to one solar mass M),

Rs = 2.95 (M/Mg) km, (263)
which is well inside any normal star! The Schwarzschild radius is part of the external vacuum

spacetime only for black holes. Indeed, it is what makes black holes black. At least it was
thought to be the feature that made black holes truly black, until Hawking came along in
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1974 and showed us that quantum field theory changes the behaviour of black holes. But as
usual, we are getting ahead of ourselves. Let us stick to classical theory.

I have been careful to write “singular in appearance” because in fact, the spacetime
is perfectly well behaved at r = Rg. It is only the coordinates that become strained at
this point, and these coordinates have been introduced, you will recall, so that they would
be familiar to us, we few, we happy band of observers at infinity, as ordinary spherical
coordinates. The curvature scalar R, for example, remains zero without so much as a ripple
as we pass through r = Rg. We can see this coordinate effect staring at us if we start with
the ordinary metric on the unit sphere,

ds* = db* + sin® 0 d¢?,
and change coordinates to x = sin 6:

dx?
1—2a2
This looks horrible at x = 1, but in reality nothing is happening. Since x is just the distance
from the z-axis to spherical surface (i.e. cylindrical radius), the “singularity” simply reflects
the fact that at the equator x has reached its maximum value 1. So, dxr must be zero at

this point. x is just a bad coordinate at the equator; ¢ is a bad coordinate at the pole. Bad
coordinates happen to good spacetimes. Get over it.

ds* = + 2%d¢?.

The physical interpretation of the first two terms of the metric (261) is that the proper
time interval at a fixed spatial location is given by

2GM 2
dt <1 -— ) (proper time interval at fixed location). (264)
rc

The proper radial distance interval at a fixed angular location and time is

2GM\
dr (1 - — > (proper radial distance interval at fixed time & angle). (265)
re

Exercise. Getting rid of the Schwarzschild coordinate singularity. A challenge
problem for the adventurous student only. Make sure you want to do this be-
fore you start. Consider the rather unusual coordinate transformation found by Martin
Kruskal. Start with our standard spherical coordinates ¢, r, 6, ¢ and introduce new " and ¢/

coordinates: ) )
) 2,12 212 re re
— 't =T —1
Pooen e (2GM > P (2GM>

2r'ct! tanh At
—— =tanh | ——
2+ 27 2GM

where 7" is an arbitrary constant. Show that the Schwarzschild metric transforms to
32G3M? —rc? ‘
252 2 1,72 2 2 1002
—cdr* = < .72 )eXp<2G]W> (c*dt™ — dr'™®) — r=dS

where T is arbitrary constant with dimensions of time, and r is the implicit solution of our
first equation for r? — ¢2t”2. The right side of this equation has a minimum of —c*T? at
r = 0, hence we must have

"2 > A2 T?)
always. When ¢’ < T there is no problem. But when ¢’ > T there are two distinct regions:

r’ = d+cy/t"? — T?! Then the metric has a real singularity at either of these values of ' (which
is just r = 0), but still no singularity at " = +ct’, the value r = Rg.
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6.5 Schwarzschild spacetime.

6.5.1 Radial photon geodesic

This doesn’t mean that there is nothing of interest happening at r = Rg.

For starters, the gravitational redshift recorded by an observer at infinity relative to
someone at rest at location r in the Schwarzschild spacetime is given (we now know) precisely
by

dr
dt = Exact. 266
(1 —2GM/rc?)1/? ( ) (266)
so that at r — Ryg, signals arrive at a distant observer’s post infinitely redshifted. What
does this mean?

Comfortably sitting in the Clarendon Labs, monitoring the radio signals my hardworking
graduate student is sending me whilst engaged on a perfectly reasonable thesis mission to take
measurements of the r = Rg tidal forces in a nearby black hole, I grow increasingly impatient.
Not only are the incessant complaints becoming progressively more torpid and drawn out,
the transmission frequency keeps shifting to longer and longer wavelengths, slipping out of
my receiver’s bandpass. Most irritating. Eventually, all contact is lost. (Typical.) I never
receive any signal of any kind from within Rg. Rg is said to be the location of the event
horizon. The singularity at » = 0 is present, but completely hidden from the outside world
at R = Rg within an event horizon. It is what Roger Penrose has aptly named “cosmic
censorship.”

The time coordinate change for light to travel from r4 to rg following its geodesic path
is given by setting

—(1 = 2GM/rc*)cPdt* +dr* /(1 — 2GM/rc*) =0

and then computing

B 1 ["® dr rg —ra Rs rg — Rg
tap= [ dt=- = —In| —— 2
AP /A c /m (1 -2GM/rc?) c - c (TA — RS) (267)

which will be recognised as the Newtonian time interval plus a logarithmic correction pro-
poritional to the Schwarzschild radius Rg. Note that our expression becomes infinite when
a path endpoint includes Rg. When Rg may be considered small over the entire integration
path, to leading order

= = 1
tap~ D14 - ray Bsy (T—A) 24 (1 ;. fisra/rs) H<TA/TB)) (268)

C B C B —TaA

A GPS satellite orbits at an altitude of 20,200 km, and the radius of the earth is 6370 km.
Rg for the earth is only 9mm! (Make a fist. Squeeze the entire earth inside it. You're not
even close to making a black hole.) Then, the general relativisitic correction factor is

RS 9 x 1073 10
~ =6.59x 10
rs—7a (20,200 — 6370) x 10° %

This level of accuracy, about a part in 10°, is needed for determining positions on the surface
of the earth to a precision of a few meters (as when your GPS intones “Turn right onto the
Lon-don Road.”). How does the gravitational effect compare with the second order kinematic
time dilation due to the satellite’s motion? You should find them comparable.
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6.5.2 Orbital equations

Start with the geodesic equation, written in terms of an arbitrary time parameter p:

d?z*  _, dztdz”
0 + m,% i =0 (269)

It doesn’t matter what p is, just use your watch. Using the table of equation (251), it is very
easy to write down the equations for the orbits in a Schwarzschild geometry:

d*(ct) B'drd(ct) 0

d—pQ Bap dp ~ " (270)
%—1—%3—23—2—811196089(%)2:0, (272)
%+%3—;%+2c0‘592—]9)%:0. (273)

Obviously, it is silly to keep 6 as a variable. The orbit may be set to the § = 7/2 plane.
Then, our equations become:

d*(ct) N B'dr d(ct)

- = 274
dp? Bdp dp 0 (274)
@r B [edt\® A [(dr\® r [(do\®
o 2 (== 22 () = 2
a? 24 <dp) T2 (dp) A (dp) . (275)
2 2drdo
—+ ———=0. 276
dp? + rdp dp (276)

Fxercise. Derive the last three equations very simply by applying the Euler-Lagrange Equa-
tions on the Lagrangian _

—B(r)t* + A(r)r? + r?¢?
where the dot represents d/dp. Which method do you prefer?

Remember that A and B depend explicitly on 7, and only implicity on p via r = r(p).
Then, the first and last of these equations are particularly simple:

d cdt
(B = 2
dp < dp) 277)
d o do
— — = 2
dp (T dp> (218)
It is convenient to choose our parameter p to be close to the time:
dt
— =B 279
T (279)



and of course general relativity conserves angular momentum for a spherical geometry:

d
7’2—¢ =J (constant) (280)
dp
Finally, just as we may form an energy integration constant from the radial motion equation
in Newtonian theory, so too in Schwarzschild geometry. Multiplying (275) by 2Adr/dp, and
using our results for dt/dp and d¢/dp, we find:

d ar\> J* 2
—lAal= =0 281
dp (dp) B (281)
or s
A (j—;) + % - % = —F (constant.) (282)

Fixing # = 7/2 and using our results for dt/dp, dr/dp and d¢/dp,

dr\’* dt > dr\? do\> & dr\> J?
() B (B AL w2 (L)) oA (Y)Y L - B (o83
‘ (dp) ‘ (dp) " (dp) T\ B\ @) T (283)
Hence dr? = dp*(E/c?), i.e. p and 7 differ only by a proportionality constant. For matter,
E > 0, while E = 0 for photons. To leading Newtonian order E ~ ¢?, i.e. the rest mass

energy per unit mass. Substituting for B in (282), we find that extremal values of orbital r
locations correspond to

2GM J? 9
(1 — 7’62 ) (ﬁ + E) — C = O (284)
for matter, and thus to
2GM Y\ J? 9
<1 — 7"02 ) 7'_2 —c=0 (285)

for photons.

The radial equation of motion may be written for dr/dr, dr/dt, or dr/d¢ respectively
(we use AB =1):

dr\? ¢ J? c?
dr\?> B? J? Bc?

(E) A (E ¥ —) =X (287)
dr\? 2 Er? c2rt

(@) 3 (1 * ?) =7 (288)

From here, it is simply a matter of evaluating a (perhaps complicated) integral over r to
obtain a solution.
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Figure 2: Bending of light by the gravitational field of the sun. In flat spacetime the
photon ~ travels the straight line from ¢ = 0 to ¢ = 7 along the path rsiny = b. The
presence of spacetime curvature starts the photon at ¢ = —¢ and finishes its passage at
@ =7+ 0. The deflection angle is Ay = 20.
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6.6 The deflection of light by an intervening body.

The first prediction made by General Relativity Theory that could be tested was that
starlight passing by the limb of the sun would be slightly but measurably deflected by the
gravitational field. This type of measurement can only be done, of course, when the sun is
completely eclipsed by the moon. Fortunately, the timing of the appearance of the theory
with an eclipse was ideal. One of the longest total solar eclipses of the century occured on
29 May 1919. The path of totality extended from a strip in South America to central Africa.
An expedition headed by A.S. Eddington observed the eclipse from the island of Principe,
off the west coast of Africa. Measurements of thirteen stars confirmed not only that gravity
affected the propagation of light, but that it did so by an amount in much better accord
with general relativity theory than with a Newtonian “corpuscular theory,” with the test
mass velocity set equal to c. (The latter gives a deflection angle half as large as GR, in
essence because the 2GM/rc? terms in both the df and dx metric coefficients contribute
equally to the photon deflection, whereas in the Newtonian limit only the dt modification is
retained—as we know.) This success earned Einstein press coverage that today is normally
reserved for rock stars. Everybody knew who Albert Einstein was!

Today, not only mere deflection, but “gravitational lensing” and image formation across
the electromagnetic spectrum are standard astronomical techniques to probe matter in all
its forms: from small planets to huge, diffuse cosmological agglomerations of dark matter.

Let us return to the classic test. As in Newtonian dynamics, it turns out to be easier to

work with w = 1/r, in which case
du\?> 1 [dr\’
) == (=) . 2
() (%) 0

Equation (288) with B = 1/A and E = 0 for a photon may be written

1 /dr\> B ¢
o (%) + 2= = constant (290)
In terms of w: ) ,
du 9 2GMu c
- 1 — = — 291
(@) (55 -7 (o
Differentiating with respect to ¢ (du/d¢ = u’) leads quickly to
3GM
u' +u= u® = 3eu’. (292)
c

We treat e = GJ\/[/C2 as a small parameter. We expand u as u = ug+uy, with u; = O(eug) <
uo (read “uy is of order € times uy and much smaller than uy”). Then, terms of order unity
must obey the equation

ug + ug = 0, (293)
and the terms of order ¢ must obey the equation
u +up = 3eud. (294)

To leading order (u = ugp), nothing happens: the photon moves in a straight line. If the
point of closest approach is the impact parameter b, then the equation for a straight line is
rsing = b, or
sin ¢

b

(295)

Uy =
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which is the unique solution to equation (293) with boundary conditions r = co at ¢ = 0

and ¢ = 7.

At order €, there is a deflection from a straight line due to the presence of u;:

3e

3e
u! +u; = 3eu? = =sin? ¢ =
1 1 €U ) 2h2

B (1 — cos2¢) (296)
Clearly, we need to search for solutions of the form u; = U + V cos 2¢, where U and V' are
constants. Substituting this into (296), we easily find find U = 3¢/2b* and V = ¢/2b*. Our

solution is then )

sing  3e n € COS 20
b 2b? 2b?
With € = 0, the solution describes a straight line, rsin¢ = b. The first order effects of
including e incorporate the tiny deflections from this straight line. The € = 0 solution sends
r off to infinity at ¢ = 0 and ¢ = 7. We may compute the leading order small changes to
these two “infinity angles” by using ¢ = 0 and ¢ = 7 in the correction € cos2¢ term. Then

we find that r goes off to infinity not at ¢ = 0 and 7, but at the slightly corrected values
¢ =—0 and ¢ =7 + § where

(207)

r

2€
0= — 298
a (298)
In other words, there is now a total deflection angle A¢ from a straight line of 24, or
AGM
A¢ = = 1.75 arcseconds for the Sun. (299)
c

Happily, arcsecond deflections were just at the limit of reliable photographic methods of
measurement in 1919. Those arcsecond deflections unleashed a truly revolutionary paradigm
shift. For once, the word is not an exaggeration.

6.7 The advance of the perihelion of Mercury

For Einstein personally, the revolution had started earlier, even before he had his Field
Equations. The vacuum form of the Field Equations is, as we know, sufficient to describe
the spacetime outside the gravitational source bodies themselves. Working with the equation
R, = 0, Einstein found, and on 18 November 1915 presented, the explanation of a 60-year-
old astronomical puzzle: what was the cause of Mercury’s excess perihelion advance of 43"
per century? The directly measured perihelion advance is actually much larger than this,
but after the interactions from all the planets are taken into account, the excess 43" per
century is an unexplained residual of 7.5% of the total. According to Einstein’s biographer
A. Pais, the discovery that this precise perihelion advance emerged from general relativity
was

“...by far the strongest emotional experience in Einstein’s scientific life, perhaps in all his life.
Nature had spoken to him. He had to be right.”

6.7.1 Newtonian orbits
Interestingly, the perihelion first-order GR calculation is not much more difficult than straight

Newtonian. GR introduces a 1/r? term in the effective gravitational potential, but there is
already a 1/r? term from the centrifugal term! Other corrections do not add substantively
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Figure 3: Departures from a 1/r gravitational potential cause elliptical orbits not to
close. In the case of Mercury, the perihelion advances by 43 seconds of arc per century.
The effect is shown here, greatly exaggerated.
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to the difficulty. We thus begin with a detailed review of the Newtonian problem, and we
will play off this solution for the GR perihelion advance.

Conservation of energy is
T Y (300)

where J is the (constant) specific angular momentum 72d¢/dt and € is the constant energy
per unit mass. (In this Newtonian case, when the two bodies have comparable masses, M is
actually the sum of the individual masses, and r the relative separation of the two bodies.)
This is just the low energy limit of (286), whose exact form we may write as

1 /dr\*> & (J*\ GM J? - F

2 ZZ ) = () = 2, 301

2(dT> +E(2r2) y ( +7’2E) ( 2E )C (301)
We now identify E with ¢* to leading order, and to next order (¢* — E)/2 with &€ (i.e. the

mechanical energy above and beyond the rest mass energy). The Newtonian equation may
be written

drd¢  J dr 2GM  J2\'?
UT:d_qu_f:ﬁd_QS:i (28 . _ﬁ> (302)
and thence separated:
Jdr =0 (303)
7 (25 260 J—Q)
r r
With u = 1/r,
/ 2E QGqu N2 A (304)
(ﬁ e )
or y
/ - oy =9 (305)
26 G*M? GM
[ﬁ+—J4 - (“—7)
Don’t be put off by all the fluff. The integral is standard trigonometric:
GM
_ e
cos ™ e | +¢ (306)
E2)

In terms of r = 1/u this equation unfolds and simplifies to
J?J)GM 28 J*
r = -— e
1+ecos¢’ G2M?

With £ < 0 we find that € < 1, and that (307) is just the equation for a classical elliptical
orbit of eccentricity e. We identify the semi-latus rectum,

L=J)GM (308)

=1+ (307)
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the perihelion (radius of closest approach) r_ and the aphelion (radius of farthest extent)

Ty,
L L L_1/1 1 (309)
r_ = T = —_ = — JR— JE—
14¢ T 1—¢ L 2\ry 1

and the semi-major axis
1
a= i(m +r_), whence L = a(l — €°) (310)

Notice that the zeros of the denominator in the integral (305) occur at u_ = 1/r_ and
uy = 1/ry, corresponding in our arccosine function to ¢ equals 0 and 7 respectively.

Ezercise.) The Shows must go on. Show that the semi-minor axis of an ellipse is b = av/1 — €.
Show that the area of an ellipse is mab. Show that the total energy of a two-body bound system
(masses m1 and mg) is —G'mima/2a, independent of e. With M = mj + mg, show that the period

of a two-body bound system is 27+/a3/GM, independent of e. (There is a very simple way to do
the latter!)

6.7.2 The perihelion advance of Mercury

Equation (288) may be written in terms of u = 1/r as

du\? 2GMu E c?
O () )5

Now differentiate with respect to ¢ and simplify. The resulting equation is:

y GME 3GMu®> GM 3GMu?
U tu= 22 2 = 72 + 2

since E is very close to ¢? for a nonrelativistic Mercury, and the difference here is immaterial.
The Newtonian limit corresponds to dropping the final term on the right side of the equation;
the resulting solution is

, (312)

GM J?/GM
usuy =7 (14 €cos¢) or T:#cosgb

(313)

where € is an arbitrary constant. This is just the classic equation for a conic section, with
hyperbolic (e > 1), parabolic (e = 1) and ellipsoidal (¢ < 1) solutions. For ellipses, € is the
eccentricity.

As the general relativistic term 3GMu?/c? is tiny, we are entirely justified in using the

Newtonian solution for «? in this higher order term. Writing u = uy + du with uy given by
(313), the differential equation becomes

d*ou 3GM ,
dgr TOUT TN =
In Problem Set 2, you will be asked to solve this equation. The resulting solution for
u = uy + ou may be written

3(GM)?
c2J4

(1 + 2ecos ¢ + €? cos® ¢). (314)

U~ J_];{ (14 ecos[p(l — a)]) (315)
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Figure 4: Radar echo delay from Venus as a function of time, fit with
general relativistic prediction.

where a = 3(GM/Jc)?. Thus, the perihelion occurs not with a ¢-period of 27, but with a
slightly longer period of
2T

- 21 + 27 a, (316)

i.e. an advance of the perihelion by an amount

2 10
A = 2ra = 6 (G—M> = 6 (GM) — 2783 x 10~° (10 m) (317)

Jec 2L L

in units of radians per orbit. With L = 5.546 x 10'° m, the measured semi-latus rectum for
Mercury’s orbit, this value of A¢ works out to be precisely 43 seconds of arc per century.

From its discovery in 1915 until the stunning gravitational radiation measurement in
1982 of the binary pulsar 1913+16, the precision perihelion advance of Mercury was general
relativity’s greatest observational success.

6.8 Shapiro delay: the fourth protocol

For many years, the experimental foundation of general relativity consisted of the three
tests we have described that were first proposed by Einstein: the gravitational red shift,
the bending of light by gravitational fields, and the advance of Mercury’s perihelion. In
1964, nearly a decade after Einstein’s passing, a fourth test was proposed: the time delay by
radio signals when crossing near the sun in the inner solar system. The idea, proposed and
carried out by Irwin Shapiro, is that a radio signal is sent from earth, bounces off Mercury,
and returns. One does the experiment when Mercury is at its closest point to the earth,
then repeats the experiment when the planet is on the far side of orbit. There should be
an additional delay of the pulses when Mercury is on the far side of the sun because of the
traversal of the radio waves across the sun’s Schwarzschild geometry. It is this delay that is
measured.

Recall equation (287), using the “ordinary” time parameter ¢ for an observer at infinity,
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with £ = 0 for radio waves:

dr\*> B?>J* B¢
- S 318
(dt) AT (318)
It is convenient to evaluate the constant .J in terms of 7y, the point of closest approach to
the sun. With dr/dt = 0, we easily find

2 2
_TpC

2
-2 1
7=y (319)

where By = B(rg). The differential equation then separates and we find that the time ¢(r, ()
to traverse from 79 to r (or vice-versa) is

1 [ Ad
o) = [ — (320)
€ Jro 1_27”_(2)
Bo7”2

where we have made use of AB = 1. Expanding to first order in GM/c*r with B =

1—2GM/c*r:
B} 2GM (1 1\]r?
AN —— )] -2 321
By r? [ i c? <r0 r)] 72 (821)
This may now be rewritten as:
B r? rd 2G My
BV RO (5 R Y L 322
By r? ( r2 c2r(r+ro) (322)

Using this in our time integral for ¢(rg,r) and expanding,

r 2\ —1/2
t(ro,r) = %/ dr (1 — r—“) <1+ 260 + Gy )) (323)

r2 rc? r(r +ro

The required integrals are

1 [ rdr 1, 9\1/2
e (324
2GM [T dr 2GM r 2GM r r2
= h'(—)= In | — — -1 325
&‘A<ﬂ—@wﬂ o (m) J n<m+ g ) )
M T d M —
¢ 3T0/ Z N1/2 Gg A (326)
c vy (T +70)(1r% —17) / c r -+
Thus,
1 2GM r 72 GM |r—r
¢ (2 a2\1/2 il | o 1 0 9
(r,70) C('r re) ' c + 5 n o + 2 + &\ (327)

We are interested in 2t(ry,70) £ 2t(rq,rg) for the path from the earth at ry, reflected from
the planet (at 75), and back. The £ sign depends upon whether the signal passes through
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ro while enroute to the planet, i.e. on whether the planet is on the far side or the near side
of the sun.

It may seem straightforward to plug in values appropriate to the earth’s radial location
and the planet’s (either Mercury or Venus, in fact), compute the “expected Newtonian time”
for transit (a sum of the first terms) and then measure the actual time for comparison with
our formula. In practise, to know what the delay is, we have to know what the Newtonian
transit time is to fantastic accuracy! In fact, the way this is done is to treat the problem
not as a measurement of a single delay time, but as an entire function of time given by
our solution (327) with r = r(¢). Figure (3) shows such a fit near the passage of superior
conjunction (i.e. the far side orbital near the sun in sky projection), in excellent agreement
with theory. Exactly how the parameterisation is carried out would take us too far afield;
there is some discussion in W72 pp. 202-207, and an abundance of topical information on
the internet under “Shapiro delay.”

Modern applications of the Shaprio delay use pulsars as signal probes, whose time passage
properties are altered by the presence of gravitational waves, a topic for the next chapter.

5



They are not objective, and (like abso-
lute welocity) are not detectable by any
conceivable experiment. They are merely
sinuosities in the co-ordinate system, and
the only speed of propagation relevant to
them is “the speed of thought.”

— A. S. Eddington writing in 1922 of
FEinstein’s suspicions.

On September 14, 2015, at 09:50:45 UTC
the two detectors of the Laser Interfer-
ometer Gravitational Wave Observatory
stmultaneously observed a transient grav-
itational wave signal. The signal sweeps
upwards from 35 to 250 Hz with a peak
gravitational wave strain of 1 x 1072, It
matches the waveform predicted by general
relativity for the inspiral and merger of a
pair of black holes and the ringdown of the

resulting single black hole.

— B. P. Abbott et al., 2016, Physical
Review Letters, 116, 061102

7 Gravitational Radiation

Gravity is spoken in the three languages. First, there is traditional Newtonian potential
theory, the language used by most practising astrophysicists. Then, there is the language of
Einstein’s General Relativity Theory, the language of Riemannian geometry that we have
been studying. Finally, there is the language of quantum field theory: gravity is a theory
of the exchange of spin 2 particles, gravitons, much as electromagnetism is a theory arising
from the exchange of spin 1 photons. Just as the starting point of quantum electrodynamics
is the radiation theory of Maxwell, the starting point of quantum gravity must be a classical
radiation theory of gravity. Unlike quantum electrodynamics, the most accurate physical
theory ever created, there is no quantum theory of gravity at present, and there is not even
a consensus approach. Quantum gravity is therefore very much an active area of ongoing
research. For the theorist, this is reason enough to study the theory of gravitational radi-
ation in general relativity. But there are good reasons for the practical astrophysicist to
get involved. In Februrary 2016, the first detection of gravitational waves was announced.
The event signal had been received and recorded on September 14, 2015, and is denoted
Glravitational|W[ave|150914. The detection was so clean, and matched the wave form pre-
dictions of general relativity in such detail, there can be no doubt that the detection was
genuine. A new way to probe the most impenetrable parts of the Universe is at hand.
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The theory of general relativity in the limit when g,, is very close to 7,, is a classical
theory of gravitational radiation (and not just Newtonian theory), in the same way that
Maxwellian Electrodynamics is a classical electromagnetic radiation theory. The field equa-
tions for the small difference tensor g,, — 7, become, in the weak field limit, a set of rather
ordinary looking wave equations with source terms—much like Maxwell’'s Equations. The
principal difference is that electrodynamics is sourced by a vector quantity (the usual vector
potential A with the potential ® combine to form a 4-vector), whereas gravitational fields in
general relativity are sourced by a tensor quantity 7),,. This becomes a major difference when
we relax the condition that the gravity field be Weaﬁ: the gravitational radiation itself makes
a contribution to its own source, something electromagnetic radiation cannot do. But this is
not completely unprecedented in wave theories. We have seen this sort of thing before, in a
purely classical context: sound waves can themselves generate acoustical disturbances, and
one of the consequences is a shock wave, or sonic boom. While a few somewhat pathological
mathematical solutions for exact gravitational radiation waves are known, in general people
either work in the weak field limit or resort to numerical solutions of the field equations.
Even with powerful computers, however, precise numerical solutions of the field equations
for astrophysically interesting problems—Ilike merging black holes—have long been a major
technical challenge. In the last decade, a practical mathematical breakthrough has occurred,
and it is now possible to compute highly accurate wave forms for these kinds of problems,
with important predictions for the new generation of gravitational wave detectors.

As we have noted, astrophysicists now have perhaps the most important reason of all to
understand gravitational radiation: we are on the verge of what will surely be a golden age
of gravitational wave astronomy. That gravitational radiation truly exists was established
in 1974, when a close binary system (7.75 hour period) with a neutron star and a pulsar
(PSR 1913+16) was discovered by Hulse and Taylor. So much orbital information could be
extracted from this remarkable system that it was possible to predict, then measure, the rate
of orbital decay (more precisely, the gradual speed-up of the decaying orbit’s period) caused
by the energy carried off by gravitational radiation. The resulting period shortening, though
tiny in any practical sense, was large enough to be cleanly measured. General relativity
turned out to be exactly correct (Taylor & Weisberg, ApJ, 1982, 253, 908), and the 1993
Nobel Prize in Physics was duly awarded to Hulse and Taylor for this historical achievement.

The September 2015 gravitational wave detection pushed back the envelope dramatically.
It established that i) the reception and analysis of gravitational waves is technically feasible
and will soon become a widely-used probe of the universe; ii) black holes exist beyond any
doubt whatsoever, this truly is the proverbial “smoking-gun”; iii) the full dynamical content
of strong field general relativity on time and length scales characteristic of stellar systems is
correct. This achievement is an historical milestone in physics. Some have speculated that
its impact on astronomy will rival Galileo’s introduction of the telescope. Perhaps Hertz’s
1887 detection of electromagnetic radiation in the lab is another, more apt, comparison.
(Commercial exploitation of gravity waves is probably some ways off. Maybe it will be
licenced someday as a revenue source.)

There may be more to come. In the near future, it is anticipated that extremely deli-
cate pulsar timing experiments, in which arrival times of pulses are measured to fantastic
precision, will come on line. In essence, this is a measure of the Shapiro delay. It is caused
neither by the Sun nor by a star, but by the passage of a gravitational wave between us and
the pulsar source!

The subject of gravitational radiation is complicated and computationally intensive. Even
the basics will involve some effort on your part. I hope you will agree that the effort is well
rewarded.
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7.1 The linearised gravitational wave equation

We assume that the metric is close to Minkowski space. Let us introduce the quantity h,,,
the (small) departure in the metric tensor g, from its Minkowski 7, limit:

Juv = N + h,uzz (328)

To leading order, when we raise and lower indices we may do so with 7,,. But be careful
with ¢g"” itself. Don’t just lower the indices in the above equation willy-nilly! Instead, note
that
g =" — hH (329)
to ensure g, 9" = d;. (You can raise the index of g with 1 only when approximating ¢g"* as
its leading order value, which is n*”.) Note that
0 0
n“yhun = hﬁ? TI‘LW_ (33())

orv  dz,
and that we can slide dummy indices “up-down” sometimes:

Ol Ohy  Ohg _ Ohp

or, n“pﬁxu - Ozr  Oxr

(331)

The story begins with the Einstein Field Equations cast in a form in which the “linearised
Ricci tensor” is isolated on the left side of our working equation. Specifically, we write

R, = R+ RY) + .. etc. (332)
and 0
R
Gl = Rjo) = —— (333)

where Rf},,) is all the Ricci tensor terms linear in h,,,, Rl(fl,) all terms quadratic in A, and so
forth. The linearised affine connection is

A
P %W (ahpy Ohy 8hw) 1 <ah3 ohy 8h,w> | 334)

N OxH ox” oxr 2\ Or * oz  Oxy

In terms of hy,, and h = hf, from equation (213) on page 50, we explicitly find

1( 9*h %) 2R
1 _ = . woo :
R/W 2 <8I’“a$” oxrvOoxr? OxroT + Dh#”) (335)

where 52 L 5
0=-——=V’- = 336
0z 0z c? ot? (336)
is the d’Alembertian (clearly a Lorentz invariant), making a most welcome appearance into
the proceedings. Contracting p with v, we find that

82 hHv

D — gh —
I H oxroxY

(337)
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where we have made use of

oy _on

or,  Oxr’

Assembling G,(}l,), we find

1 0%h o0%n) 52 92he
(1) — = _ n v _ .
G = 2 [3:1:“83:“ 020z drorh Ol = T (Dh —&'L'A@xﬂ)] : (338)

The full, nonlinear Field Equations may then formally be written

87GT,, 8nG (T, v
where A A o
c c R
i = o G~ G = o (B2 =) (310

Though composed of geometrical terms, the quantity 7, is written on the right side of the
equation with the stress energy tensor 7),,, and is interpreted as the stress energy contribution
of the gravitational radiation itself. We shall have more to say on this in section 7.4. In linear
theory, 7,, is neglected in comparison with the ordinary matter 7),,.

This is a bit disappointing to behold. Even the linearised Field Equations look to be
a mess! But then, you may have forgotten that the raw Maxwell wave equations for the
potentials are no present, either. You will permit me to remind you. Here are the equations
for the scalar potential ® and vector potential A:

10

Voo + c@t(v ) P (341)
1 0%A 109 4
ViA-G%m — VY (V'A - za) R (342)

(Note: I have used esu units, which are much more natural for relativity. Here p is the
electric charge density.) Do the following exercise!

FEzercise. In covariant notation, with A% = (&, A) and J* = (p, J/c) representing respec-
tively the potential and source term 4-vectors, the original general equations look a bit more
presentable. The only contravariant 4-vectors that we can form which are second order in
the derivatives of A% are DA and 9%93A°. Show that if 9,J% = 0 identically, then our
equation relating A® to J* must be of the form

DA® — 99547 = CJ°

where C' is a constant to be determined, and that this equation remains unchanged when
the transformation A% — A® + 0“A in made. This property is known as gauge-invariance.
We will shortly see something very analogous in general relativity. In the meantime, how do
we determine C7

Remember the story here. Work in the “Lorenz gauge,” which we are always free to do:

199
VA4 -— =0 (343)
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In covariant 4-vector language, this is just 0,A* = 0. Then, the dynamical equations
simplify:

ViR — S5 = 0% = —dmp (344)
1 9°A 4
2 — —
VPA- 5o 5 =0A=——J (345)

This is nicer. Physically transparent Lorentz-invariant wave equations emerge. Might some-
thing similar happen for the Einstein Field Equations?

That the answer might be YES is supported by noticing that Gflll,) can be written entirely
in terms of the “Bianchi-like” quantity

_ _ 2%
Py = h — ’7“2”h , or RM=ht— 5”2h . (346)

Using this in (338), the linearised Field Equation becomes

Ozv0x>  Oxrdz + O dxP A

(It is easiest to verify this by starting with (347), substituting with (346), and showing that
this leads to (338).)

Interesting. Except for Oh,,, every term in this equation involves the divergence of hf
or M. Hmmm. Shades of Maxwell’s 9A%/0z®. In the Maxwell case, the freedom of gauge
invariance allowed us to pick the gauge in which 0A%/dz* = 0. Does our equation have a
gauge invariance that will allow us to do the same for gravitational radiation so that we can
set these h-divergence derivatives to zero?

i N o O°hY _ 167GT,,
uv .

[0

(347)

It does. Go back to equation (338) and on the right side, change h,, to h/,, where

p
o5, 0%,

oxr  Oxv’

Ry = by — (348)

and the §, represent any vector function. You will find that the form of the equation
is completely unchanged, i.e. the ¢, terms cancel out identically! This is a true gauge
invariance.

In this case, what is happening is that an infinitesimal coordinate transformation itself
is acting as a gauge transformation. If

t=at+ (), or zF=a"—-E&"(2')  tolead order. (349)
then
oxP 0x° o&P ., 0&°

g:u/ = 77;,/ + h;“/ = @wgpa = (55 - @) <5u - @) (npa + hpo) (35())

With 7’ identical to n, we must have

NS

A IS 14 1
By =y — =20 = 2% (351)



as before. Though closely related, don’t confuse general covariance under coordinate trans-
formations with this gauge transformation. Unlike general covariance, the gauge transfor-
mation works without actually changing the coordinates! We keep the same z’s and add a
group of certain functional derivatives to the h,,, analogous to adding a gradient V& to A
in Maxwell’s theory. We find that the equations remain identical, just as we would find if
we took VX (A + V&) in the Maxwell case.

Pause for a moment. In general relativity, don’t we actually need to change the coor-
dinates when we...well, when we change the coordinates? What is going on here? Keeping
the coordinates is not an option, is it? Change the A*” tensor components but leave the
coordinates untouched? Why should that work?

Let me try to clarify what has always struck me as a genuinely confusing point. (If it is all
clear to you already, or you willing to take this as it comes, feel free to skip this paragraph.)
If we did a full coordinate transformation, we would of course find that the full Einstein
tensor wave equation would also have the (nonlinear) solution %, in 2’ coordinates. The
tensorial form of the field equations is built in just that way. Here, however, we are working
only with the part linear in h, and linear in £, assuming these are comparable. So imagine
doing the full transformation, but approaching it order by order in h or §. Every order in h
has to independently cooperate: h,, must be a solution to the equations when we keep only
the linear terms by themselves. Then we must find that it is still a solution when we work
with the quadratic terms, which cancel amongst themselves, and so on. We start first with all
the terms linear in h, the largest terms to worry about. In the linearised equation we change
the h’s by adding the £ derivatives following the equation (351) prescription. The additional
terms generated are of order 9¢/0x. Okay, noted, very good. Now that we’ve modifed the
h’s, continue on with the same infinitesimal coordinate transformation, next applied to the
0/0x* derivatives, to get those transformed as well to linear order. Ah. Interesting. The
new ¢-terms generated are of order (9¢/0x")(0Oh /0x):

DN QxP DWW AWM DEr DN

ox'm  Ox'm dxP  Oxh ox'* Oxr’

and remember that & and A’ are both supposed to be small. By contrast, the change of h to
h' via (351) gave us additional terms in our equation which are an order larger: 9¢/0z, not
the product of 0,& with 0,h'. If we had to additively combine 0,€ terms with the product
terms 0,¢ 0, h, we would be blending orders in h and £ that don’t match! Do you see what
this means? Since h/(z2') is a solution of the full tensor wave equation, it must also be of
the more restricted linearised equation, when A is small. Changing h as per equation (351)
generates relatively big linear terms, and then continuing our duty and changing z to
in the derivatives actually generates only little stuff. The little stuff cannot cancel out the
the big stuff, the 0,€ terms that we have generated from (351). So how do we get rid of
those much bigger 0,€ terms, as we must in order to ensure that h’ really is a solution of
the linear equation? The answer is that we don’t have to actively get rid of those terms.
The equation kills those terms for us, all by itself when we add them all up. Miracle?
No. This is exactly how a coordinate transformation must behave. That is the beauty of
it: it reduces to a gauge-invariant theory in the linear regime. Even without transforming
the partial derivatives explicitly, the largest 9,¢ terms in the gauge transformation cancel
one another. In the full theory, members of the “quadratic club,” terms of order (09,£)0d,h,
will ultimately cancel out too. But they do so amongst themselves, thank you very much.
Quadratic members only please. We are a higher order than you linear fellows.

Understanding the gauge properties of the gravitational wave equation was very chal-
lenging in the early days of the subject. The opening “speed-of-thought” quotation of this
chapter by Eddington is taken somewhat out of context. What he really said in his famous
paper (Eddington A.S. 1922 Proc. Roy. Soc. A, 102, 716, 268) is the following:
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“Weyl has classified plane gravitational waves into three types, viz.: (1) longitudinal-longitudinal;
(2) longitudinal-transverse; (3) transverse-transverse. The present investigation leads to the con-
clusion that transverse-transverse waves are propagated with the speed of light in all systems of
co-ordindates. Waves of the first and second types have no fixed velocity—a result which rouses
suspicion as to their objective existence. Einstein had also become suspicious of these waves (in
so far as they occur in his special co-ordinate system) for another reason, because he found they
convey no energy. They are not objective and (like absolute velocity) are not detectable by any
conceivable experiment. They are merely sinuosities in the co-ordinate system, and the only speed
of propagation relevant to them is the ‘speed of thought.” ”

The quotation is often taken to be dismissive of the entire notion of gravitational radi-
ation, which it clearly is not. Rather, it is directed toward those solutions which we would
now say are gauge-dependent (either of the first two types of waves, which involve at least
one longitudinal component) and those which are gauge-independent (the third, completely
transverse, type). Physical solutions must ultimately be gauge independent. Matters would
have been clear to someone who bothered to examine the components of the Riemann cur-
vature tensor. The first two types of waves would have produced an identically zero R)‘WH.
They produce no curvature; they are indeed “merely sinuosities in the co-ordinate system,”
and they are are unphysical.

Back to our problem. Just as the Lorenz gauge d,A% = 0 was useful in the case of
Maxwell’s equations, so now is the so-called harmonic gauge:

Ohk  Ohk Loh _ o

_Z — 352
oxt  Jxt  20zv (352)
In this gauge, the Field Equations (347) take the “wave-equation” form
- 167GT),
Oy = _# (353)
c

How we can be sure that, even with our gauge freedom, we can find the right £&# to get into
a harmonic gauge and ensure the emergence of (353)7 Well, if we have been unfortunate
enough to be working in a gauge in which equation (352) is not satisfied, then form %}, a la

equation (351) and demand that Oh**/0z# = (1/2)0Rh'/0x”. We find that this implies

_om

orH’

0é, (354)

a wave equation for &, identical in form to (353). For this equation, a solution certainly
exists. Indeed, our experience with electrodynamics has taught us that the solution to the
fundamental radiation equation (353) takes the form

_ AG [ T, (vt —

and hence a similar solution exisits for (354). The h,,,, like their electrodynamic counterparts,
are determined at time ¢ and location r by a source intergration over r’ taken at the retarded
times ¢ =t — R/c. In other words, disturbances in the gravitational field travel at a finite
speed, the speed of light c.

Fzercise. Show that for a source with motions near the speed of light, like merging black
holes, hy,, (or hy, for that matter) is of order Rg/r, where Rg is the Schwarzschild radius
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based on the total mass of the system in question and 7 is the distance to the source. You
want to know how big h,, is going to be in your detector when black holes merge? Count

the number of expected Schwarzschild radii to the source and take the reciprocal. With M*
equal to the total mass measured in solar masses, show that h,, ~ SZW};Ot /Tkm, Measuring r
in km. We are pushing our weak field approximation here, but to this order it works fine.
We'll give a sharper estimate shortly.

7.1.1 Come to think of it...

You may not have actually seen the solution (355) before, or maybe, you know, you just
need a little reminding. It is important. Let’s derive it.

Consider the equation

1 0%V 9
- U =—4
292 TV mf(r,1) (356)
We specialise to the Green’s function solution
1 0°G 9
T2 + VG = —4md(r)o(t) (357)

Of course, our particular choice of origin is immaterial, as is our zero of time, so that we
shall replace r by R=7 — v’ (R = |R|), and t by 7 =t — t’ at the end of the calculation,
with the primed values being fiducial reference points. The form of the solution we find here
will still be valid with the shifts of space and time origins.

Fourier transform (357) by integrating over [ e™!dt and denote the fourier transform of

G by G: ) )
kG + V26 = —4ns(r) (358)

where k2 = w?/c?. Clearly G is a function only of r, hence the solution to the homogeneous
equation away from the origin,
> (r@)

e + k2(7‘é) =0,

is easily found to be G = e*#" /r. The delta function behaviour is actually already included
here, as can be seen by taking the limit & — 0, in which we recover the correct potential of
a point charge, with the proper normalisation already in place. The back transform gives
G= L eFihr=iwt iy = e e/ oy (359)
2r J_ o 2mr J_o

which we recognise as a Dirac delta function (remember w/k = ¢):

G o(t :Frr/c) R o(t —Tr/c) R o(r —RR/C)

(360)

where we have selected the retarded time solution ¢ — r/c as a nod to causality, and moved
thence to (7, R) variables for an arbitary time and space origin. We see that a flash at ¢t = ¢/
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located at » = 7’ produces an effect at a time R/c later, at a distance R from the flash. The
general solution constructed from our Green’s function is

_ f(rla t/> ' I g0 f(T,?t/> ’
\Il_/Té(t—t ~ R/e)dt'dr _/—R dr (361)

where in the final integral we have set t' = ¢ — R/c, the retarded time. Remember that ¢’
depends on both r and r’.

7.2 Plane waves

To understand more fully the solution (355), consider the problem in which 7}, has an

oscillatory time dependence, e~™*. Since we are dealing with a linear theory, this isn’t
particularly restrictive, since any well-behaved time dependence can be represented by a
Fourier sum. The source, say a binary star system, occupies a finite volume. We seek the
solution for h,, at distances huge compared with the scale of the source itself, i.e. 7> 7'
Then,

R~r—e.-r (362)
where e, is a unit vector in the r direction, and
7 . 4G / . 3
hyw(r,t) = expli(kr — wt)] — [ T, (r") exp(—ik - 7') d°r (363)
rc

with k = (w/c)e, the wavenumber in the radial direction. Since r is huge, this has the

asymptotic form of a plane wave. Hence, h,, and thus h,, itself have the form of simple
plane waves, travelling in the radial direction, at large distances from the source generating
them. These waves turn out to have some remarkable polarisation properties, which we now
discuss.

7.2.1 The transverse-traceless (TT) gauge

Consider a traveling plane wave for h,,, orienting our z axis along k, so that

2
K =w/c, k' =0, k¥*=0, ¥¥ =w/c  and ko = —w/c, ki =K' (364)

where as usual we raise and lower indices with 7,,0r its numerical identical dual n*”.
Then h,, takes the form
hyw = ea exp(ik,z”) (365)

where a is an amplitude and e,, = e,, a polarisation tensor, again with the 7’s raising and
lowering subscripts. Thus

eij =€) = €’ (360)
= —el = ¢l = —¢y; (367)
e” = eg = —€g (368)
The harmonic constraint Oh 1 Oh*
8_332 - 31,5 (369)
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implies

kuel, = kel /2 (370)
For v = 0 this means ,
koed + ksep = kolel +€5)/2, (371)
or
— (600 + 630) = (6,’,’ — 600)/2. (372)
When v = j (a spatial index),
ko@? + kgE? = kj (eii — 600)/2 (373)
The 5 =1 and j = 2 cases reduce to
o1 + €31 = €2 + €32 = 0, (374)
while j = 3 yields
€03 + €33 = (€5 — €po) /2 = —(eoo + €o3) (375)

Equations (374) and the first=last equality of (375) yield
o1 = —€31, €o2 = —€32, €o3 = —(€oo + €33)/2 (376)
Using the above expression for egs in the first=second equality of (375) then gives
o = —€11 (377)

Of the 10 independent components of the symmetric e, the harmonic condition (369) thus
enables us to express eg; and eqgs in terms of es;, ego, and e;;. These latter 5 components plus
a sixth, ejs, remain unconstrained for the moment.

But wait! We have not yet used the gauge freedom of equation (351) within the harmonic
constraint. We can still continue to eliminate components of e,,. In particular, let us choose

§u() = te, exp(ik,a”) (378)

where the €, are four constants to be chosen. This satisfies 0¢,=0, and therefore does not
change the harmonic coordinate condition, d,h% = 0. Then following the prescription of
(351), we generate a new, but physically equivalent polarisation tensor,

e;“, = ey + kue, + ke, (379)

and by choosing the €, appropriately, we can eliminate all of the €], except for e}, €5, = —ey,
and ¢/,. In particular, using (379),

6,11 = €11, 6/12 = €12 (380)
unchanged. But with k£ = w/e,
6/13 =e13+ kEl, 6/23 = €93 + kEQ, 6;)3 = e33 + 2k’€3, 660 = €0 — 2]{?60, (381)

so that these four components may be set to zero by a simple choice of the €,. When working
with plane waves we may always choose this gauge, which is transverse (since the only e;;
components that are present are transverse to the z direction of propagation) and traceless
(since €13 = —epz). Oddly enough, this gauge is named the transverse-traceless (TT) gauge.
f\/otzcedthat in the TT gauge, h,, vanishes if any of its indices are 0, whether raised or
owere
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7.3 The quadrupole formula

In the limit of large r (“compact source approximation”), equation (355) is:

- 4G
W (r,t) = — / ™ (v ) d>r, (382)

rc
where t' =t — r/c is the retarded time. Moreover, for the TT gauge, we are interested in
the spatial 7j components of this equation, since all time indices vanish. (Also, because h,,

is traceless, we need not distinguish between h and h.) The integral over Tj; may be cast in
a very convenient form as follows.

a(fleik) 3,1 oT™* 1§ o330 ij 3.0

where the first equality follows because the first integral reduces to a surface integration of
T at infinity, where it is presumed to vanish. Thus

- oT* , or® , 1d o
T 3 15 33,0 — / 1j 43,0 — — /T’LO 15 33,1 4
/ d’r / (8:)&”“) 7 d°r <_8a:’0) 7 d°r o 7 d°r (384)

where the second equality uses the conservation of T#”. Remember that ¢’ is the retarded
time. As Tj; is symmetric in its indices,

d o d o
@ TZOI,/] d3 I @ /T]Oxll dgT/ (385)
Continuing in this same spirit,
aTOk 1% 17 aTok o o o
0= / T "ax7) affk‘” ) o — / ( o ) oz dPr' + / (T2 +T%2") d*r (386)
T T

Using exactly the same reasoning as before,

o o 1d o
/ (T2 + TYa") &' = —— / Tx"z" d*r' (387)
c
Therefore,
/TU &r' = Lﬁ /Toox'ix’j >’ (388)
2¢2 dt”?
Inserting this in (382), we obtain the quadrupole formula for gravitational radiation:
_. 2G d*1Y
]’LJ = E dt’z (389)

where I is the quadrupole-moment tensor of the energy density:
IV = /Toox’ix’j d*r’ (390)
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To estimate this numerically, we write

K

el Ma*c*w? (391)

where M is the characteristic mass of the rotating system, a an internal separation, and w
a characteristic frequency, an orbital frequency for a binary say. Then

2G M a?w?
cAr

]TLij ~ 7 X 10_22(M/M@)(af1w$/7"100) (392)
where M /M, is the mass in solar masses, a;; the separation in units of 10! cm (about a
separation of one solar radius), w; the frequency associated with a 7 hour orbital period
(similar to PSR193+16) and rygo the distance in units of 100 parsecs, some 3 x 10?2 cm. A

typical ra‘gler large h one might expect at earth from a local astronomical source is then of
order 107",

What about the LIGO source, GW1509147 How does our formula work in this case?” The
distance in this case is cosmological, not local, with r = 1.2 x 10?2 km, or in astronomical
parlance, about 400 megaparsecs (Mpc). In this case, we write (392) as

—. 2GMa’w? 2.9532 M 2 M /M, 2
W~ 647" Yo ( . ) (M ) <%> ~ 1 x 10*22Q (%) ’ (393)
km © c TGpe (&

since 2G M /c? is just the Sun’s Schwarzschild radius. (One Gpc=103Mpc = 3.0856 x
10?*km.) The point is that (aw/c)? is a number not very different from 1 for a relativistic
source, perhaps 0.1 or so. Plugging in numbers with M /M = 60 and (aw/c)* = 0.1, we find

hi; = 1.5 x 1072, just about as observed at peak amplitude.

Ezercise. Prove that h* given by (389) is an exact solution of Ok = 0, for any r, even if 7 is not
large.

7.4 Radiated Energy

7.4.1 A useful toy problem

We have yet to make the link between h,, and the actual energy flux that is carried off by
these time varying metric coefficients. Relating metric coefficients to energy is not trivial.
To see how to do this, start with a simpler toy problem. Imagine that the wave equation for
general relativity looked like this:

1 0%® 9
—;WvLV CDZ47TG,O (394)
This is what a relativisitic theory would look like if the source p were just a simple scalar
quantity, instead of a component of a stress tensor. Then, if we multiply by (1/47G)0®/0t,

integrate (0®/0t)V*® by parts and regroup, this leads to

09 2 1 09 0P

1 0

G Ot
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But
00 _ 0(p®) - Op _ O(pP) _ 0(p?)
P = "or %= o TEVv) =5

where v is the velocity and the mass conservation equation

+ V-(pvd) — pv-V (396)

dp
E + V-(pv) =0

has been used in the second “= " sign from the left. Combining (395) and (396), and then
rearranging the terms a bit leads to

) 1 0D\ ? )

The right side is just minus the rate at which work is being done on the sources per unit
volume. (The force per unit volume, you recall, is —pV®.) For the usual case of interest
when the source p vanishes outside a certain radius, the left side may then be readily inter-
preted as a far-field wave energy density of [(0,®)? + |V ®|?]/87G and a wave energy flux of
—(0,®)V®/47G. (Is the sign of the flux sensible for outgoing waves?) The question we raise
here is whether an analogous method might work on the more involved linear wave equation
of tensorial general relativity. The answer is YES, but we have to set things up properly.
We can’t be casual. And, needless to say, it is a bit more messy index-wise!

1 0P
+ V. <pv<b — RWVCI)) = pv-Vo (397)

7.5 A conserved energy flux for linearised gravity
Start with equation (347):

. o°h, 0°h;) o2 h 167GT,,
Ohy — .

© Oxvdr  Qrrdr T 0x\dxP ct
Contract on pv: the first term on the left becomes 0Oh, the second and third each become
—9%h* /022 OxP, while the final contraction turns 7, into a factor of 4. (Why?) This leads
us to P2

Ox P

where we have written kK = 167G /c*. We then recast our original equation as

(398)

Oh + 2 —KT (399)
. o*h, 9%h)
S = Orvdx™  xrdz

where we have introduced the source function

+ ,r/MVD]_?' - _/{S,uy (400)

N T’
2

S =T — (401)

Now multiply (400) by 0h*”/0x°, summing over p and v as usual but keeping o free. The
first term on the left becomes
oh o 9*hy,, 0 (0Ohy, OW” B Oy, 02hH
oxP 0x° Ozr Oz ,0x°

o0x° Do = 0x° Ox,0xP - 0z,
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0 871;“,(9}_1"” _85“,, 0 871””_ 0 (%Wﬁf_z“” B 0 lai_zwﬁf_zw (402)
- oxP 0x° Oxr O0x° Ox, N Ox, \ Oxr Ox° Ox° \ 2 Ozf Oz,

Do you see why the final equality is valid for the d/0z7 exact derivative? It doesn’t matter
which group of pr on the h’s is the up group and which is the down group.

oz,

Now that you’ve seen the tricks of the trade, you should be able to juggle the indices
with me and recast all the terms as exact derivatives: we are aiming to get a pure divergence
on the left side. The second term is

8252 OhHv 2P 8B;w B o (6h’\“ 8hur/) OhM 32B,W

T 0rvor 07  Ox,02> Ox°  Ox, \ Ox* Oz° oz 0x°0x,

or, replacing v with p in the first group on the right,

hyy Oh 0 (alw (9/_1“,,) 19 (aiw ai_zw,)

OzvOx? Ox° :_8xp dz* Ox° 2027 \ dx* O,

(403)

The third term is _ _
O?h)  Ohm
Oxrdxr Jx°
But this is exactly the same as the term we’ve just done: just interchange the dummy indices

p and v and remember that h*¥ is symmetric in pgv. So there is no need to do any more
here. The fourth and final term of the left side of equation is

1 0h 02%h 10 (a_ﬁaﬁ) 10 (a_ﬁaﬁ)

20x° 0xrOz, - _58_% oxP 0x° 40x° \ Oxr 8_:%

(404)

Thus, after dividing our fundamental equation by 2k, the left side of equation (400) takes
on a nice compact form, and we find

MUy, 1, On™

= —=S,,—, 4
oz, 25“ 0x° (405)
where
upa = 720 + 77p08~ (406)
S is the scalar density:
1 Oh OR™\ 1 (O OR.\ 1 [ Ok Oh
= (— — — == 4
s (4%; dzr Oz, ) i (83:A oz, TR oz, )’ (407)

and 7, is a flux tensor:

1 [ Oh,, OR™ 1 (Oh™M Oh 1 [ Oh Oh
Too = — K - = ) — — (= ) (408)

2k \ OxP Oz° Kk \ dz) Ox° 4k \ Ozr Ox°
By working with plane waves in standard harmonic coordinates, Oh* /0z* = 0, and Uyo
becomes symmetric in po. Remembering k,k” = 0 for the TT gauge, we find the simple

result _ _
c* Ohy,, ORM
327G \ OxP 0x°

Upe =

) (TT gauge). (409)
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Why did we choose to divide by 2k for our overall constant? Why not just x, or for that
matter, 4x? It is the right side of our energy equation that tells this story. This is

N 0h‘“’_77“” oh 1 ohH
Lo QT)(&U" 2 0z ) 27" Qa0

T3 e =7y

-
1 oh B 1( (410)

Choose o = 0, the time component. We work in the Newtonian limit h% ~ —2®/c?, where
® is a Newtonian gravitational potential. In the pr summation on the right side of the
equation, we are then dominated by the 00 components of both A*” and T,,. Now, we
are about to do a number of integration by parts. But we will always ignore the exact
derivative! Why? Because the exact derivative of a perioidic function (and everything here
is periodic) must oscillate away to zero on average. But in general the products of the
periodic functions don’t oscillate to zero; for example the average of cos®(wt)? = 1/2. Thus
we keep these product terms, but only if they are not an exact derivative. Using the right
arrow — to mean “integrate by parts and ignore the pure derivatives” (as inconsequential
for wave losses), we perform the following manipulations on the right side of equation (410):

1 . OhY 10Ty 107" 1 .. .0h% v
— 2T, - R = ——— _p% 5 T~ p .V 411
2790 90 - 2 020 2 Oxt - 2 ozt P ’ (411)

where the first equality follows from 9, 7% = 0. We have arrived on the right at an expression
for the rate at which the effective Newtonian potential does net work on the matter. Why
is that 1/c there? Don’t worry, it cancels out with the same factor on the left (flux) side of
the original equation. What about the sign of this? This expression is negative if the force
—pV @ is oppositely directed to the velocity, so that the source is losing energy by generating
outgoing waves. Our harmonic gauge expression (409) for 7y; is also negative for an outward
flowing wave that is a function of the argument (r — ct), r being spherical radius and ¢ time.

By contrast, 7% would be positive, as befits an outward moving wave energy.

The fact that division by 2x produces a source corresponding to the rate at which work is
done on the Newtonian sources (when o = 0) means that our overall normalisation is indeed
correct. The o = 0 energy flux of (409) is the true energy flux of gravitational radiation in
the weak field limit:

P:E:CTMZ—CEO:

ct (ahw OhHv

~390 \ B o > (TT gauge). (412)

7.6 The energy loss formula for gravitational waves

Our next step is to evaluate the transverse and traceless components of h;;, denoted hiTjT, in
terms of the transverse and traceless components of I;;. Begin with the traceless component,
denoted J;;:

5ij
Jij =L = 51 (413)

where I is the trace of I;;. Next, we address the transverse property. The projection of a
vector v onto a plane perpendicular to a unit direction vector n is accomplished simply by
removing the component of v along n. Denoting the resulting projected vector as w,

w=v—(n-v)n (414)

or
wj = (055 — niny)v; = Pijvy (415)
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where we have introduced the projection tensor
Pij = bij — ning,
with the easily shown properties
n; P =n;Py; =0, Pij Py, = Py, Py = 2. (416)
Projecting tensor components presents no difficulties,
wij = Py Pjog — njw;; = njwi; = 0, (417)

nor does the extraction of a projected tensor that is both traceless and transverse:

ij

1
wi = (Pikpjz - §P¢ijl> v — wy' = (PPy — Pu)vg = (P — Pu)ow = 0. (418)

Let us define |
J§T = (Pz’k:le - §Pijpkl> Tkt (419)
Notice now that (J;; — JE;T)JZQ;T is the contraction of the nontranverse part of J;; with its

fully transverse part. It ought to vanish, if there is any justice. Happily, it does:

1 1
(Jij — J§T)J5T = JingT — Ju (P Py — §Pijpkl)(Piijn —-3 5 Prn) T, (420)

Following the rules carefully in (416) and remembering P,; = Pj;, this is

1 1 1
T 8T = T PPt = 5 PuaPoun — 5 PriPoa + 5 PP Jun = JigJ5T = JaJT =0 (421)

This will come in very handy in a moment.

Next, we write down the traceless-transverse part of the quadrupole formula:

2 7TT
rr_ 264, (422)
U S dt?
Recalling that ¢’ =t — r/c and the J77’s are functions of ¢ (not t!),
ORIT oG BJET ARIT oG dBJIT
ij _G ij ij __G ij (423)

ot Srodr3 or  cr di3

where, in the second expression we retain only the dominant term in 1/r. The radial flux of
gravitational waves is then given by (412):

T T
_ G B TET T
T8 mr2e® 4t dt3

(424)

The 1/c? dependence ultimately translates into a 1/¢® dependence for Newtonian sources,
since each of the J’s carries a ¢? factor.
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The final step is to write out JLT in terms of the J;; via the projection operator. It is

here that the fact that J;; is traceless is a computational help.
1 1
(P Pl — §P Pkl> = (6zk — nmk)(dﬂ — njnl) — 5(5” — ninj)(ékl — nkm) (425)
Thus, with Jy; traceless, we find
Jiiw =\ PPy — ipijpkl Ju = Jij + = (% + ning)ngngJy — ning iy — nngdie  (426)

If we now write

Tii Ty =+ (T3 = Tl Ty (427)
then we've seen in (420) and (421) that
(T =T J5 =0,
and we are left with
;'].7,‘] J = Jz] ( Jz] (513 + nznj)nknl J okt — ngny J]k — NNk Jzk)
Jij Jij = 2ngne J i J e + kT Jij J ki (428)
We conclude:
.................. 1... ...
Jo G =TT = Ty — 20 Tangn + 5 i3 Jnin i (429)

The gravitational wave luminosity is an integration of this distribution over all solid angles,

LGW = /7’2Fr ds2 (430)

To evaluate this, you will need

4

This is pretty simple: if the two vector components of n are not the same, the integral
vanishes by symmetry (e.g. the average of zy over a sphere is zero). That means it is
proportional to a delta function, say C'd;;. To get the constant of proportionality C, take the

trace of both sides: [ dQ = 47 = 3C. More scary looking is the other identity you'll need:
4
/ninjnknl dQ) = 1_5(51]5kl + 5ik5jl + 5il§kj>7 (432)

but keep calm and think. The only way the integral cannot vanish is if two of the indices
agree with one another and the remaining two indices also agree with one another. (Maybe
the second pair is just the same pair as the first, maybe not.) This pairwise index agreement
requirement is precisely what the symmetric combination of delta functions ensures, summed
over the three different ways the agreement can occur. To get the 47 /15 factor, set i = j and
sum, and the same thing with [ = k. The integral on the left is then trivially [ n;n;nn; dQ =
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[ dQ = 4x. The combination of delta functions is 9 + 3 4+ 3 = 15. Hence the normalisation
factor 47/15. Putting this all together via (424), (429), (431) and (432), remembering
Ji; = 0, and carrying out the angular integral, the total gravitational luminosity is given by
a beautifully simple formula, first derived by Albert Einstein” in 1918:

L x (4 2><47T+1><47T><(0+1+1) Tiid
W 8red 3 2715 g0
which amounts to:
G ... .. G [... .. 1Tee ...
LGW:@JUJU:@(]ij]ij_glii]jj> (433)

7.7 Gravitational radiation from binary stars

In W72, the detection of gravitational radiation looms as a very distant possibility, and
rightly so. The section covering this topic devotes its attention to the possibility that rapidly
rotating neutron stars might, just might, be a good source. Alas, for this to occur the
neutron star would have to possess a sizeable and rapidly varying quadrupole moment, and
this neutron stars do not seem to possess. Neutron stars are nearly exact spheres, even when
rotating rapidly as pulsars. They are in essence perfectly axisymmetric; were they to have
any quadrupole moment, it would hardly change with time.

The possibility that Keplerian orbits might be interesting from the point-of-view of mea-
suring gravitational radiation is never mentioned in W72. Certainly ordinary orbits involving
ordinary stars are not a promising source. But compact objects (white dwarfs, neutron stars
or black holes) in very close binaries, with orbital periods measured in hours, were discovered
within two years of the book’s publication, and these turn out to be extremely interesting.
They are the central focus of modern day gravitational wave research. As we have noted
earlier, the first confirmation of the existence of gravitational radiation came from the bi-
nary pulsar system 1913416, in which the change in the orbital period from the loss of
wave energy was inferred via the changing interval of the arrival times of the pulsar signal.
The radiation level of the gravitational waves itself was well below the threshold of direct
detection at the time (and still today at the frequencies of interest). Over long enough time
scales, a tight binary of compact objects, black holes in the most spectacular manifestation,
may lose enough energy through gravitational radiation that the resulting inspiral goes all
the way to completion and the system either coalesces or explodes. Predictions suggest that
there are enough merging binaries in the universe to produce a rather high detection rate:
several per year at a minimum. LIGO has already published its first detection, and given how
quickly it was found when the threshold detector upgrade was made, there are grounds for
optimism for more to come®. The final frenzied seconds of black holes coalescence will emit
detectable gravitational wave signatures rich in physical content at frequencies that LIGO
is tuned for. Such waveforms can now also be determined numerically to high precision (F.
Pretorius 2005, Phys. Rev. Lett. 95, 121101). In the near future, they will very likely be
detected on a regular basis.

Let us apply equation (433) to the case of two point masses in a classical Keplerian orbit.
There is of course no contradiction between assuming a classical orbit and calculating its

"Actually, Einstein found a coefficient of 1/10, not 1/5. Eddington put matters right a few years later.
Tricky business, this gravitational radiation.

8Update: yes indeed! There is now a second confirmed black hole merger, GW151226, and a third likely
merger, though at a formal statistical level short of full GW status: LVT151012. LVT stands for “LIGO
VIRGO Transient.”
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gravitational energy loss. We are working here in the regime in which the losses themselves
exert only a tiny change on the orbit over one period, and the objects themselves, while close
by ordinary astronomical standards, are separated by a distance well beyond their respective
Schwarzschild radii. (Pretorius [2005] does not make this restriction, of course!)

The orbital elements are defined on page 71. The separation r of the two bodies is given
as a function of azimuth ¢ as

L
r=———
1+ ecoso

where L is the semilatus rectum and e is the orbital eccentricity. With M being the total
mass of the individual objects, M = m; + mo, [ the constant specific angular momentum
(we forego J for angular momentum to avoid confusion with J;;), and a is the semi-major
axis, we have
d 12
29 _ l L

T T ~GM

(434)

=a(l —¢€) (435)

and thus

d GM  \'? d GM \'"*
i (i) et G- (GTa) eme o

The distance from the center-of-mass of each body is denoted r; and r,. Writing these as
vector quantities,

moT mr
= — e 4
T1 Vi s T2 Vi ( 37)
Thus the coordinates in the zy orbital plane are
Ty = %(cos ¢, sin ¢), Ty = %(— oS ¢, — sin @) (438)

The nonvanishing moment tensors /;; are then

_mym3 + mimg

- e r? cos® ¢ = pr? cos® ¢ (439)
I, = pr®sin’ ¢ (440)

I, = Iyx = pr’sin ¢ cos ¢ (441)

Li = Ly + 1, = pr® (442)

where g is the reduced mass mymso /M. Tt is a now lengthy, but entirely straightforward task
to differentiate each of these moments three times. You should begin with the relatively
easy € = 0 case when reproducing the formulae below, though I present the results for finite
€ here:

I
dtgx = a1 + ecos ¢)*(2sin 2¢ + 3esin ¢ cos® @), (443)
d3[yy 2 . . 2
T —a(1 + ecos ¢)?[2sin 2¢ + esin ¢(1 + 3 cos” ¢)], (444)
1 31
T:,fy = ngﬁ = —a(1 + ecos ¢)?[2 cos 2¢ — ecos p(1 — 3 cos® ¢)], (445)
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where
5 AGPMImiIM

— 446
A T (446)
Equation (433) yields, after some assembling:
32G* M €2
Low = ml—(l +ecos ) | (1 +ecosg)® + —sm2¢ (447)

5 5 a1 — 2P 12

Our final step is to average Loy over an orbit. This is not simply an integral over d¢/2.

We must integrate over time, i.e., over d¢/ #, and then divide by the orbital period to do a
time average. The answer is

2G4 2M
(Law) = 1<§TMZ? fle) = 1.00 x 10%® m2 ,m?,M(ax) "> f(e) Watts, (448)
where 1 4 (73/24)€2 + (37/96)*
+ € + €
fle) = 1=y (449)

and © indicates solar units of mass (1.99 x 10%° kg) and length (one solar radius is 6.955 x 10®
m). (Peters and Mathews 1963).

Ezercise. Show that following the procedure described above, the time-averaged luminosity
(Lew )time 18 given by the expression

322G mimiM ) y €
Egm (1+ECOS¢) (1+ECOS¢) +ES]H ¢ ancle,

thrc the average on the right is over 27T angles in ¢. Use the fact that the angular average
of cos? ¢ is 1/2 and the average of cos® ¢ is 3/8 to derive equation (448).

<LGW>time -

Equations (448) and (449) give the famous gravitational wave energy loss formula for a
classical Keplerian orbit. Notice the dramatic effect of finite eccentricity via the f(e) function.
The first binary pulsar to be discovered, PSR1913+16, has an eccentricity of about 0.62, and
thus an enhancement of its gravitational wave energy loss that is boosted by more than an
order of magnitude relative to a circular orbit.

This whole problem must have seemed like an utter flight of fancy in 1963: the concept
of a neutron star was barely credible and not taken seriously; the notion of pulsar timing
was simply beyond conceptualisation. A lesson, perhaps, that no good calculation of an
interesting physical problem ever goes to waste!

Ezercise. When we studied Schwarzschild orbits, there was an exercise to show that the
total Newtonian orbital energy of a bound two body system is —Gmyms/2a and that the

system period is proportional to a®?, independent of the eccentricity. Use these results to
show that the orbital period change due to the loss of gravitational radiation is given by

. 1927 rmime GM\°"?
F=-= (MQ)&ﬁ> us)

with M = my 4+ my as before. This P is a measurable quantity! Stay tuned.

Ezercise. Now that you're an expert in the the two-body gravitational radiation problem,
let’s move on to three! Show that three equal masses revolving around their common centre-
of-mass emit no quadrupole gravitational radiation.
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7.8 Detection of gravitational radiation

7.8.1 Preliminary comments

The history of gravitational radiation has been somewhat checkered. Albert Einstein himself
stumbled several times, both conceptually and computationally. Arguments of fundamental
principle persisted through the early 1960’s; technical arguments still go on.

At the core of the early controversy was the question of whether gravitational radiation
existed at alll The now classic Peters and Mathews paper of 1963 begins with a disclaimer
that they are assuming that the “standard interpretation” of the theory is correct. The
confusion concerned whether the behaviour of h,, potentials were just some sort of math-
ematical coordinate effect, devoid of any actual physical consequences. For example, if we
calculate the affine connection I'!', and apply the geodesic equation,

d?at dz? dx?
H — 4
dr? A dr dr 0 (450)

and ask what happens to a particle initially at rest with dz”/dr = (—c,0). The subsequent
evolution of the spatial velocity components is then

d2 7 ]
d—:“; + T2 =0 (451)

But equation (334) clearly shows that I'y, = 0 since any h with a zero index vanishes for
our TT plane waves. The particle evidently remains at rest. Is there really no effect of
gravitational radiation on ordinary matter?!

Coordinates, coordinates, coordinates. The point, once again, is that coordinates by
themselves mean nothing, any more than does the statement “My house is located at the
vector (2, 1.3).” By now we should have learned this lesson. We picked our gauge to make
life simple, and we have simply found a coordinate system that is frozen to the individual
particles. There is nothing more to it than that. The proper spatial separation between
two particles with coordinate separation dz’ is ds* = (1;; — hj)dz’ dz?, and that separation
surely is not constant because hii, hoo, and his = hoy are wiggling even while the dx' are
fixed. Indeed, to first order in h;;, we may write

ds® = n;;(da’ — hyda® /2)(dz? — hj,da™/2).

This makes the physical interpretation easy: the passing wave increments the initially undis-
turbed spatial interval dz! by an amount —hg.dz*/2. It was Richard Feynman who in 1955
seems to have given the simplest and most convincing argument for the existence of grav-
itational waves. If the separation is between two beads on a rigid stick and the beads are
free to slide, they will oscillate with the tidal force of the wave. If there is now a tiny bit of
stickiness, the beads will heat the stick. Where did that energy come from? It could only
be the wave. The “sticky bead argument” became iconic in the relativity community.

The two independent states of linear polarisation of a gravitational wave are sometimes
referred to as + and x, “plus” and “cross.” The behave similarly, but rotated by 45°. The
+ wave as it passes initially causes a prolate distortion along the vertical part of the plus
sign, squeezes from prolate to oblate distorting along the vertical axis, then squeezes inward
from oblate to prolate once again. The x wave shows the same oscillation pattern along a
rotation pattern rotated by 45°. (An excellent animation is shown in the Wikipedia article
“Gravitational Waves.”) These are true physical distortions caused by the tidal force of the
gravitational wave.
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In the midst of what had been intensively theoretical investigations and debate surround-
ing the nature of gravitational radiation, in 1968 a physicist named Joseph Weber calmly
announced that he had detected gravitational radiation experimentally in his basement lab,
coming in prodigious amounts from the centre of the Milk Way Galaxy, thank you very
much. His technique was to use what are now called “Weber bars”, giant cylinders of alu-
minum fitted with special piezoelectric devices that can convert tiny mechanical oscillations
into electrical signals. The gravitational waves distorted these great big bars by a tiny, tiny
amount, and the signals were picked up. Or at least that was the idea. The dimensionless
relative strain ol /1 of a bar of length [ due to passing wave would be of order h;;, or 1072
by our optimistic estimate. To make a long, rather sad story very short, Weber was in
error in several different ways, and ultimately his experiment was Completely discredited.
Yet his legacy was not wholly negative: the possibility of actually detecting gravitational
waves hadn’t been taken very seriously up to this point. Post Weber, the idea gradually
took hold in the physics establishment. People asked themselves how we might actually go
about detecting these signals. It became part of the mainstream, with leading figures in
relativity getting directly involved. The detection of gravitational radiation is not a task for
a clever lone researcher working in the basement of university building, any more than was,
say, finding the Higgs boson. Substantial resources of the National Science Foundation in
the US and a research team numbering in the thousands were needed for the construction
and testing of viable gravitational wave receptors. Almost fifty years after Weber, the LIGO
facility has at last cleanly detected the exquisitely gentle tensorial strains of gravitational
waves at the level of h ~ 10721, The LIGO mirrors did not crack from side-to-side, but they
did flutter a bit in the gravitational breeze. This truly borders on magic: if the effective
length of LIGO’s interferomter arm is taken is taken to be [ = 10 km, then 7 is 107!° cm,
one percent of the radius of a proton!

The next exercise is strongly recommended.

Exercise. 'Weaker than weak interactions. Imagine a gravitational detector of two
identical masses m separated by a distance [ symmetrically about the origin along the x-
axis. Along comes a plane wave gravitational wave front, propagating along the z-axis, with
hyw = —hyy = Ayy cos(kz — wt) and no other components. The masses vibrate in response.
Show that, to linear order in A,,,

Iz = 57710 wgl AL, blnu)t

that there are no other ']“Z'j, and that the masses radiate an average gravitational wave
luminosity of
G
Lgy ——m 2001 A2
(Lew) = g3
Next, show that the average energy flux for our incoming plane wave radiation is, from
equation (412),
F_ AwrA?
647G

The cross section for gravitational interaction (dimensions of area) is defined to be the ratio
of the average luminosity to the average incoming flux. Why is this a good definition for the
cross section? Show that this ratio is

167G*m*wilt 4, (wl !
0=——"F—=—TRyg
15¢8 15

Where Rs = 2Gm/c? is the Schwarzschild radius of each mass. Evaluate this numerically for
= 10kg, [ = 10m, w = 20 rad s~ ! (motivated by GW150914). Compare this with a typical
Wcak interaction cross section of 10~**m?. Just how weak is gravitational scattering?
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7.8.2 Indirect methods: orbital energy loss in binary pulsars

In 1974, a remarkable binary system was discovered by Hulse and Taylor (1975, ApJ Letters,
195, L51). One of the stars was a pulsar with a pulse period of 59 milliseconds, i.e., a neutron
star that rotates about 17 times a second. The orbital period was 7.75 hours, a very tight
binary with a separation of about the radius of the Sun. The other star was not seen, only
inferred, but the very small separation between the two stars together with the absence of
any eclipse of the pulsar suggested that the companion was also a compact star. (If the
binary orbital plane were close to being in the plane of the sky to avoid observed eclipses,
then the pulsar pulses would show no Doppler shifts, in sharp contradiction to observations.)

What made this yet more extraordinary is that pulsars are among the most accurate
clocks in the universe, until recently more accurate than any earthbound atomic clock. The
most accurately measured pulsar has a pulse period known to 17 significant figures! Indeed,
pulsars can be calibrated only by ensemble averages of large numbers of atomic clocks.
Pulsars are now directly used as clocks. ? Nature has placed its most accurate clock in
the middle of binary system in which fantastically precise timing is required. This is the
ultimate general relativity laboratory.

Classic nonrelativistic binary observation techniques allow one to determine five param-
eters from observations of the pulsar: the semimajor axis projected against the plane of
the sky (asini), the eccentricity e, the orbital period P, and two parameters related to the
periastron (the point of closest separation): its angular position within the orbit and a time
reference point for when it occurs.

Relativistic effects, something new and beyond standard analysis, give two more param-
eters. The first is the advance of the perihelion (exactly analogous to Mercury) which in
the case of PSR 1913416 is 4.2° per year. (Recall that Mercury’s is only 43 arc seconds
per century!) The second is the second order (~ v?/c?) Doppler shift of the pulse period
from both the gravitational redshift of the combined system and the rotational kinematics.
These seven parameters allow a complete determination of the masses and orbital compo-
nents of the system, a neat achievement in itself. The masses of the neutron stars are
1.4414 M, and 1.3867 M, remarkably similar to one another and remarkably similar to the
Chandrasekhar mass 1.42 M'. (The digits in the neutron stars’ masses are all significant!)
More importantly, there is a third relativistic effect also present, and therefore the problem
is over-constrained. That is to say, it is possible to make a prediction. The orbital period
changes slowly with time, shortening in duration due to the gradual approach of the two
bodies. This “inspiral” is caused by the loss of orbital energy that has been carried off by
gravitational radiation, equation (448). Thus, by monitoring the precise arrival times of the
pulsar signals emanating from this slowly decaying orbit, the existence of gravitational ra-
diation could be quantitatively confirmed and Einstein’s quadrupole formula verified—even
though the radiation itself was not directly observable.

Figure [5] shows the results of many years of observations. The dots are the cumulative
change in the time of periastron due to the more progressively more rapid orbital period as
the neutron stars inspiral from gravitational radiation losses. Without the radiation losses,
there would still be a perihelion advance of course, but the time between perihelia would not
change—it would just be a bit longer than an orbital period. It is the cumulative change
between perihelia that is an indication of actual energy loss. The solid line is not a fit to the
data. It is the prediction of general relativity of what the cumulative change in the “epoch
of perihelion” (as it is called) should be, according to the energy loss formula of Peters and

9Since 2011, a bank of six pulsars, observed from Gdansk Poland, has been monitored continuously as a
timekeeping device.

10T his is the upper limit to the mass of a white dwarf star. If the mass exceeds this value, it collapses to
either a neutron star or black hole, but cannot remain a white dwarf.
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Figure 5: The cumulative change in the periastron event ( “epoch”) caused by the inspiral
of the pulsar PSR1913+16. The dots are the data, the curve is the prediction, not the
best fit! This prediction is confirmed to better than a fraction of a percent.
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Mathews, (448). This beautiful precision fit leaves no doubt whatsover that the quadrupole
radiation formula of Einstein is correct. For this achievement, Hulse and Taylor won a well-
deserved Nobel Prize in 1993. (It must be just a coincidence that this is about the time that
the data points seem to become more sparse.)

Direct detection of gravitational waves is a very recent phenomenon. There are two
types of gravitational wave detectors currently in operation. The first is based on a classic
19th century laboratory apparatus: a Michelson interferometer. The second makes use
of pulsar emission pulses—specifically their arrival times—as a probe of the h,, caused by
gravitational waves as they propagate across our line of site to the pulsar. The interferometer
detectors are designed for wave frequencies from ~ 10 Hz to 1000’s of Hz. This is now up
and running. By contrast, the pulsar measurements are sensitive to frequencies of tens to
hundreds of micro Hz. A very different range, measuring physical processes on very different
scales. This technique has yet to be demonstrated. The high frequency interferometers
measure the gravitational radiation from stellar-mass black holes or neutron star binaries
merging together. The low frequency pulsar timing will measure black holes merging, but
with masses of order 10° solar masses. These are the masses of galactic core black holes in
active galaxies.

7.8.3 Direct methods: LIGO

LIGO, or Laser Interferometer Gravitational-Wave Observatory, detects gravitational waves
as described in figure (6). In the absence of a wave, the arms are set to destructively interfere,
so that no light reaches the detector. The idea is that a gravitational wave passes through the
apparatus from above or below, each period of oscillation slightly squeezing one arm, slightly
extending the other. With coherent laser light traversing each arm, when it re-superposes at
the centre, the phase will become ever so slightly out of precise cancellation, and photons will
appear in the detector. In practise, the light makes many passages back and forth along a
4 km arm before analysis. The development of increased sensitivity comes from engineering
greater and greater numbers of reflections, and thus a greater effective path length. There are
two such interferometers, one in Livingston, Louisiana, the other in Hanford, Washington,
a separation of 3000 km. Both must show a simultaneous wave passage (actually, with an
offset of 10 milliseconds for speed of light travel time) for the signal to be verified.

This is a highly simplified description, of course. All kinds of ingenious amplification
and noise suppression techniques go into this project, which is designed to measure induced
strains at the incredible level of 1072'. This detection is only possible because we measure
not the flux of radiation, which would have a 1/r? dependence with distance to the source,
but the h;; amplitude, which has a 1/r dependence.

Figure (7) shows a match of an accurate numerical simulation to the processed LIGO
event GW150914. T have overlaid three measured wave periods P;, P5, and Pz, with each of
their respective lengths given in seconds. (These were measured with a plastic ruler directly
from the diagram!) The total duration of these three periods is 0.086 s. Throughout this
time the black holes are separated by a distance in excess of of 4 Rg, so we are barely at the
limit for which we can trust Newtonian orbit theory. Let’s give it a try for a circular orbit.
(Circularity is not unexpected for the final throes of coalescence.)

Using the zero eccentricity orbital period decrease formula from the previous exercise,
but remembering that the orbital period P is twice the gravitational wave period Pgw,

Py — 967 <m1m2> <GM)5/2

5 M? ac?
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Figure 6: A schematic interferometer. Coherent light enters from the laser at the left.
Half is deflected 45° upward by the beam splitter, half continues on. The two halves
reflect from the mirrors. The beams re-superpose at the splitter, interfere, and are
passed to a detector at the bottom. If the path lengths are identical or differ by an
integral number of wavelengths they interfere constructively; if they differ by an odd
number of half-wavelengths they cancel one another. In “null” mode, the two arms
are set to destructively interfere so that no light whatsoever reaches the detector. A
passing gravity wave just barely offsets this precise destructive interference and causes
laser photons to appear in the detector.
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We eliminate the semi-major axis a in favour of the measured period Pgy,

47%a? a3
P? = AL whence P2, = e
This gives
9678/ [ GM,\ "
Pow = — 505 (%) (452)
where we have introduced what is known as the “chirp mass” M.,
(m1m2)3/5

The chirp mass (so-named because if the gravitational wave were audible at the same fre-
quencies, it would indeed sound like a chirp!) is the above combination of m; and ma,
which is directly measurable from Pgy and its derivative. It can be shown (try it!) that
M = my 4+ ms is a minimum when m; = mao, in which case

mi = mo 115MC
Now, putting numbers in (452), we find

Mo = —5.522 x 10* Paw Pol (454)

where M, is the chirp mass in solar masses and Pgy is measured in seconds. From the
GW150914 data, we estimate

: P;— P —0.0057
Pow =~ = = —0.0663
WP+ PP 0.086 ’
and for Pgy we use the midvalue P, = 0.0283. This yields
M. ~ 30.7 (455)

compared with “M,. ~ 30My” in Abbot et al (2016)! I'm sure this remarkable level of
agreement is somewhat (but not entirely!) fortuitous. Even in this, its simplest presentation,
the wave form presents a wealth of information. The “equal mass” coalescing black hole
system comprises two 35M black holes, and certainly at that mass a compact object can
only be a black hole!

The two masses need not be equal of course, so is it possible that this is something other
than a coalescing black hole binary? We can quickly rule out any other possibility, without
a sophisticated analysis. It cannot be any combination of white dwarfs or neutron stars,
because the chirp mass is too big. Could it be, say, a black hole plus a neutron star? With
a fixed observed M, = 30M,, and a neutron star of at most ~ 2M, the black hole would
have to be some 1700M,. So? Well, then the Schwarzschild radius would have to be very
large, and coalescence would have occured at a separation distance too large for any of the
observed high frequencies to be generated! There are frequencies present toward the end of
the wave form event in excess of 75 Hz. This is completely incompatible with a black hole
mass of this magnitude.

A sophisticated analysis using accurate first principle numerical simulations of gravi-
tational wave from coalescing black holes tells an interesting history, though one rather
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Figure 7: From Abbot et al. (2016). The upper diagram is a schematic rendering of
the black hole inspiral process, from slowly evolution in a quasi-Newtonian regime, to a
strongly interacting regime, followed by a coalescence and “ring-down,” as the emergent
single black hole settles down to its final, nonradiating geometry. The middle figure is
the gravitational wave strain, overlaid with three identified periods discussed in the the
text. The final bottom plot shows the separation of the system and the relative velocity
as a function of time, from insprial just up to the moment of coalescence.

well-captured by our naive efforts. Using a detailed match to the waveform, the following
can be deduced. The system lies at a distance of some 400 Mpc, with significant uncertainties
here of order 40%. At these distances, the wave form needs to be corrected for cosmolog-
ical expansion effects, and the masses in the source rest frame are 36M and 29M,, with
+15% uncertainties. The final mass, 62M is less than the sum of the two, 65M: some
3Mc? worth of energy has disappeared in gravitational waves! A release of 5 x 10%7] is, I
believe, the largest explosion of any kind every recorded. A billion years later, some of that
energy, in the form of ripples in space itself, tickles the interferometer arms in Louisiana and
Washington. It is, I believe, at 107!% c¢m, the smallest amplitude mechanical motion ever
recorded.

What a story.

7.8.4 Direct methods: Pulsar timing array

Pulsars are, as we have noted, fantastically precise clocks. Within the pulsar cohort, those
with millisecond periods are the most accurate of all. The period of PSR1937+21 is known to
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Figure 8: A schematic view of a gravitational wave passing through
an array of pulsar probes.

be 1.5578064688197945 milliseconds, an accuracy of one part in 10'7. One can then predict
the arrival time of a pulse to this level of accuracy as well. By constraining variations in
pulse arrival times from a single pulsar, we can set an upper limit to amount of gravitational
radiation that the signal has traversed. But we don’t just have one pulsar. So why settle
for one pulsar and mere constraints? We know of many pulsars, distributed more or less
uniformly through the galaxy. If the arrival times from this “pulsar timing array” (PTA) were
correlated with one another in a mathematically calculable manner, this would be a direct
indication of the the deformation of space caused by the passage of a gravitational wave. This
technique is sensitive to very long wavelength gravitational radiation, light-years in extent.
This is very difficult to do because all other sources introducing a spurious correlation must
be scrupulously eliminated. LIGO too has noise issues, but unlike pulsar blips propagating
through the interstellar medium, LIGO’s signal is very clean and all hardware is accessible.
Thus, PTA has its share of skeptics. At the time of this writing, there are only upper limits
from the PTA measurements.
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Despite its name, the big bang theory is
not really a theory of a bang at all. It is
really only a theory of the aftermath of a
bang.

— Alan Guth

8 Cosmology

8.1 Introduction

8.1.1 Newtonian cosmology

The subject of the origin of the Universe is irresistible to the scientist and layperson alike.
What went bang? Where did the Universe come from? What happened along the way?
Where are we headed?” The theory of general relativity, with its rigorous mathematical
formulation of the large-scale geometry of spacetime, provides both the conceptual and
technical apparatus to understand the structure and evolution of the Universe. We are
fortunate to live in an era in which many precise answers to these great questions are at
hand. Moreover, while we need general relativity to put ourselves on a truly firm footing, we
can get quite far using very simple ideas and hardly any relativity at alll Not only can, we
absolutely should begin this way. Let us start with some very Newtonian dynamics and see
what there is to see. Then, knowing a bit of what to expect and where we are headed, we will
be in a much better position to revisit “the problem of the Universe” on a fully relativisitic
basis.

A plausible but naive model of the Universe might be one in which space is ordinary
static Euclidian space, and the galaxies fill up this space uniformly (on average) everywhere.
Putting aside the question of the origin of such a structure (let’s say it has existed for all
time) and the problem that the cumulative light received at any location would be infinite
(“Olber’s paradox”—that’s tougher to get around: let’s say maybe we turned on the galaxies
at some finite time in the past'!), the static Euclidian model is not even mathematically
self-consistent.

Consider the analysis from Figure [9]. There are two observers, one at the centre of the
sphere labelled of radius r1, the other at the centre of sphere ry. Each calculates the expected
acceleration at the location of the big black dot, which is a point on the surface of each of
the spheres. Our model universe is spherically symmetric about 71, but it is also spherically
symmetric about r5. Hence the following conundrum:

The observer at the centre of the r; sphere ignores the effect of the spherically symmetric
mass exterior to the black point and concludes that the acceleration at the dot’s location is

GM (within r;)  4nGpry
p— 2 p—
T 3

(456)

ay

directed toward the centre of the r; sphere. (Here p is meant to be the average uniform mass
density of the Universe.) But the observer at the origin of the ry sphere claims, by identical
reasoning, that the acceleration must be ay = 4wGpry/3 directed toward the centre of 7!
Both cannot be correct.

11Gee W72, pp. 611-13.
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Homogeneous, Euclidian
static universe

a, 7a,

Figure 9: In a static homogeneous Euclidian universe, an observer at the
center of the 1 circle would calculate a different gravitational acceleration
for the dot than an observer at the centre of the ro circle, i.e. a1 # as.
But if we take into account the relative acceleration of the two observers,
each considers the other to be in a noninertial frame, and the calculation
is self-consistent with the included fictitious force. (See text.)

What if the Universe is dynamically active? Then we must put in the gravitational accel-
eration, in the form of a noninertial reference frame, from the very start of the calculation.
If the observers at the centres of r; and 79 are actually accelerating relative to one another,
there is no reason to expect that their separate calculations for the black dot acceleration to
agree, because the observers are not part of the same inertial frame! Can we make this pic-
ture self-consistent somehow for any two r; and r, observers? Yes. If the Universe exhibits
a relative acceleration between two observers that is proportional to the vector difference
ro — 11 between the two observers’ positions, all is well.

Here is how it works. The observer at the centre of circle 1 measures the acceleration
of the black dot to be —4wGpry/3 as above, with r; indicating a vector pointing from the
centre of circle 1 to the surface dot. (In figure [9], 7y and 7o are shown pointing to arbitrary
boundary points for clarity; but think of them now as both pointing directly to the common,
big dot boundary point.) The same circle 1 observer finds that the acceleration of the centre
of circle 2 is —4wGp(ry — 1r3)/3, where ry is the position vector oriented from the circle 2
centre toward the big dot. (Defined this way, these particular r; and rg vectors are colinear.)
Thus, the person at the centre of circle 1 would say that the acceleration of the big dot, as
measured by an observer moving in the (noninertial) centre of circle 2 frame is the circle 1
acceleration of —47Gry/3, minus the acceleration of the circle 2 centred observer:

B 47 Gpry B —4rGp(ry — r2) _ _47TG,0’I"2 (457)
3 3 3

Lo and behold, this is the result that the observer at the centre of circle 2 finds self-
consistently in the privacy of his own study, without worrying about what anyone else thinks
might be going on. A Euclidian, “linearly accelerating” universe is therefore perfectly self-
consistent, at least at this level of dynamics. A dynamically active, expanding universe is
essential. The expansion itself is essentially Newtonian, not, as originally thought at the
time of its discovery, a mysterious effect of general relativity. Now, the rate of expansion
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naively ought to be slowing, since this is what gravity does: an object thrown from the
surface of the earth slows down as its distance from the surface increases. As we shall soon
see however, our Universe is a bit more devious than that. There is still some mystery here
beyond the realm of the purely Newtonian.

8.1.2 The dynamical equation of motion

A simple way to describe the internal acceleration of the Universe is to begin with the
spatially homogeneous but time-dependent relative expansion between two locations. The
separation between two arbitrary points separated by a distance r(t) may be written

r(t) = R(t)l (458)

where [ is a comoving coordinate that labels a fixed radial distance from us in the space—
fixed in the sense of being fixed to the expanding space, like latitude and longitude would
be on the surface of an inflating globe. If we take [ to have dimensions of length, then R(t)
is a dimensionless function of time alone. It is a scale factor that embodies the dynamical
behaviour of the Universe. The velocity v = dr/dt = 7 of a “fixed” point expanding with
space is then

v(t) = Rl = (R/R)r- (459)

We should emphasise the vector character of this relationship:
v(t) = (R/R)r (460)

where 7 is a vector pointing outward from our arbitrarily chosen origin. Then, the accelera-
tion is
dv .
a(t) = i (R/R)r (461)
(Why didn’t we differentiate r(¢)/R(t)?) But we already know the relative acceleration
between two points, because we know Newtonian physics. We've just worked it out a moment
ago! You can easily see that the above discussions (especially equation [456]) imply that we
must have : .
AdnGp R

=% (462)

Notice how [ disappears: this is an equation for the scale factor R, and that does not depend

on where you are. Next, multiply this by RR and integrate, assuming that mass is conserved
in the usual way, i.e. pR® is constant. (Why is this “the usual way?”) We then obtain

_ 81GpR?

R? 3 2F (463)
where F is an energy-like integration constant. This, in a simple, apparently naive Euclidian-
Newtonian approach, would be our fundamental dynamical cosmological equation for the
evolution of the Universe. Amazingly, providing that we are prepared to allow the mass
density p is to be upgraded to an energy density divided by ¢? that includes all contributions
(in particular radiation and vacuum energy), this innocent little equation turns out to be far

more general: it is ezactly correct in full relativity theory! More on this anon.
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8.1.3 Cosmological redshift

The expansion of the Universe leads to a very important kinematic effect known as the
cosmological redshift. Since the Universe is expanding, a travelling photon is constantly
overtaking sources that are moving away from it. If a photon has a wavelength A at some
location r, when the photon passes an observer a distance dr = cdt away, moving at a relative

velocity Rdr/ R, the observer measures a Doppler change in wavelength d\ determined by
equation (460):

3 TR TR (464)
or in other words , )
1dN X R

NdE AR (465)

Solving for A, we find that it is linearly proportional to R. It is as though the wavelength
stretches with the rest of the Universe! This is a very general kinematic result, a property of
any model that is symmetrically expanding. (Sneak preview: this of course means that the
frequency goes down as 1/R. But the frequency of a photon is, in essence, its energy. The
entire Universe must be radiatively cooling. Energy is not conserved in the expansion; the
ergcrop{ in a voulme R3, which is proportional to the third power of the temperature times
R’ is.

We are free, and it is customary, to choose our coordinates in such a way that the current
value of R is 1, with R becoming smaller and smaller as we go back in time. If a photon
is emitted with a wavelength A, at some time ¢ in the past, the wavelength we would now
measure (o) is formally expressed as

Ao = Ae(1+ 2) (466)
where z is defined by this equation and known as the redshift parameter. Therefore,
Ao 1
Y - 467
N TP R (467)

The advantage to using z, as opposed to the more geometrical quantity R, is that z is directly
observed by astronomers. But the two are mathematically equivalent via this completely
general equation, R = 1/(1 4+ z). If you measure a redshift of 2, it has come from a time
when the Universe had one-third of its current size.

We have been, you will notice, pretty informal, just organising our common sense. It is
customary for cosmology courses to begin with a heavy dose of historical material related
to the discovery of the expansion of the Universe. We will get to this in short order, but I
have taken a somewhat different tack here, in part because much of the historical material
is rather well-known these days, but mainly because it is not often appreciated how far
direct Newtonian reasoning can take one in establishing a viable cosmological model of the
Universe. Let us examine one very simple model, and then see how formal general theory
gets us to the same place in the end.

8.2 Cosmology models for the impatient

8.2.1 The large-scale spacetime metric

Euclid, Newton and pure thought can take us very far, even farther than we have ventured
up to now. Because the Newtonian approach on which we are about to embark is going to
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work remarkably well, here is a brief reminder as to why we actually do need relativity in
our study of the large scale structure of the Universe. Let us understand what it is at stake.

First, we require a Riemannian metric structure to ensure that the speed of light is a uni-
versal constant c, especially when traversing a dynamically evolving spacetime background.
It is rather easy to see what the form this metric must take in the simplest model of an
expanding Euclidian Universe. Symmetry demands that time must flow the same for all ob-
servers comoving with the universal expansion, and we can always choose time to be a linear
function of the time coordinate. Space is uniformly expanding at the same rate everywhere.
So if space itself is Euclidian, the spacetime metric practically leaps out of the page,

— Pdr? = —c*dt? + R*(da® + dy® + d2°) (468)

where we have used the usual (z,y, z) Cartesian coordinates, and R satisfies equation (463).
Here z,y, z are all comoving with the expansion, in essence the [ coordinate of the previous
section. In particular, for a photon heading directly toward us along our line of sight from
a distant source,

dl
R— = —c 469
where dl is interpreted as the change in radial comoving coordinate induced by the photon’s
passage. This equation describes an ant crawling along the surface of an expanding sphere
from, say, the pole to the equator, moving at a constant velocity c. In this case, think of dl
as the change in latitude.

Equation (468) really does appear to be the true form of the spacetime metric for our
Universe. Space is in fact very nearly, or perhaps even precisely, Euclidian. As a math-
ematical point, this need not be the case even if we demand perfect symmetry, any more
than a perfectly symmetric two-dimensional surface must be a plane. We could preserve our
global maximal spatial symmetry and have a curved space, just like the surface of sphere.
This, in common with a flat plane, is symmetric about every point, but is obviously dis-
torted relative to a plane. The case of a two-dimensional spherical surface is readily grasped
because we can easily embed it in three dimensions and form a mental image. It is finite
in area and said to be positively curved. There is also a perfectly viable flaring, negatively
curved two-dimensional surface. A saddle begins to capture its essence, but not quite, be-
cause the curvature is not uniform in a saddle. The case of a uniformly negatively curved
surface cannot be embedded in three dimensions, so it is hard to picture in your mind’s eye!
There are perfectly good positively and negatively three-dimensional spaces as well, which
are logically possible alternative symmetric structures for the space of our Universe. They
just happen not to fit the data. It is fortunate for us that the real Universe seems also to be
mathematically the simplest. We will study these other symmetric spaces later; for now we
confine our attention to expanding, good old, “flat” Euclidian space.

Second, we need relativity in the form of the Birkhoff theorem to justify properly the
argument neglecting exterior contributions from outside the arbitraily chosen spheres we
used in section 8.1. The Newtonian description strictly can’t be applied to an infinite sys-
tem, whereas nothing prevents us from using Birkhoft’s theorem applied to an unbounded
symmetric spacetime.

Third, we need a relativistically valid argument to arrive at equation (463). Nothing in
the Newtonian derivation hints at this level of generality. We shall return to this carefully
in section 8.3.

Fourth, we need relativity theory to relate the constant E to the geometry of our space.
For now, we restrict ourselves to the case £ = 0, which will turn out to be the only solution
consistent with the adoption of a flat Euclidian spatial geometry, the sort of universe we do
seem to live in.
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8.2.2 The Einstein-de Sitter universe: a useful toy model

Consider equation (463) for the case £ = 0 in the presence of ordinary matter, for which
pR? is a constant. Remember that we are free to choose coordinates in which R =1 at the
present time ¢ = t;. We may then choose the constant pR3 to be equal to its present day
value, ppro. Equation (463) becomes

. 1/2
R'V?R = (@) . (470)
Then,
1/2
§R3/2 _ (@) ¢ (471)

where the integration constant has been set to zero under the assumption that R was very
small at early times. We finally obtain

o\ 23
R= (3 0 ) (472)
2
where Hj, the value of R/ R and the current time ¢, is known as the Hubble constant,
_ 1/2
Ho = Rito) = <@) | (473)
More generally, the Hubble parameter is defined as
R
H(t) = —= 474
1) =% (474)

for any time ¢. The solution (472) is known, for historical reasons, as the Einstein-de Sitter
model.

Ezercise. Show that H(t) = Hy(1 + 2)*? for our simple model R = (t/t)*/?.

The Hubble constant is in principle something that we may observe directly, “simply” by
measuring the distances to nearby galaxies as well as their redshift, and then using equation
(460). In practise this is hardly simple. On the contrary, it is a very difficult task for reasons
we will discuss a bit later, but the bottom line is that the measured value of Hy and the
measured value of the density of ordinary matter pyro do not satisfy (473) in our Universe.
There is not enough ordinary matter py;9 to account for the measured Hy. Yet, equation
(463) does seem to be precisely valid, with £ = 0. As the energy density of radiation in the
contemporary Universe is much less than 3HZ/87G, how is all this possible?

The answer is stunning. While the energy density of ordinary matter does indeed dom-
inate over radiation, there is strong evidence now of an energy density associated with the
vacuum of spacetime itself! This energy density, py, is the dominant energy density of the
real Universe on cosmolgical scales, though not at present overwhelmingly so: py is about
73% of the energy budget whereas matter (ordinary baryons and “dark matter”) comes in
at about 27%. However, py remains constant as the Universe expands, so that at later
times vacuum energy dominates the expansion: py; drops off as 1/R3) and py completely
dominates. Moreover, with an effective vacuum Hubble parameter

1/2
Hy = (87@’”) , (475)

3
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equation (463) at later times takes the form
R=HyR (476)

or
R x exp(Hyt) (477)

the Universe will expand exponentially! In other words, rather than gravity slowly deceler-
ating the expansion by the mutual Newtonian attractive force, the vacuum energy density
will actively drive an ever more vigorous repulsive force. The Universe was expanding more
slowly in the past than in the present. It is this particular discovery which led to our cur-
rent understanding of the remarkable expansion dynamics. The Nobel Prize in Physics was
awarded to Perlmutter, Schmidt and Riess in 2011 for the use of distant supernovae as a tool
for unravelling the dynamics of the Universe from early to later times. We are currently in
the epoch where exponential expansion is taking over.

Equations (467), (469) and (473) may be combined to answer the following question.
If we measu