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Recommended Texts
Weinberg, S. 1972, Gravitation and Cosmology. Principles and applications of the General

Theory of Relativity, (New York: John Wiley)

What is now the classic reference, but lacking any physical discussions on black holes, and
almost nothing on the geometrical interpretation of the equations. The author is explicit
in his aversion to anything geometrical in what he views as a field theory. Alas, there
is no way to make sense of equations, in any profound sense, without geometry! I also
find that calculations are often performed with far too much awkwardness and unnecessary
e↵ort. Sections on physical cosmology are its main strength. To my mind, a much better
pedagogical text is ...

Hobson, M. P., Efstathiou, G., and Lasenby, A. N. 2006, General Relativity: An Introduction

for Physicists, (Cambridge: Cambridge University Press)

A very clear, very well-blended book, admirably covering the mathematics, physics, and
astrophysics. Excellent coverage on black holes and gravitational radiation. The explanation
of the geodesic equation is much more clear than in Weinberg. My favourite. (The metric
has a di↵erent overall sign in this book compared with Weinberg and this course, so be
careful.)

Misner, C. W., Thorne, K. S., and Wheeler, J. A. 1972, Gravitation, (New York: Freeman)

At 1280 pages, don’t drop this on your toe. Even the paperback version. MTW, as it
is known, is often criticised for its sheer bulk, its seemingly endless meanderings and its
laboured strivings at building mathematical and physical intuition at every possible step.
But I must say, in the end, there really is a lot of very good material in here, much that
is di�cult to find anywhere else. It is the opposite of Weinberg: geometry is front and
centre from start to finish, and there is lots and lots of black hole physics. I very much like
its discussion on gravitational radiation, though this is not part of the syllabus. (Learn it
anyway!) There is a Track 1 and Track 2 for aid in navigation, Track 1 being the essentials.

Hartle, J. B. 2003, Gravity: An Introduction to Einstein’s General Theory of Relativity, (San
Francisco: Addison Wesely)

This is GR Lite, at a very di↵erent level from the previous three texts. But for what it is
meant to be, it succeeds very well. Coming into the subject cold, this is not a bad place to
start to get the lay of the land, to understand the issues in their broadest sense, and to be
treated to a very accessible presentation. There will be times in your study of GR when it
will be di�cult to see the forests for the trees, when you will fell awash in a sea of indices
and formalism. That will be a good moment to spend time with this text.
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Notational Conventions & Miscellany
Space-time dimensions are labelled 0, 1, 2, 3 or (Cartesian) t, x, y, z or (spherical) t, r, ✓,�.
Time is always the 0-component.

Repeated indices are summed over, unless otherwise specified. (Einstein summation conven-
tion.)

The Greek indices ,�, µ, ⌫ etc. are uses to represent arbitrary space-time components in
all general relativity calculations.

The Greek indices ↵, �, etc. are used to represent arbitrary space-time components in special
relativity calculations (Minkowski space-time).

The Roman indices i, j, k are used to represent purely spatial components in any space-time.

The Roman indices a, b, c, d are used to represent fiducial space-time components for mnemonic
aids, and in discussions of how to perform generic index-manipulations and permutations
where Greek indices may cause confusion.

⇤ is used as a generic dummy index, summed over.

The tensor ⌘↵� is numerically identical to ⌘
↵�

with�1, 1, 1, 1 corresponding to the 00, 11, 22, 33
diagonal elements.

Viewed as matrices, the metric tensors g
µ⌫

and g

µ⌫ are inverses. For diagonal metrics, their
respective elements are therefore reciprocals.

c almost always denotes the speed of light. It is very occassionally used as an obvious tensor
index. c is never set to unity unless explicitly stated to the contrary. (Relativity texts often
set c = 1.) G is never unity no matter what. And don’t even think of setting 2⇡ to unity.

Notice that it is “Lorentz invariance,” but “Lorenz gauge.” Not a typo, two di↵erent blokes.
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Really Useful Numbers

c = 2.99792458⇥ 108 m s�1 (Exact speed of light.)

c

2 = 8.9875517873681764⇥ 1016 m2 s�2 (Exact!)

G = 6.67384⇥ 10�11 m3 kg�1 s�2 (Newton’s G.)

M� = 1.98855⇥ 1030 kg (Mass of the Sun.)

r� = 6.955⇥ 108 m (Radius of the Sun.)

GM� = 1.32712440018 ⇥ 1020 m3 s�2 (Solar gravitational parameter; more accurate than
either G or M� separately.)

2GM�/c
2 = 2.9532500765⇥ 103 m (Solar Schwarzschild radius.)

GM�/c
2
r� = 2.1231⇥ 10�6 (Solar relativity parameter.)

M� = 5.97219⇥ 1024 kg (Mass of the Earth)

r� = 6.371⇥ 106 m (Mean Earth radius.)

GM� = 3.986004418⇥ 1014 m3 s�2(Earth gravitational parameter.)

2GM�/c
2 = 8.87005608⇥ 10�3 m (Earth Schwarzschild radius.)

GM�/c
2
r� = 6.961⇥ 10�10 (Earth relativity parameter.)

For diagonal g
µ⌫
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Most of the fundamental ideas of

science are essentially simple, and

may, as a rule, be expressed in a

language comprehensible to everyone.

— Albert Einstein

1 An overview

1.1 The legacy of Maxwell

We are told by the historians that the greatest Roman generals would have their most
important victories celebrated with a triumph. The streets would line with adoring crowds,
cheering wildly in support of their hero as he passed by in a grand procession. But the
Romans astutely realised the need for a counterpoise, so a slave would ride with the general,
whispering in his ear, “All glory is fleeting.”

All glory is fleeting. And never more so than in theoretical physics. No sooner is a triumph
hailed, but unforseen puzzles emerge that couldn’t possibly have been anticipated before the
breakthrough. The mid-nineteenth century reduction of all electromagnetic phenomena to
four equations, the “Maxwell Equations,” is very much a case in point.

Maxwell’s equations united electricity, magnetism, and optics, showing them to be di↵er-
ent manifestations of the same field. The theory accounted for the existence of electromag-
netic waves, explained how they propagate, and that the propagation velocity is 1/

p
✏0µ0 (✏0

is the permitivity, and µ0 the permeability, of free space). This combination is numerically
precisely equal to the speed of light. Light is electromagnetic radiation! The existence of
electromagnetic raditation was then verified by brilliant experiments carried out by Heinrich
Hertz in 1887, in which the radiation was directly generated and detected.

But Maxwell’s theory, for all its success, had disquieting features when one probed. For
one, there seemed to be no provision in the theory for allowing the velocity of light to change
with the observer’s velocity. The speed of light is aways 1/

p
✏0µ0. A related point was

that simple Galilean invariance was not obeyed, i.e. absolute velocities seemed to a↵ect the
physics, something that had not been seen before. Lorentz and Larmor in the late nineteenth
century discovered that Maxwell’s equations did have a simple mathematical velocity trans-
formation that left them invariant, but it was not Galilean, and most bizarrely, it involved
changing the time. The non-Galilean character of the transformation equation relative to
the “aetherial medium” hosting the waves was put down, a bit vaguely, to electromagnetic
interactions between charged particles that truly changed the length of the object. As to the
time change, well, one would have to put up with it as an aetherial formality.

All was resolved in 1905 when Einstein showed how, by adopting as a postulates (i) that
the speed of light was constant in all frames (as had already been indicated by a body of
irrefutable experiments, including the famous Michelson-Morley investigation); (ii) the aban-
donment of the increasingly problematic aether medium that supposedly hosted these waves;
and (iii) reinstating the truly essential Galilean notion that relative uniform velocity cannot
be detected by any physical experiment, that the “Lorentz transformations” (as they had
become known) must follow. All equations of physics, not just electromagnetic phenomena,
had to be invariant in form under these Lorentz transformations, even with its peculiar rela-
tive time variable. These ideas and the consequences that ensued collectively became known
as relativity theory, in reference to the invariance of form with respect to relative velocities.
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The relativity theory stemming from Maxwell’s equations is rightly regarded as one of the
crown jewels of 20th century physics. In other words, a triumph.

1.2 The legacy of Newton

Another triumph, another problem. If indeed, all of physics had to be compatible with
relativity, what of Newtonian gravity? It works incredibly well, yet it is manifestly not

compatible with relativity, because Poisson’s equation

r2� = 4⇡G⇢ (1)

implies instantaneous transmission of changes in the gravitational field from source to poten-
tial. (Here � is the Newtonian potential function, G the Newtonian gravitational constant,
and ⇢ the mass density.) Wiggle the density locally, and throughout all of space there must
instantaneously be a wiggle in �, as given by equaton (1).

In Maxwell’s theory, the electrostatic potential satisfies its own Poisson equation, but the
appropriate time-dependent potential obeys a wave equation:

r2�� 1

c

2

@

2�

@t

2
= � ⇢

✏0
, (2)

and solutions of this equation propagate signals at the speed of light c. In retrospect, this is
rather simple. Mightn’t it be the same for gravity?

No. The problem is that the source of the signals for the electric potential field, i.e. the
charge density, behaves di↵erently from the source for the gravity potential field, i.e. the mass
density. The electrical charge of an individual bit of matter does not change when the matter
is viewed in motion, but the mass does: the mass increases with velocity. This seemingly
simple detail complicates everything. Moreover, in a relativisitic theory, energy, like matter,
is a source of a gravitational field, including the distributed energy of the gravitational field
itself! A relativisitic theory of gravity would have to be nonlinear. In such a time-dependent
theory of gravity, it is not even clear a priori what the appropriate mathematical objects
should be on either the right side or the left side of the wave equation. Come to think of it,
should we be using a wave equation at all?

1.3 The need for a geometrical framework

In 1908, the mathematician Hermann Minkowski came along and argued that one should
view the Lorentz transformations not merely as a set of rules for how coordinates (including a
time coordinate) change from one constant-velocity reference frame to another, but that these
coordinates should be regarded as living in their own sort of pseudo-Euclidian geometry—a
space-time, if you will: “Minkowski space.”

To understand the motivation for this, start simply. We know that in ordinary Euclidian
space we are free to choose any coordinates we like, and it can make no di↵erence to the
description of the space itself, for example, in measuring how far apart objects are. If (x, y)
is a set of Cartesian coordinates for the plane, and (x0

, y

0) another coordinate set related to
the first by a rotation, then

dx

2 + dy

2 = dx

02 + dy

02 (3)

i.e., the distance between two closely spaced points is the same number, regardless of the
coordinates used. dx2 + dy

2 is said to be an “invariant.”
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Now, an abstraction. There is nothing special from a mathematical viewpoint about
the use of dx2 + dy

2 as our so-called metric. Imagine a space in which the metric invariant
was dy

2 � dx

2. From a purely mathematical point of view, we needn’t worry about the
plus/minus sign. An invariant is an invariant. However, with dy

2 � dx

2 as our invariant, we
are describing a Minkowski space, with dy = cdt and dx an ordinary space interval, just as
before. The fact that c2dt2�dx

2 is an invariant quantity is precisely what we need in order to
guarantee that the speed of light is always constant—an invariant! In this case, c2dt2 � dx

2

is always zero for light propagation along x, whatever coordinates (read “observers”) are
involved, and more generally,

c

2
dt

2 � dx

2 � dy

2 � dz

2 = 0 (4)

will guarantee the same in any direction. We have thus taken a kinematical requirement—
that the speed of light be a universal constant—and given it a geometrical interpretation in
terms of an invariant quantity (a “quadratic form” as it is sometimes called) in Minkowski
space.

Pause. As the French would say, “Bof.” And so what? Call it whatever you like. Who
needs obfuscating mathematical pretence? Eschew obfuscation! The Lorentz transform
stands on its own! That was very much Einstein’s initial take on Minkowski’s pesky little
meddling with his theory.

But Einstein soon changed his tune, for it is the geometrical viewpoint that is the more
fundamental. Einstein’s great revelation, his big idea, was that gravity arises because the

e↵ect of the presence of matter in the universe is to distort Minkowski’s space-time. The

distortions manifest themselves as what we view as the force of gravity, and thus these same

distortions must become, in the limit of weak gravity, familiar Newtonian theory. Gravity

itself is purely geometrical.

Now that is one big idea. It is an idea that will take the rest of this course—and beyond—
to explain. How did Einstein make this leap? Why did he change his mind? Where did this
notion of geometry come from?

From a simple observation. In a freely falling elevator, or more safely in an aircraft
executing a ballistic parabolic arch, one feels “weightless.” That is, the e↵ect of gravity
can be made to locally disappear in the appropriate reference frame—the right coordinates.
This is due to the fact that gravity has exactly the same e↵ect on all mass, regardless of its
composition, which is just what we would expect if objects were responding to background
geometrical distortions instead of an applied force. In the e↵ective absence of gravity, we
locally return to the environment of undistorted (“flat” in mathematical parlance) Minkowski
space-time, much as a flat Euclidian tangent plane is an excellent local approximation to
the surface of a curved sphere. (Which is of course why it is easy to be fooled that the
earth is globally flat.) The tangent plane coordinates locally “eliminate” spherical geometry
complications. Einstein’s notion that the e↵ects of gravity are to cause a distortion of
Minkowski space-time, and that it is always possible to find coordinates in which the local
distortions may be similarly eliminated to leading order, is the foundational insight of general
relativity. It is known as the Equivalence Principle. We will have much more to say on this
topic.

Space-time. Space-time. Bringing in time, you see, is everything. Non-Euclidean geome-
try as developed by the great mathematician Bernhard Riemann begins with notion that any
space looks locally “flat.” Riemannian geometry is the language of gravitational theory, and
Riemann himself had the notion that gravity might arise from a non-Euclidian curvature in
three-dimensional space. He got nowhere, because time was not part of his geometry. It was
the (underrated) genius of Minkowski to incorporate time into a purely geometrical theory
that allowed Einstein to take the crucial next step, freeing himself to think of gravity solely
in geometrical terms, without having to ponder over whether it made any sense to have time
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as part of the geometrical framework. In fact, the Newtonian limit is reached not from the
leading order curvature terms in the spatial part of the geometry, but from the leading order
“curvature” (if that is the word) of the time.

Riemann created the mathematics of non-Euclidian geometry. Minkoswki realised that
natural language of the Lorentz transformations was geometrical, including time as a key
component of the geometrical interpretation. Einstein took the great leap of realising that
gravity arises from the distortions of Minkowski’s flat space-time created by the existence of
matter.

Well done. You now understand the conceptual framework of general relativity, and that
is itself a giant leap. From here on, it is just a matter of the technical details. But then, you
and I also can paint like Leonardo da Vinci. It is just a matter of the technical details.
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From henceforth, space by itself and

time by itself, have vanished into the

merest shadows, and only a blend of

the two exists in its own right.

— Hermann Minkowski

2 The toolbox of geometrical theory: special relativity

In what sense is general relativity “general?” In the sense that since we are dealing with
an abstract space-time geometry, the essential mathematical description must be the same
in any coordinate system at all, not just those related by constant velocity reference frame
shifts, or even just those coordinate transformations that make tangible physical sense. Any
coordinates at all. Full stop.

We need the coordinates for our description of the structure of space-time, but somehow
the essential physics (and other mathematical properties) must not depend on them, and it
is no easy business to formulate a theory which satisfies this restriction. We owe a great deal
to Bernhard Riemann for coming up with a complete mathematical theory for these non-
Euclidian geometries. The sort of geometry in which it is always possible to find coordinates
in which the space looks locally smooth is known as a Riemannian manifold. Mathematicians
would say that an n-dimensional manifold is homeomorphic to n-dimensional Euclidian space.
Actually, since our invariant interval c2dt2�dx

2 is not a simple sum of squares, but contains
a minus sign, the manifold is said to be pseudo-Riemannian. Pseudo or no, the descriptive
mathematical machinery is the same.

The objects that geometrical theories work with are scalars, vectors, and higher order
tensors. You have certainly seen scalars and vectors before in your other physics courses,
and you may have encountered tensors as well. We will need to be very careful how we define
these objects, and very careful to distinguish them from objects that look like vectors and
tensors (because they have the appropriate number of components) but actually are not.

To set the stage, we begin with the simplest geometrical objects of Minkowski space-time
that are not just simple scalars: the 4-vectors.

2.1 The 4-vector formalism

In their most elementary form, the familiar Lorentz transformations from “fixed” laboratory
coordinates (t, x, y, z) to moving frame coordinates (t0, x0

, y

0
, z

0) take the form

ct

0 = �(ct� vx/c) = �(ct� �x) (5)

x

0 = �(x� vt) = �(x� �ct) (6)

y

0 = y (7)

z

0 = z (8)

where v is the relative velocity (taken along the x axis), c the speed of light, � = v/c and

� ⌘ 1p
1� v

2
/c

2
⌘ 1p

1� �

2
(9)
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is the Lorentz factor. The primed frame can be thought of as the frame moving with an
object we are studying, that is to say the object’s rest frame. To go backwards to find (x, t)
as a function (x0

, t

0), just interchange the primed and unprimed coordinates in the above
equations, and then flip the sign of v. Do you understand why this works?

Exercise. Show that in a coordinate free representation, the Lorentz transformations are

ct

0 = �(ct� � · x) (10)

x

0 = x+
(� � 1)

�

2
(� · x)� � �ct� (11)

where c� = v is the vector velocity and boldface x’s are spatial vectors. (Hint: This is not nearly
as scary as it looks! Note that �/� is just a unit vector in the direction of the velocity and sort
out the components of the equation.)

Exercise. The Lorentz transformation can be made to look more rotation-like by using hyperbolic
trigonometry. The idea is to place equations (5)–(8) on the same footing as the transformation of
Cartesian position vector components under a simple rotation, say about the z axis:

x

0 = x cos ✓ + y sin ✓ (12)

y

0 = �x sin ✓ + y cos ✓ (13)

z

0 = z (14)

Show that if we define
� ⌘ tanh ⇣, (15)

then
� = cosh ⇣, �� = sinh ⇣, (16)

and
ct

0 = ct cosh ⇣ � x sinh ⇣, (17)

x

0 = �ct sinh ⇣ + x cosh ⇣. (18)

What happens if we apply this transformation twice, once with “angle” ⇣ from (x, t) to (x0, t0), then
with angle ⇠ from (x0, t0) to (x00, t00)? How is (x, t) related to (x00, t00)?

Following on, rotations can be made to look more Lorentz-like by introducing

↵ ⌘ tan ✓, � ⌘ 1p
1 + ↵

2
(19)

Then show that (12) and (13) become

x

0 = �(x+ ↵y) (20)

y

0 = �(y � ↵x) (21)

Thus, while a having a di↵erent appearance, the Lorentz and rotational transformations have
mathematical structures that are similar.

Of course lots of quantities besides position are vectors, and it is possible (indeed de-
sirable) just to define a quantity as a vector if its individual components satisfy equations
(12)–(14). Likewise, we find that many quantities in physics obey the transformation laws of
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equations (5–8), and it is therefore natural to give them a name and to probe their proper-
ties more deeply. We call these quantities 4-vectors. They consist of an ordinary vector V ,
together with an extra component —a “time-like” component we will designate as V 0. (We
use superscripts for a reason that will become clear later.) The“space-like” components are
then V

1
, V

2
, V

3. The generic form for a 4-vector is written V

↵, with ↵ taking on the values
0 through 3. Symbolically,

V

↵ = (V 0
,V ) (22)

We have seen that (ct,x) is one 4-vector. Another, you may recall, is the 4-momentum,

p

↵ = (E/c,p) (23)

where p is the ordinary momentum vector and E is the total energy. Of course, we speak of
relativisitic momentum and energy:

p = �mv, E = �mc

2 (24)

where m is a particle’s rest mass. Just as

(ct)2 � x

2 (25)

is an invariant quantity under Lorentz transformations, so to is

E

2 � (pc)2 = m

2
c

4 (26)

A rather plain 4-vector is p↵ without the coe�cient of m. This is the 4-velocity U

↵,

U

↵ = �(c,v) (27)

Note that in the rest frame of a particle, U0 = c (a constant) and the ordinary 3-velocity
components U = 0. To get to any other frame, just use (“boost with”) the Lorentz trans-
formation. (Be careful with the sign of v). We don’t have to worry that we boost along one
axis only, whereas the velocity has three components. If you wish, just rotate the axes, after
we’ve boosted. This sorts out all the 3-vector components the way you’d like, and leaves the
time (“0”) component untouched.

Humble in appearance, the 4-velocity is a most important 4-vector. Via the simple trick
of boosting, the 4-velocity may be used as the starting point for constructing many other
important physical 4-vectors. Consider, for example, a charge density ⇢0 which is at rest.
We may create a 4-vector which, in the rest frame, has only one component: ⇢0c is the lonely
time component and the ordinary spatial vector components are all zero. It is just like U

↵,
only with a di↵erent normalisation constant. Now boost! The resulting 4-vector is denoted

J

↵ = �(c⇢0,v⇢0) (28)

The time component give the charge density in any frame, and the 3- vector components are
the corresponding standard current density J ! This 4-current is the fundamental 4-vector
of Maxwell’s theory. As the source of the fields, this 4-vector source current is the basis for
Maxwell’s electrodynamics being a fully relativistic theory. J

0 is the source of the electric
field potential function �, and and J is the source of the magnetic field vector potential A,
and, as we will shortly see,

A

↵ = (�,A/c) (29)

is itself a 4-vector! Then, we can generate the fields themselves from the potentials by
constructing a tensor...well, we are getting a bit ahead of ourselves.
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2.2 More on 4-vectors

2.2.1 Transformation of gradients

We have seen how the Lorentz transformation express x0↵ as a function of the x coordinates.
It is a simple linear transformation, and the question naturally arises of how the partial
derivatives, @/@t, @/@x transform, and whether a 4-vector can be constructed from these
components. This is a simple exercise. Using

ct = �(ct0 + �x

0) (30)

x = �(x0 + �ct

0) (31)
we find

@

@t

0 =
@t

@t

0
@

@t

+
@x

@t

0
@

@x

= �

@

@t

+ ��c

@

@x

(32)

@

@x

0 =
@x

@x

0
@

@x

+
@t

@x

0
@

@t

= �

@

@x

+ ��

1

c

@

@t

(33)

In other words,
1

c

@

@t

0 = �

✓
1

c

@

@t

+ �

@

@x

◆
(34)

@

@x

0 = �

✓
@

@x

+ �

1

c

@

@t

◆
(35)

and for completeness,
@

@y

0 =
@

@y

(36)

@

@z

0 =
@

@z

. (37)

This is not the Lorentz transformation (5)–(8); it di↵ers by the sign of v. By contrast,
coordinate di↵erentials dx

↵ transform, of course, just like x

↵:

cdt

0 = �(cdt� �dx), (38)

dx

0 = �(dx� �cdt), (39)

dy

0 = dy, (40)

dz

0 = dz. (41)
This has a very important consequence:

dt

0 @

@t

0 + dx

0 @

@x

0 = �

2


(dt� �

dx

c

)

✓
@

@t

+ �c

@

@x

◆
+ (dx� �cdt)

✓
@

@x

+ �

1

c

@

@t

◆�
, (42)

or simplifying,

dt

0 @

@t

0 + dx

0 @

@x

0 = �

2(1� �

2)

✓
dt

@

@t

+ dx

@

@x

◆
= dt

@

@t

+ dx

@

@x

(43)

Adding y and z into the mixure changes nothing. Thus, a scalar product exists between dx

↵

and @/@x

↵ that yields a Lorentz scalar, much as dx · r, the ordinary complete di↵erential, is
a rotational scalar. It is the fact that only certain combinations of 4-vectors and 4-gradients
appear in the equations of physics that allows these equations to remain invariant in form
from one reference frame to another.

It is time to approach this topic, which is the mathematical foundation on which special
and general relativity is built, on a firmer and more systematic footing.
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2.2.2 Transformation matrix

We begin with a simple but critical notational convention: repeated indices are summed over,
unless otherwise explicitly stated. This is known as the Einstein summation convention,

invented to avoid tedious repeated summation ⌃’s. For example:

dx

↵

@

@x

↵

= dt

@

@t

+ dx

@

@x

+ dy

@

@y

+ dz

@

@z

(44)

I will often further shorten this to dx

↵

@

↵

. This brings us to another important notational
convention. I was careful to write @

↵

, not @

↵. Superscripts will be reserved for vectors,
like dx

↵ which transform like (5) through (8) from one frame to another (primed) frame
moving a relative velocity v along the x axis. Subscripts will be used to indicate vectors that
transfrom like the gradient components in equations (34)–(37). Superscipt vectors like dx

↵

are referred to as contravariant vectors; subscripted vectors as covariant. (The names will
acquire significance later.) The co- contra- di↵erence is an important distinction in general
relativity, and we begin by respecting it here in special relativity.

Notice that we can write equations (38) and (39) as

[�cdt

0] = �([�cdt] + �dx) (45)

dx

0 = �(dx+ �[�cdt]) (46)

so that the 4-vector (�cdt, dx, dy, dz) is covariant, like a gradient! We therefore have

dx

↵ = (cdt, dx, dy, dz) (47)

dx

↵

= (�cdt, dx, dy, dz) (48)

It is easy to go between covariant and contravariant forms by flipping the sign of the time
component. We are motivated to formalise this by introducing a matrix ⌘

↵�

defined as

⌘

↵�

=

0BB@
�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1CCA (49)

Then dx

↵

= ⌘

↵�

dx

� “lowers the index.” We will write ⌘

↵� to raise the index, though it is a
numerically identical matrix. Note that the invariant space-time interval may be written

c

2
d⌧

2 ⌘ c

2
dt

2 � dx

2 � dy

2 � dz

2 = �⌘

↵�

dx

↵

dx

� (50)

The time interval d⌧ is just the “proper time,” the time shown ticking on the clock in the
rest frame moving with the object of interest (since in this frame all spatial di↵erentials dxi

are zero). Though introduced as a bookkeeping device, ⌘
↵�

is an important quantity: it goes
from being a constant matrix in special relativity to a function of coordinates in general
relativity, mathematically embodying the departures of space-time from simple Minkowski
form when matter is present.

The standard Lorentz transformation may now be written as a matrix equation, dx0↵ =
⇤↵

�

dx

�, where

⇤↵

�

dx

� =

0BB@
� ��� 0 0

��� � 0 0
0 0 1 0
0 0 0 1

1CCA
0BB@

dx

0

dx

1

dx

2

dx

3

1CCA (51)
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This is symmetric in ↵ and �. (A possible notational ambiguity is di�cult to avoid here: �
used as a subscript or superscript of course never means v/c. Used in this way it is just a
space-time index.) Direct matrix multiplication gives (do it, and notice that the ⌘ matrix
must go in the middle...why?):

⇤↵

�

⇤⌫

µ

⌘

↵⌫

= ⌘

�µ

(52)

Then, if V ↵ is any contravariant vector and W

↵

any covariant vector, V ↵

W

↵

must be an
invariant (or “scalar”) because

V

0↵
W

0
↵

= V

0↵
W

0�
⌘

�↵

= ⇤↵

µ

V

µ⇤�

⌫

W

⌫

⌘

�↵

= V

µ

W

⌫

⌘

µ⌫

= V

µ

W

µ

(53)

For covariant vectors, for example @

↵

, the transformation is @0
↵

= ⇤̃�

↵

@

�

, where ⇤̃�

↵

is the
same as ⇤�

↵

, but the sign of � reversed:

⇤̃↵

�

=

0BB@
� �� 0 0
�� � 0 0
0 0 1 0
0 0 0 1

1CCA (54)

Note that
⇤̃↵

�

⇤�

µ

= �

↵

µ

, (55)

where �

↵

µ

is the Kronecker delta function. This leads immediately once again to V

0↵
W

0
↵

=
V

↵

W

↵

.

Notice that equation (38) says something rather interesting in terms of 4-vectors. The
right side is just proportional to �dx

↵

U

↵

, where U
↵

is the (covariant) 4-vector corresponding
to ordinary velocity v. Consider now the case dt

0 = 0, a surface in t, x, y, z, space-time cor-
responding to simultaneity in the frame of an observer moving at velocity v. The equations
of constant time in this frame are given by the requirement that dx↵ and U

↵

are orthogonal.

Exercise. Show that the general Lorentz transformation matrix is:

⇤↵

�

=

0BB@
� ���

x

���

y

���

z

���

x

1 + (� � 1)�2
x

/�

2 (� � 1)�
x

�

y

/�

2 (� � 1)�
x

�

z

/�

2

���

y

(� � 1)�
x

�

y

/�

2 1 + (� � 1)�2
y

/�

2 (� � 1)�
y

�

z

/�

2

���

z

(� � 1)�
x

�

z

/�

2 (� � 1)�
y

�

z

/�

2 1 + (� � 1)�2
z

/�

2

1CCA (56)

Hint: Keep calm and use (10) and (11).

2.2.3 Tensors

There is more to relativistic life than vectors and scalars. There are objects called tensors,
with more that one indexed component. But possessing indices isn’t enough! All tensor
components must transform in the appropriate way under a Lorentz transformation. Thus,
a tensor T ↵� transforms according to the rule

T

0↵� = ⇤↵

µ

⇤�

⌫

T

µ⌫

, (57)

while
T

0
↵�

= ⇤̃µ

↵

⇤̃⌫

�

T

µ⌫

, (58)
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and of course
T

0↵
�

= ⇤↵

µ

⇤̃⌫

�

T

µ

⌫

, (59)

You get the idea. Contravariant superscript use ⇤, covariant subscript use ⇤̃.

Tensors are not hard to find. Remember equation (52)?

⇤↵

�

⇤⌫

µ

⌘

↵⌫

= ⌘

�µ

(60)

So ⌘

↵�

is a tensor, with the same components in any frame! The same is true of �↵
�

, a mixed

tensor (which is the reason for writing its indices as we have), that we must transform as
follows:

⇤⌫

µ

⇤̃↵

�

�

µ

↵

= ⇤⌫

↵

⇤̃↵

�

= �

�

⌫

. (61)

Here is another tensor, slightly less trivial:

W

↵� = U

↵

U

� (62)

where the U

0
s are 4-velocities. This obviously transforms as tensor, since each U obeys its

own vector transformation law. Consider next the tensor

T

↵� = ⇢hu↵

u

�i (63)

where the h i notation indicates an average of all the 4-velocity products u

↵

u

� taken over
a whole swarm of little particles, like a gas. (An average of 4-velocities is certainly itself a
4-velocity, and an average of all the little particle tensors is itself a tensor.) ⇢ is the local
rest density.

The component T 00 is just ⇢c2, the energy density of the swarm. Moreover, if, as we shall
assume, the particle velocities are isotropic, then T

↵� vanishes if ↵ 6= �. When ↵ = � 6= 0,
then T

↵� is by definition the pressure P of the swarm. Hence, in the frame in which the
swarm has no net bulk motion,

T

↵� =

0BB@
⇢c

2 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

1CCA (64)

This is, in fact, the most general form for the so-called energy-momentum stress tensor for
an isotropic fluid in the rest frame of the fluid.

To find T

↵� in any frame with 4-velocity U

↵ we could adopt a brute force method and
apply the ⇤ matrix twice to the rest frame form, but what a waste of e↵ort of that would
be! If we can find any true tensor that agrees with our result in the rest frame, then that
tensor is the unique tensor. Proof: if a tensor is zero in any frame, then it is zero in all
frames, as a trivial consequence of the transformation law. Suppose the tensor I construct,
which is designed to match the correct rest frame value, may not be (you think) correct in
all frames. Hand me your tensor, what you think is the correct choice. Now, the two tensors
by definition match in the rest frame. I’ll subtract one from the other to form the di↵erence
between my tensor and the true tensor. The di↵erence is also a tensor, but it vanishes in the
rest frame by construction. Hence this “di↵erence tensor” must vanish in all frames, so your
tensor and mine are identical after all! Corollary: if you can prove that the two tensors are
the same in any one particular frame, then they are the same in all frames. This is a very
useful ploy.
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The only two tensors we have at our disposal to construct T ↵� are ⌘

↵� and U

↵

U

�, and
there is only one linear superposition that matches the rest frame value and does the trick:

T

↵� = P⌘

↵� + (⇢+ P/c

2)U↵

U

� (65)

This is the general form of energy-momentum stress tensor appropriate to an ideal fluid.

2.2.4 Conservation of T ↵�

One of the most salient properties of T ↵� is that it is conserved, in the sense of

@T

↵�

@x

↵

= 0 (66)

Since gradients of tensors transform as tensors, this must be true in all frames. So what,
exactly, are we conserving?

First, the time-like 0-component of this equation is

@

@t


�

2

✓
⇢+

Pv

2

c

4

◆�
+r·


�

2

✓
⇢+

P

c

2

◆
v

�
= 0 (67)

which is the relativistic version of mass conservation,

@⇢

@t

+r·(⇢v) = 0. (68)

Elevated in special relativity, it becomes a statement of energy conservation. So one of the
things we are conserving is energy. This is good.

The spatial part of the conservation equation reads

@

@t


�

2

✓
⇢+

P

c

2

◆
v

i

�
+

✓
@

@x

j

◆
�

2

✓
⇢+

P

c

2

◆
v

i

v

j

�
+

@P

@x

i

= 0 (69)

You may recognise this as Euler’s equation of motion, a statement of momentum conserva-
tion, upgraded to special relativity. Conserving momentum is also good.

What if there are other external forces? The idea is that these are included by expressing
them in terms of the divergence of their own stress tensor. Then it is the total T ↵� including,
say, electromagnetic fields, that comes into play. What about the force of gravity? That, it
will turn out, is on an all-together di↵erent footing.

You start now to gain a sense of the di�culty in constructing a theory of gravity com-
patible with relativity. The density ⇢ is part of the stress tensor, and it is the entire stress
tensor in a relativistic theory that would have to be the source of the gravitational field,
just as the entire 4-current J

↵ is the source of electromangetic fields. No fair just picking
the component you want. Relativistic theories work with scalars, vectors and tensors to
preserve their invariance properties from one frame to another. This insight is already an
achievement: we can, for example, expect pressure to play a role in generating gravitational
fields. Would you have guessed that? Our relativistic gravity equation maybe ought to look
something like :

r2
G

µ⌫ � 1

c

2

@

2
G

µ⌫

@t

2
= T

µ⌫ (70)
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where G

µ⌫ is some sort of, I don’t know, a conserved tensor guy for the...space-time geom-
etry and stu↵? In Maxwell’s theory we had a 4-vector (A↵) operated on by the so-called
“d’Alembertian operator” r2 � (1/c)2@2

/@t

2 on the left side of the equation and a source
(J↵) on the right. So now we just need to find a G

µ⌫ tensor to go with T

µ⌫ . Right?

Actually, this really is not too bad a guess, but...well...patience. One step at a time.
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Then there occurred to me the

‘glücklichste Gedanke meines Lebens,’

the happiest thought of my life, in the

following form. The gravitational field

has only a relative existence in a way

similar to the electric field generated

by magnetoelectric induction. Because

for an observer falling freely from the

roof of a house there exists—at least

in his immediate surroundings—no

gravitational field.

— Albert Einstein

1

3 The e↵ects of gravity

The central idea of general relativity is that presence of mass (more precisely the presence
of any stress-energy tensor component) causes departures from flat Minkowski space-time
to appear, and that other matter (or radiation) responds to these distortions in some way.
There are then really two questions: (i) How does the a↵ected matter/radiation move in
the presence of a distorted space-time?; and (ii) How does the stress-energy tensor distort
the space-time in the first place? The first question is purely computational, and fairly
straightforward to answer. It lays the groundwork for answering the much more di�cult
second question, so let us begin here.

3.1 The Principle of Equivalence

We have discussed the notion that by going into a frame of reference that is in free-fall, the
e↵ects of gravity disappear. In this time of space travel, we are all familiar with astronauts
in free fall orbits, and the sense of weightlessness that is produced. This manifestation of
the Equivalence Principle is so palpable that hearing mishmashes like “In orbit there is no
gravity” from an over eager science correspondent is a common experience. (Our own BBC
correspondent, Prof. Chris Lintott, would certainly never say such a thing.)

The idea behind the equivalence principle is that the m in F = ma and the m in the
force of gravity F

g

= mg are the same m and thus the acceleration caused by gravity, g,
is invariant for any mass. We could imagine that F = m

I

a and F

g

= m

g

g, in which the
acceleration is m

g

g/m

I

, i.e., it varies with the ratio of inertial to gravitational mass, m
g

/m

I

.
How well can we actually measure this ratio, or what is more key, how well do we know that
it is truly a universal constant for all types of matter?

The answer is very well indeed. We don’t of course do anything as crude as directly
measuring the rate at which objects fall to the ground any more, à la Galileo and the tower
of Pisa. As with all classic precision gravity experiments (including those of Galileo!) we
use a pendulum. The first direct measurement of the gravitational to inertial mass actually
predates relativity, the so-called Eötvös experiment (after Baron Lorànd Eötvös, 1848-1919).

The idea is shown in schematic form in figure [1]. Hang a pendulum from a string, but

1With apologies to any readers who may actually have fallen o↵ the roof of a house—safe space statement.
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c"
g"

Figure 1: Schematic diagram of the Eötvös experiment. A barbell shape,
the red object above, is hung from a pendulum on the Earth’s surface
(big circle) with two di↵erent material masses. Each mass is a↵ected by
gravity pulling it to the centre of the earth (g) and a centrifugal force due
to the earth’s rotation (c) shown as blue arrows. Any di↵erence between
the inertial mass and the gravitational mass will produce an unbalanced
torque about the axis of the suspending fibre of the barbell.

instead of hanging a big mass, hang a rod, and put two masses at either end. There is a force
of gravity toward the center of the earth (g in the figure), and a centrifugal force (c) due to the
earth’s rotation. The net force is the vector sum of these two, and if the components of the
acceleration perpendicular to the string of each mass do not precisely balance, there will be
a net torque twisting the masses about the string (a quartz fibre in the actual experiment).
The absence of this twist is then a measurement of the lack of variability of m

I

/m

g

. In
practice, to achieve high accuracy, the pendulum rotates with a tightly controlled period, so
that the masses are sometimes hindered by any torque, sometimes pushed forward by the
torque. This implants a frequency dependence onto the motion, and by using fourier signal
processing, the resulting signal at a particular frequency can be tightly contrained. The
ratio between any di↵erence in the twisting accelerations on either mass and the average
acceleration must be less than a few parts in 1012 (Su et al. 1994, Phys Rev D, 50, 3614).
With direct laser ranging experiments to track the Moon’s orbit, it is possible, in e↵ect, to
use the Moon and Earth as the masses on the pendulum as they orbit around the Sun! This
gives an accuracy an order of magnitude better, a part in 1013 (Williams et al. 2012, Class.
Quantum Grav., 29, 184004), an accuracy comparable to measuring the distance to the Sun
within 1 cm.

There are two senses in which the Equivalence Principle may be used, a strong sense and
weak sense. The weak sense is that it is not possible to detect the e↵ects of gravity locally in
a freely falling coordinate system, that all matter behaves identically in a gravitational field
independent of its composition. Experiments can test this form of the Principle directly.
The strong, much more powerful sense, is that all physical laws, gravitational or not, behave
as they do in Minkowski space-time in a freely falling coordinate frame. In this sense the
Principle is a postulate which appears to be true.

If going into a freely falling frame eliminates gravity locally, then going from an inertial
frame to an accelerating frame reverses the process and mimics the e↵ect of gravity—again,
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locally. After all, if in an inertial frame

d

2
x

dt

2
= 0, (71)

and we transform to the accelerating frame x0 by x = x

0 + gt

2
/2, where g is a constant, then

d

2
x

0

dt

2
= �g, (72)

which looks an awful lot like motion in a gravitational field.

One immediate consequence of this realisation is of profound importance: gravity a↵ects
light. In particular, if we are in an elevator of height h in a gravitational field of local strength
g, locally the physics is exactly the same as if we were accelerating upwards at g. But the
e↵ect on a light is then easy to analyse: a photon released upwards reaches a detector at
height h in time h/c at which point there is detector is moving at gh/c relative to the bottom
of the elevator at the time of release. The photon is detected redshifted by a relative amount
gh/c

2, or �/c2 with � being the gravitational potential per unit mass at h. This is the
classical gravitational redshift, the simplest nontrivial prediction of general relativity. The
gravitational redshift has been measured accurately using changes in gamma ray energies
(RV Pound & JL Snider 1965, Phys. Rev., 140 B, 788).

The gravitational redshift is the critical link between Newtonian theory and general
relativity. It is not the distortion of space per se that gives rise to gravity at the level we are
familiar with, but, as we shall see, it is the distortion of the flow of time.

3.2 The geodesic equation

We denote by ⇠

↵ our freely falling inertial coordinate frame in which the e↵ects of gravity
are locally absent. In this frame, the equation of motion for a particle is

d

2
⇠

↵

d⌧

2
= 0 (73)

with
c

2
d⌧

2 = �⌘

↵�

d⇠

↵

d⇠

� (74)

being the invariant time interval. (If we are doing light, then d⌧ = 0, but ultimately it
doesn’t really matter. Either take a limit from finite d⌧ , or use any other parameter you
fancy, like your wristwatch. In the end, we won’t use ⌧ or your watch. As for d⇠↵, it is just
the freely-falling guy’s ruler and his wristwatch.) Next, write this equation in any other set
of coordinates you like, and call them x

µ. Our inertial coordinates ⇠↵ will be some function
or other of the x

µ so

0 =
d

2
⇠

↵

d⌧

2
=

d

d⌧

✓
@⇠

↵

@x

µ

dx

µ

d⌧

◆
(75)

where we have used the chain rule to express d⇠↵/d⌧ in terms of dxµ

/d⌧ . Carrying out the
di↵erentiation,
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where now the chain rule has been used on @⇠

↵

/@x

µ. This may not look very promising.
But if we multiply this equation by @x

�

/@⇠

↵, and remember to sum over ↵ now, then the
chain rule in the form

@x

�

@⇠

↵

@⇠

↵

@x

µ

= �

�

µ

(77)

rescues us. (We are using the chain rule repeatedly and will certainly continue to do so,
again and again. Make sure you understand this, and that you understand what variables
are being held constant when the partial derivatives are taken. Deciding what is constant is
just as important as doing the di↵erentiation!) Our equation becomes

d

2
x

�

d⌧

2
+ ��

µ⌫

dx

µ

d⌧
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= 0, (78)

where

��

µ⌫

=
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@x

µ

@x

⌫

(79)

is known as the a�ne connection, and is a quantity of central importance in the study of
Riemannian geometry and relativity theory in particular. You should be able to prove, using
the chain rule of partial derivatives, an identity for the second derivatives of ⇠↵ that we will
use shortly:

@

2
⇠

↵

@x

µ

@x

⌫

=
@⇠

↵

@x

�

��

µ⌫

(80)

(How does this work out when used in equation [76]?)

No need to worry, despite the funny notation. (Early relativity texts liked to use
Gothic Font for the a�ne connection, which added to the terror.) There is nothing es-
pecially mysterious about the a�ne connection. You use it all the time, probably without
realising it. For example, in cylindrical (r, ✓) coordinates, when you use the combinations
r̈ � r✓̇

2 or r✓̈ + 2ṙ✓̇ for your radial and tangential accelerations, you are using the a�ne
connection and the geodesic equation.

Exercise. Prove the last statement using ⇠

x = r cos ✓, ⇠y = r sin ✓.

Next, on the surface of a unit-radius sphere, choose any point as your North Pole, work in colatitude
✓ and azimuth � coordinates, and show that locally near the North Pole ⇠

x = ✓ cos�, ⇠y = ✓ sin�.
It is in this sense that the ⇠

↵ coordinates are tied to a local region of the space. In our free-fall
coordinates, it is local to a point in space-time.

3.3 The metric tensor

In our locally inertial coordinates, the invariant space-time interval is

c

2
d⌧

2 = �⌘
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d⇠

�

, (81)

so that in any other coordinates, d⇠↵ = (@⇠↵/dxµ)dxµ and
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where
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is known as themetric tensor. The metric tensor embodies the information of how coordinate
di↵erentials combine to form the invariant interval of our space-time, and once we know g

µ⌫

,
we know everything, including (as we shall see) the a�ne connections ��

µ⌫

. The object of
general relativity theory is to compute g

µ⌫

, and a key goal of this course is to find the field
equations that enable us to do so.

3.4 The relationship between the metric tensor and a�ne connec-
tion

Because of their reliance of the local freely falling inertial coordinates ⇠

↵, the g

µ⌫

and ��

µ⌫

quantities are awkward to use in their present formulation. Fortunately, there is a direct
relationship between ��

µ⌫

and the first derivatives of g
µ⌫

that will allow us to become free of
local bondage, and all us to dispense with the ⇠↵ altogether. Though their existence is crucial
to formulate the mathematical structure, the practical need of the ⇠’s for actual calculations
is minimal.

Di↵erentiate equation (83):
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Now use (80) for the second derivatives of ⇠:
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All remaining ⇠ derivatives may be absorbed as part of the metric tensor, leading to
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(86)

It remains only to unweave the �’s from the cloth of indices. This is done by first adding
@g

�⌫

/@x

µ to the above, then subtracting it with indices µ and ⌫ reversed.
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Remembering that � is symmetric in its bottom indices, only the g

⇢⌫

terms survive, leaving
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Our last step is to mulitply by the inverse matrix g

⌫�, defined by
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leaving us with the pretty result
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Notice that there is no mention of the ⇠’s. The a�ne connection is completely specified by g

µ⌫

and the derivatives of g
µ⌫

in whatever coordinates you like. In practice, the inverse matrix
is not di�cult to find, as we will usually work with metric tensors whose o↵ diagonal terms
vanish. (Gain confidence once again by practicing the geodesic equation with cylindrical
coordinates g

rr

= 1, g
✓✓

= r

2 and using [90.]) Note as well that with some very simple index
relabeling, we have the mathematical identity
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We’ll use this in a moment.

Exercise. Prove that g⌫� is given explicitly by

g
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3.5 Variational calculation of the geodesic equation

The physical significance of the relationship between the metric tensor and a�ne connection
may be understood by a variational calculation. O↵ all possible paths in our spacetime
from some point A to another B, which leaves the proper time an extremum (in this case, a
maximum)? We describe the path by some external parameter p, which could be anything,
perhaps the time on your wristwatch. Then the proper time from A to B is
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Next, vary x

� to x

� + �x

� (we are regarding x

� as a function of p remember), with �x
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vanishing at the end points A and B. We find
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(Do you understand the final term in the integral?)

Since the leading inverse square root in the integrand is just dp/d⌧ , �T
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simplifies to
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and p has vanished from sight. We now integrate the second term by parts, noting that the
contribution from the endpoints has been specified to vanish. Remembering that
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we find
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or
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Finally, using equation (91), we obtain
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Thus, if the geodesic equation (78) is satisfied, �T
AB

= 0 is satisfied, and the proper time
is an extremum. The very name “geodesic” is used in geometry to describe the path of
minimum distance between two points in a manifold, and it is therefore of interest to see
that there is a correspondence between a local “straight line” with zero curvature, and the
local elimination of a gravitational field with the resulting zero acceleration. In the first
case, the proper choice of local coordinates results in the second derivative with respect to
an invariant spatial interval vanishing; in the second case, the proper choice of coordinates
means that the second derivative with respect to an invariant time interval vanishes, but the
essential mathematics is the same.

There is a very practical side to working with the variational method: it is often much
easier to obtain the equations of motion for a given g

µ⌫

this way than it is to construct them
directly. In addition, the method quickly produces all the non-vanishing a�ne connection
components, as the coe�cients of (dxµ

/d⌧)(dx⌫

/d⌧). These quantities are then available for
any variety of purposes (and they are needed for many).

In classical mechanics, we know that the equations of motion may be derived from a
Lagrangian variational principle of least action, which doesn’t seem geometrical at all. What
is the connection with what we’ve just done? How do we make contact with Newtonian
mechanics from the geodesic equation?

3.6 The Newtonian limit

We consider the case of a slowly moving mass (“slow” of course means relative to c, the
speed of light) in a weak gravitational field (GM/rc

2 ⌧ 1). Since cdt � |dx|, the geodesic
equation greatly simplfies:
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Now
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In the Newtonian limit, the largest of the g derivatives is the spatial gradient, hence
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Since the gravitational field is weak, g
↵�

di↵ers very little from the Minkoswki value:
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and the µ = 0 geodesic equation is
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Clearly, the second term is zero for a static field, and will prove to be tiny when the gravita-
tional field changes with time under nonrelativistic conditions—we are, after all, calculating
the di↵erence between proper time and observer time! Dropping this term we find that t

and ⌧ are linearly related, so that the spatial components of the geodesic equation become

d

2
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dt

2
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2

2
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Isaac Newton would say:
d

2
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2
+r� = 0, (105)

with � being the classical gravitational potential. The two views are consistent if
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The quantity h00 is a dimensionless number of order v2/c2, where v is a velocity typical of
the system, say an orbital speed. Note that h00 is determined by the dynamical equations
only up to an additive constant, here chosen to make the geometry Minkowskian at large
distances from the matter creating the gravitational field. At the surface of a spherical object
of mass M and radius R,

h00 ' 2⇥ 10�6

✓
M
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R�

R

◆
(107)

where M� is the mass of the sun (about 2⇥ 1030 kg) and R� is the radius of the sun (about
7 ⇥ 108 m). As an exercise, you may want to look up masses of planets and other types of
stars and evaluate h00. What is its value at the surface of a white dwarf (mass of the sun,
radius of the earth)? What about a neutron star (mass of the sun, radius of Oxford)?

We are now able to relate the geodesic equation to the principle of least action in classical
mechanics. In the Newtonian limit, our variational integral becomesZ ⇥

c

2(1 + 2�/c2)dt2 � d|x|2
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(108)

Expanding the square root, Z
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where v

2 ⌘ d|x|2/dt. Thus, minimising the Lagrangian (kinetic energy minus potential
energy) is the same as maximising the proper time interval! What an unexpected and
beautiful connection.

What we have calculated in this section is nothing more than our old friend the gravi-
tational redshift, with which we began our formal study of general relativity. The invariant
spacetime interval d⌧ , the proper time, is given by

c

2
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2 = �g
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dx

µ
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⌫ (110)

For an observer at rest at location x, the time interval registered on a clock will be

d⌧(x) = [�g00(x)]
1/2

dt (111)
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where dt is the time interval registered at infinity, where �g00 ! 1. (Compare: the “proper
length” on the unit sphere for an interval at constant ✓ is sin ✓d�, where d� is the length
registered by an equatorial observer.) If the interval between two wave crest crossings is
found to be d⌧(y) at location y, it will be d⌧(x) when the light reaches x and it will be dt

at infinity. In general,
d⌧(y)

d⌧(x)
=


g00(y)

g00(x)

�1/2
, (112)

and in particular
d⌧(R)

dt

=
⌫(1)

⌫

= [�g00(R)]1/2 (113)

where ⌫ = 1/d⌧(R) is, for example, an atomic transition frequency measured at rest at the
surface R of a body, and ⌫(1) the corresponding frequency measured a long distance away.
Interestingly, the value of g00 that we have derived in the Newtonian limit is, in fact, the
exact relativisitic value of g00 around a point mass M ! (A black hole.) The precise redshift
formula is

⌫1 =

✓
1� 2GM

Rc

2

◆1/2

⌫ (114)

The redshift as measured by wavelength becomes infinite from light emerging from radius
R = 2GM/c

2, the so-called Schwarzschild radius (about 3 km for a point with the mass of
the sun!).

Historically, general relativity theory was supported in its infancy by the reported detec-
tion of a gravitational redshift in a spectral line observed from the surface of the white dwarf
star Sirius B in 1925 by W.S. Adams. It “killed two birds with one stone,” as the leading
astronomer A.S. Eddington remarked. For it not only proved the existence of white dwarf
stars (at the time controversial since the mechanism of pressure support was unknown), the
measurement also confirmed an early and important prediction of general relativity theory:
the redshift of light due to gravity.

Alas, the modern consensus is that the actual measurements were flawed! Adams knew
what he was looking for and found it. Though he was premature, the activity this apparently
positive observation imparted to the study of white dwarfs and relativity theory turned out to
be very fruitful indeed. But we were lucky. Incorrect but highly regarded single-investigator
observations have in the past caused much confusion and needless wrangling, as well as years
of wasted e↵ort.

The first definitive test for gravitational redshift came much later, and it was terrestrial:
the 1959 Pound and Rebka experiment performed at Harvard University’s Je↵erson Tower
measured the frequency shift of a 14.4 keV gamma ray falling (if that is the word for a
gamma ray) 22.6 m. Pound & Rebka were able to measure the shift in energy—just a few
parts in 1014—by the then new technique of Mössbauer spectroscopy.

Exercise. A novel application of the gravitational redshift is provided by Bohr’s refutation of
an argument put forth by Einstein purportedly showing that an experiment could in principle be
designed to bypass the quantum uncertainty relation �E�t � h. The idea is to hang a box
containing a photon by a spring suspended in a gravitational field g. At some precise time a
shutter is opened and the photon leaves. You weigh the box before and after the photon. There is
in principle no interference between the arbitrarily accurate change in box weight and the arbitrarily
accurate time at which the shutter is opened. Or is there?

1.) Show that box apparatus satisfies an equation of the form

Mẍ = �Mg � kx

28



where M is the mass of the apparatus, x is the displacement, and k is the spring constant. Before
release, the box is in equilibrium at x = �gM/k.

2.) Show that the momentum of the box apparatus after a short time interval �t from when the
photon escapes is

�p = �g�m

!

sin(!�t) '= �g�m�t

where �m is the (uncertain!) photon mass and !

2 = k/M . With �p ⇠ g�m�t, the uncertainty
principle then dictates an uncertain location of the box position �x given by g�m �x�t ⇠ h. But
this is location uncertainty, not time uncertainty.

3.) Now the gravitational redshift comes in! Show that if there is an uncertainty in position �x,
there is an uncertainty in the time of release: �t ⇠ (g�x/c2)�t.

4.) Finally use this in part (2) to establish �E �t ⇠ h with �E = �mc

2.

Why does general relativity come into nonrelativistic quantum mechanics in such a fundamental
way? Because the gravitational redshift is relativity theory’s point-of-contact with classical New-
tonian mechanics, and Newtonian mechanics when blended with the uncertainty principle is the
start of nonrelativistic quantum mechanics.

29



4 Tensor Analysis

Further, the dignity of the science

seems to require that every possible

means be explored itself for the solution

of a problem so elegant and so cele-

brated.

— Carl Friedrich Gauss

A mathematical equation is valid in the presence of general gravitational fields when

i.) It is a valid equation in the absence of gravity and respects Lorentz invariance.

ii.) It preserves its form, not just under Lorentz transformations, but under any coordinate

transformation, x ! x

0
.

What does “preserves its form” mean? It means that the equation must be written in terms
of quantities that transform as scalars, vectors, and higher ranked tensors under general
coordinate transformations. From (ii), we can see that if we can find one coordinate system
in which our equation holds, it will hold in any set of coordinates. But by (i), the equation
does hold in locally freely falling coordinates in which the e↵ect of gravity is locally absent.
The e↵ect of gravity is strictly embodied in the two key quantities that emerge from the
calculus of coordinate transformations: the metric tensor g

µ⌫

and its derivatives in ��

µ⌫

. This
approach is known as the Principle of General Covariance, and it is a very powerful tool
indeed.

4.1 Transformation laws

The simplest vector one can write down is the ordinary coordinate di↵erential dxµ. If x0µ =
x

0µ(x), there is no doubt how the dx0µ are related to the dxµ. It is called the chain rule, and
it is by now very familiar:

dx
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0µ

@x
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dx

⌫ (115)

Any set of quantities V µ that transforms in this way is known as a contravariant vector:
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⌫
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⌫ (116)

A covariant vector, by contrast, transforms as

U

0
µ

=
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⌫

@x

0µ U

⌫

(117)

“CO LOW, PRIME BELOW.” (Sorry. Maybe you can do better.) These definitions of
contravariant and covariant vectors are consistent with those we first introduced in our
discussions of the Lorentz matrices ⇤↵

�

and ⇤̃�

↵

in Chapter 2, but now generalised from
specific linear transformations to arbitrary transformations.
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The simplest covariant vector is the gradient @/@xµ of a scalar �. Once again, the chain
rule tells us how to transform from one set of coordinates to another—we’ve no choice:
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The generalisation to tensors is immediate. A contravariant tensor T µ⌫ transforms as
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a covariant tensor T
µ⌫

as
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and a mixed tensor T µ
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as

T

0µ
⌫

=
@x

0µ

@x

⇢

@x

�

@x

0⌫ T
⇢

�

(121)

The generalisation to mixed tensors of arbitrary rank should be self-evident.

By this definition the metric tensor g
µ⌫

really is a covariant tensor, just as its notation
would lead you to believe, because
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and the same for the contravariant g

µ⌫ . But the gradient of a vector is not, in general, a
tensor or a vector:
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The first term is just what we would have wanted if we were searching for a tensor trans-
formation law. But oh those pesky second order derivatives—the final term spoils it all.
This of couse vanishes when the coordinate transformation is linear (as when we found that
vector derivatives are perfectly good tensors under the Lorentz transformations), but not in
general. We will show in the next section that while the gradient of a vector is in general
not a tensor, there is an elegant solution around this problem.

Tensors can be created and manipulated in many ways. Direct products of tensors are
tensors:

W

µ⌫

⇢�

= T

µ⌫

S

⇢�

(124)

for example. Linear combinations of tensors multiplied by scalars of the same rank are
obviously tensors of the same rank. A tensor can lower its index by multiplying by g

µ⌫

or
raise it with g

µ⌫ :

T

0⇢
µ

⌘ g

0
µ⌫

T

0⌫⇢ =
@x

�
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0µ
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�
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g

��

T

⌧ =
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�

@x

0µ
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0⇢

@x

⌧

g

�

T

⌧ (125)

which indeed transforms as a tensor of mixed second rank, T ⇢

µ

. To clarify: multiplying T

µ⌫

by any covariant tensor S
⇢µ

generates a mixed tensor M ⌫

⇢

, but we adopt the convention of
keeping the name T

⌫

⇢

when multiplying by S

⇢µ

= g

⇢µ

, and thinking of the index as being
lowered. (And of course index-raising for multiplication by g

⇢µ.)
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Mixed tensors can contract to scalars. Start with T

µ

⌫

. Then consider the transformation
of T µ

µ

:

T

0µ
µ

=
@x

0µ

@x

⌫

@x

⇢

@x

0µT
⌫

⇢

= �

⇢

⌫

T

⌫

⇢

= T

⌫

⌫

(126)

i.e., T µ

µ

is a scalar T . Exactly the same type of calculation shows that T µ⌫

µ

is a vector T ⌫ ,
and so on. Remember to contract “up–down:” T

µ

µ

= T , not T µµ = T .

4.2 The covariant derivative

Recall the geodesic equation
d

2
x

�

d⌧

2
+ ��

µ⌫

dx

µ

d⌧

dx

⌫

d⌧

= 0. (127)

The left hand side has one free component, and the right hand side surely is a vector: the
trivial zero vector. If this equation is to be general, the left side needs to transform as a
vector. Neither of the two terms by itself is a vector, yet somehow their sum transforms as
a vector.

Rewrite the geodesic equation as follows. Denote dx

�

/d⌧ , a true vector, as U�. Then

U

µ


@U

�

@x

µ

+ ��

µ⌫

U

⌫

�
= 0 (128)

Ah ha! Since the left side must be a vector, the stu↵ in square brackets must be a tensor: it
is contracted with a vector Uµ to produce a vector—namely zero. The square brackets must
contain a mixed tensor of rank two. Now, ��

µ⌫

vanishes in locally free falling coordinates,
in which we know that simple partial derivatives of vectors are indeed tensors. So this
prescription tells us how to generalise this: to make a real tensor out of an ordinary partial
derivative, form the quantity

@U

�

@x

µ

+ ��

µ⌫

U

⌫ ⌘ U

�

;µ (129)

the so called covariant derivative. We use a semi-colon to denote covariant di↵erentiation
following convention. (Some authors get tired of writing out partial derivatives and so use
a comma (e.g V

⌫

,µ

), but it is more clear to use full partial derivative notation, and we shall
abide by this.) The covariant derivative reverts to an ordinary partial derivative in local
freely falling coordinates, but it is a true tensor. We therefore have at hand our partial
derivative in tensor form.

You know, this is too important a result not to check in detail. Perhaps you think there
is something special about the gesodesic equation. Moreover, we need to understand how to
construct the covariant derivative of covariant vectors and more general tensors. (Notice the
use of the word “covariant” twice in that last statement in two di↵erent senses. Apologies
for the awkward but standard mathematical nomenclature.)

The first thing we need to do is to establish the transformation law for ��

µ⌫

. This is just
repeated application of the chain rule:

�0�
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(130)
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Carrying through the derivative,
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(131)

Cleaning up, and recognising an a�ne connection when we see one, helps to rid us of the
⇠’s:

�0�
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This may also be written

�0�
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Do you see why? (Hint: Either integrate @/@x

0µ by parts or di↵erentiate the identity
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⇢
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Hence
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, (134)

and spotting the tricky “sum-over-x0⌫” Kronecker delta functions,
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Finally, adding this to (123), the unwanted terms cancel just as they should. We obtain
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as desired. This combination really does transform as a tensor ought to.

It is now a one-step process to deduce how covariant derivatives work for covariant vectors.
Consider

V

�

V

�

;µ = V

�

@V

�

@x

µ

+ ��

µ⌫

V

⌫

V

�

(137)

which is a perfectly good covariant vector. Integrating by parts on the first term on the
right, and then switching � and ⌫ in the final term, this expression is identical to

@(V �

V

�

)

@x

µ

� V

�
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@x
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µ�

V

⌫

�
. (138)

Since the first term is the covariant gradient of a scalar, and the entire expression must be
a good covariant vector, the term in square brackets must be a purely covariant tensor of
rank two. We have very quickly found our generalisation for the covariant derivative of a
covariant vector:

V

�;µ =
@V

�

@x

µ

� �⌫

µ�

V

⌫

(139)

33



That this really is a vector can also be directly verified via a calculation exactly similar to
our previous one for the covariant derivative of a contravariant vector.

Covariant derivatives of tensors are now simple to deduce. The tensor T � must formally
transform like a contravariant vector if we “freeze” one of its indices at some particular
component and allow the other to take on all component values. Since the formula must be
symmetric in the two indices,

T

�

;µ =
@T

�

@x

µ

+ ��

µ⌫

T

⌫ + �

⌫µ

T

�⌫ (140)

and then it should also follow
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(141)

and of course

T
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;µ =
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�

⌫

(142)

The generalisation to tensors of arbitrary rank should now be self-evident. To generate the
a�ne connection terms, freeze all indices in your tensor, then unfreeze them one-by-one,
treating each unfrozen index as either a covariant or contravariant vector, depending upon
whether it is down or up. Practise this until it is second-nature.

We now can give a precise rule for how to take an equation valid in special relativity,
and generalise it to the general relativistic theory of gravity. Work exclusively with 4-vectors
and 4-tensors. Replace ⌘

↵�

with g

µ⌫

. Take ordinary derivatives and turn them into covariant
derivatives. Voilà, your equation is set for the presence of gravitational fields.

It will not have escaped your attention, I am sure, that applying (141) to g

µ⌫

produces

g

µ⌫;� =
@g

µ⌫

@x

�

� g

⇢⌫

�⇢

µ�

� g

µ⇢

�⇢

⌫�

= 0 (143)

where equation (86) has been used for the last equality. The covariant derivatives of g

µ⌫

vanish. This is exactly what we would have predicted, since the ordinary derivatives of ⌘
↵�

vanish in special relativity, and thus the covariant derivative of g
µ⌫

should vanish in the
presence of gravitational fields.

Here are two important technical points that are easily shown. (You should do so explic-
itly.)

i.) The covariant derivative obeys the Leibniz rule for direct products. For example:

(T µ⌫

U

�

);⇢ = T

µ⌫

;⇢ U

�

+ T

µ⌫

U

�;⇢

ii.) The operation of contracting two tensor indices commutes with covariant di↵erentiation.
It does not matter which you do first.

4.3 The a�ne connection and basis vectors

The reader may be wondering how this all relates to our notions of, say, spherical geometry
and its associated set of unit vectors and coordinates. The answer is: very simply. Our
discussion will be straightforward and intuitive, rather than rigorous.
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A vector V may be expanded in a set of basis vectors,

V = V

a

e

a

(144)

where we sum over the repeated a, but a here on a bold-faced vector refers to a particular
vector in the basis set. The V

a are the usual vector contravariant components, old friends,
just numbers. Note that the sum is not a scalar formed from a contraction! We’ve used
roman letters here to help avoid that pitfall.

The covariant components are associated with what mathematicians are pleased to call
a dual basis:

V = v

b

e

b (145)

Same V , just di↵erent ways of representing its components. If the e’s seem a little abstract,
don’t worry, just take them at a formal level for the moment.

The basis and the dual basis are related by a dot product rule,

e

a

·eb = �

b

a

(146)

where the dot product, though formal, has the properties of relating orthonormal bases. The
basis vectors transform just as good vectors should:
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. (147)

Note that the dot product rule gives

V ·V = V

a
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·eb = V

a
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a

V
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, (148)

as we would expect. On the other hand, expanding the di↵erential line element ds,

ds

2 = eadx
a·ebdx

b = ea·ebdx
a

dx

b (149)

so that we recover the metric tensor

g

ab

= ea·eb (150)

Exactly the same style calculation gives

g

ab = e

a·eb (151)

These last two equations tell us first, that the g

ab

is the coe�cient of ea in an expansion of
the vector e

b

in the usual basis:
e

b

= g

ab

e

a

, (152)

and second, that gab is the coe�cient of e
a

in an expansion of the vector eb in the dual basis:

e

b = g

ab

ea (153)

We’ve recovered the rules for raising and lowering indices, in this case for the entire basis
vector.

Basis vectors change with coordinate position, as vectors do. We define �b

ac

by
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(154)
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so that
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= e
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(in the obvious shorthand notation @/@x

c = @

c

.) The last equality gives the expansion
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Consider @
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). Using (154),
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or finally
@

c

g

ab
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g
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+ �d

bc

g

ad

, (158)

exactly what we found in (86)! This leads, in turn, precisely to (90), the equation for the a�ne
connection in terms of the g partial derivatives. We now have a more intuitive understanding
of what the �’s really represent: they are expansion coe�cients for the derivatives of basis
vectors, which is how we are used to thinking of the extra acceleration terms in non Cartesian
coordinates when we first encounter them.

4.4 Volume element

The transformation of the metric tensor g
µ⌫

may be thought of as a matrix equation:

g

0
µ⌫

=
@x
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0µ g�
@x

�

@x

0⌫ (159)

Remembering that the determinant of the product of matrices is the product of the deter-
minants, we find

g

0 =

���� @x
@x

0

����2 g (160)

where g is the determinant of g
µ⌫

(just the product of the diagonal terms for the diagonal
metrics we will be using), and the notation |@x0

/@x| indicates the Jacobian of the transfor-
mation x ! x

0. The significance of this result is that there is another quantity that also
transforms with a Jacobian factor: the volume element d4x.

d

4
x
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����@x0

@x

���� d4x. (161)

This means p
�g

0
d

4
x

0 =
p
�g

���� @x
@x

0

���� ����@x0

@x

���� d4x =
p
�g d

4
x. (162)

In other words,
p
�g d

4
x is the invariant volume element of curved space-time. The minus

sign is used merely as an absolute value to keep the quantities positive. In flat Minkowski
space time, d4x is invariant by itself. (Euclidian example: in going from Cartesian (g = 1)
to cylindrical polar (g = R

2), to spherical coordinates (g = r

4 sin2
✓); we have dx dy =

RdRdz d� = r

2 sin ✓ dr d✓ d�. You knew that.)
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4.5 Covariant div, grad, curl, and all that

The ordinary partial derivative of a scalar transforms generally as covariant vector, so in this
case there is no distinction between a covariant and standard partial derivative. Another
easy result is

V

µ;⌫ � V

⌫;µ =
@V

µ

@x

⌫

� @V

⌫

@x

µ

. (163)

(The a�ne connection terms are symmetric in the two lower indices, so they cancel.) More
interesting is

V

µ
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where by definition
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Now, gµ⇢ is symmetric in its indices, whereas the last two g derivatives combined are anti-
symmetric in the same indices, so that combination disappears entirely. We are left with

�µ

µ�

=
g

µ⇢

2

@g

⇢µ

@x

�

(166)

In this course, we will be dealing entirely with diagonal metric tensors, in which µ = ⇢ for
nonvanishing entries, and g

µ⇢ is the reciprocal of g
µ⇢

. In this simple case,

�µ

µ�

=
1

2

@ ln |g|
@x

�

(167)

where g is as usual the determinant of g
µ⌫

, here just the product of the diagonal elements.
Though our result seems specific to diagonal g

µ⌫

, Weinberg, pp. 106-7, shows that this result
is true for any g

µ⌫

.2

The covariant divergence (164) becomes

V

µ

;µ =
1p
|g|

@(
p
|g|V µ)

@x

µ

(168)

a neat and tidy result. Note that Z p
|g|d4xV µ

;µ = 0 (169)

if V µ vanishes su�ciently rapidl) at infinity. (Why?)

We cannot leave the covariant derivative without discussing T µ⌫

;µ . Conserved stress tensors
are general relativity’s “coin of the realm.” Write this out:
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;µ =
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µ⌫

@x
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+ �µ
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�⌫ + �⌫
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, (170)

2Sketchy proof for the mathematically inclined: For matrix M , trace Tr, di↵erential �, to first order
in � we have � ln detM = ln det(M + �M) � ln detM = ln detM�1(M + �M) = ln det(1 + M

�1
�M) =

ln(1 + TrM�1
�M) = TrM�1

�M . Can you supply the missing details?
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and using (167), we may condense this to

T
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;µ =
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|g|

@(
p
|g|T µ⌫)
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µ
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µ�

T
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. (171)

For an antisymmetric tensor, call it Aµ⌫ , the last term drops out because � is symmetric in
its lower indices:

A

µ⌫

;µ =
1p
|g|

@(
p
|g|Aµ⌫)

@x

µ

(172)

4.6 Hydrostatic equilibrium

You have been patient and waded through a sea of indices, and it is time to be rewarded.
We will do our first real physics problem in general relativity: hydrostatic equilibrium.

In Newtonian mechanics, you will recall that hydrostatic equilibrium represents a balance
between a pressure gradient and the force of gravity. In general relativity this is completely
encapsulated in the condition

T

µ⌫

;µ = 0

applied to the energy-momentum stress tensor (65), updated to covariant status:

T
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⌫ (173)

Our conservation equation is
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where we have made use of the fact that the g

µ⌫

covariant derivative vanishes. Using (171):
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In static equilibrium, all the U components vanish except U0. To determine this, we use

g

µ⌫

U
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2 (176)

the upgraded version of special relativity’s ⌘
↵�

U

↵

U

� = �c

2. Thus,
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and with

�⌫
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our equation reduces to
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Since g

µ⌫

has a perfectly good inverse, the term in square brackets must be zero:

@P

@x

µ

+
�
⇢c

2 + P

�
@ ln |g00|1/2

@x

µ

= 0 (180)

This is the general relativistic equation of hydrostatic equilibrium. Compare this with
the Newtonian counterpart:

rP + ⇢r� = 0 (181)

The di↵erence for a static problem is the replacement of ⇢ by ⇢+ P/c

2 for the inertial mass
density, and the use of ln |g00|1/2 for the potential (to which it reduces in the Newtonian
limit).

If P = P (⇢), P 0 ⌘ dP/d⇢, equation (180) may be formally integrated:Z
P

0(⇢) d⇢

P (⇢) + ⇢c

2
+ ln |g00|1/2 = constant. (182)

Exercise. Solve this equation exactly for the case |g00| = (1� 2GM/rc

2)1/2 (e.g., near the surface
of a neutron star) and P = K⇢

� for � � 1.

4.7 Covariant di↵erentiation and parallel transport

In this section, we view covariant di↵erentiation in a di↵erent light. We make no new
technical developments, rather we understand the content of the geodesic equation in a
di↵erent way. Start with a by now old friend,
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Writing dx

�

/d⌧ as the vector it is, V �, to help our thinking a bit,
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V

⌫ = 0, (184)

a covariant formulation of the statement that the vector V

� is conserved along a geodesic
path. But the covariance property of this statement has nothing to do with the specific
identity of V � with dx

�

/d⌧ . The full left-side would of this equation is a covariant vector for
any V

� as long as V � itself is a bona fide contravariant vector. The right side simply tells us
that the covariant left side is zero (because in this case momentum is conserved.) Therefore,
just as we “upgrade” from special to general relativity the partial derivative,
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we upgrade the derivative along a path x(⌧) in the same way by multiplying by dx

µ

/d⌧ and
summing over the index µ:

dV
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d⌧

! dV

�

d⌧

+ ��

µ⌫

dx

µ

d⌧

V

⌫ ⌘ DV

�

D⌧

(186)
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DV

�

/D⌧ is a true vector; the transformation

DV

0�

D⌧

=
@x

0�

@x

µ

DV

µ

D⌧

(187)

may be verified directly. (The inhomogeneous contributions from the � transformation and
the derivatives of the derivatives of the coordinate transformation coe�cients cancel in a
manner exactly analogous to our original covariant partial derviative calculation.)

Exactly the same reasoning is used to define the covariant derivative for a covariant
vector,

dV

�

d⌧

� �⌫

µ�

dx

µ

d⌧

V

⌫

⌘ DV

�

D⌧

. (188)

and for tensors, e.g.:
dT

�

�

d⌧

+ ��

µ⌫

dx

⌫

d⌧

T

µ

�

� �⌫

�µ

dx

µ

d⌧

T

�

⌫

⌘ DT

�

�

D⌧

. (189)

When a vector or tensor quantity is carried along a particle path does not change in a
locally inertially reference frame (d/d⌧ = 0) becomes in arbitrary coordinates (D/D⌧ = 0),
the same physical result expressed in a covariant language. (Once again this works because
of manifest agreement in the inertial coordinates, and then zero is zero in any coordinate
frame.) The condition D/D⌧ = 0 is known as parallel transport. A vector, for example,
may always point along the y axis as we move it around in the xy plane, but its r and ✓

components will have constantly to change to keep this true! This is the content of the
parallel transport equation.

If we do a round trip and come back to our starting point, does a vector have to have
the same value it began with? You might think that the answer must be yes, but it turns
out to be more complicated than that. Indeed, it is a most interesting question...

The stage is now set to introduce the key tensor embodying the gravitational distortion
of space-time.
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5 The curvature tensor

The properties which distinguish space

from other conceivable triply-extended

magnitudes are only to be deduced

from experience...At every point the

three-directional measure of curvature

can have an arbitrary value if only the

e↵ective curvature of every measurable

region of space does not di↵er notice-

ably from zero.

— G. F. B. Riemann

5.1 Commutation rule for covariant derivatives

The covariant derivative shares many properties with the ordinary partial derivative: it is a
linear operator, it obeys the Leibniz rule, and it allows true tensor status to be bestowed upon
partial derivatives under any coordinate transformation. A natural question arises. Ordinary
partial derivatives commute: the order in which they are taken does not matter, provided
suitable smoothness conditions are present. Is the same true of covariant derivatives? Does
V

µ

;�;⌧ equal V µ

;⌧ ;�?

Just do it.

V

µ

;� =
@V

µ

@x

�

+ �µ

⌫�

V

⌫ ⌘ T

µ

�

(190)

Then
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or
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The first term and the last group (proportional to �⌫

�⌧

) are manifestly symmetric in � and
⌧ , and so will vanish when the same calculation is done with the indices reversed and then
subtracted o↵. A bit of inspection shows that the same is true for all the remaining terms
proportional to the partial derivatives of V µ. The residual terms from taking the covariant
derivative commutator are

T

µ

�;⌧ � T

µ

⌧ ;� =


@�µ

��

@x

⌧

� @�µ

�⌧
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+ �µ
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�⌫
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� �µ

⌫�

�⌫

�⌧
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V

�
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which we may write as
T

µ

�;⌧ � T

µ

⌧ ;� = R

µ

��⌧

V

� (194)

Now the right side of this equation must be a tensor, and V

� is an arbitrary vector, which
means that Rµ

��⌧

needs to transform its coordinates as a tensor. That it does so may also be
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verified explicitly in a nasty calculation (if you want to see it spelt out in detail, see Weinberg
pp.132-3). We conclude that

R

µ

��⌧

=
@�µ

��

@x

⌧

� @�µ

�⌧

@x

�

+ �µ

⌫⌧

�⌫

��

� �µ

⌫�

�⌫

�⌧

(195)

is indeed a true tensor, and it is called the curvature tensor. In fact, it may be shown
(Weinberg p. 134) that this is the only tensor that is linear in the second derivatives of g

µ⌫

and contains only its first and second derivatives.

Why do we refer to this mixed tensor as the “curvature tensor?” Well, clearly it vanishes
in ordinary flat Minkowski space-time—we simply choose Cartesian coordinates to do our
calculation. Then, because Rµ

��⌧

is a tensor, if it is zero in one set of coordinates, it is zero in
all. Commuting covariant derivatives makes sense in this case, since they amount to ordinary
derivatives. So distortions from Minkowski space are essential.

Our intuition sharpens with the yet more striking example of parallel transport. Consider
a vector V

�

whose covariant derivative along a curve x(⌧) vanishes. Then,

dV

�

d⌧

= �µ

�⌫

dx

⌫

d⌧

V

µ

(196)

Consider next a tiny round trip journey over a closed path in which V

�

is changing by the
above prescription. If we remain in the neighbourhood of some point X

⇢, with x

⇢ passing
through X

⇢ at some instant ⌧0, x⇢(⌧0) = X

⇢, we Taylor expand as follows:

�µ

�⌫

(x) = �µ

�⌫

(X) + (x⇢ �X

⇢)
@�µ

�⌫

@X

⇢

+ ... (197)

V

µ

(x) = V

µ

(X) + (x⇢ �X

⇢)
dV

µ

dX

⇢

+ ... = V

µ

(X) + (x⇢ �X

⇢)��

µ⇢

(X)V
�

(X) + ... (198)

(we have used the parallel transport equation for the derivative term in V

µ

), whence

�µ

�⌫

(x)V
µ

(x) = �µ

�⌫

V
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+ (x⇢ �X

⇢)V
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�⌫

◆
+ ... (199)

where all quantities on the right (except x!) are evaluated at X. Integrating

dV

�

= �µ

�⌫

(x)V
µ

(x) dx⌫ (200)

around a tiny closed path
H
, and using (200) and (199), we find that there is a change in

the starting value �V

�

arising from the term linear in x

⇢ given by

�V

�

=

✓
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�⌫
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µ⇢

�µ

�⌫

◆
V

�

I
x

⇢

dx

⌫ (201)

The integral
H
x

⇢

dx

⌫ certainly doesn’t vanish. (Try integrating it around a unit square in
the xy plane), but it is antisymmetric in ⇢ and ⌫. (Integrate by parts and note that the
integrated term vanishes, being an exact di↵erential.) That means the part of the � terms
that survives the summation is the part antisymmetric in (⇢, ⌫). Since any object depending
on two indices, say A(⇢, ⌫), can be written as a symmetric part plus an antisymmetric part,

1

2
[A(⇢, ⌫) + A(⌫, ⇢)] +

1

2
[A(⇢, ⌫)� A(⌫, ⇢)],
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we find

�V

�

=
1

2
R

�

�⌫⇢

V

�

I
x

⇢

dx

⌫ (202)

where
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is precisely the curvature tensor.

Exercise. A laboratory demonstration. Take a pencil and move it round the surface
of a flat desktop without rotating the pencil. Moving the pencil around a closed path,
always parallel to itself, will not change its orientation. Now do the same on the surface of a
spherical globe. Take a small pencil, pointed poleward, and move it from the equator along
the 0� meridian through Greenwich till you hit the north pole. Now, once again parallel to
itself, move the pencil down the 90�E meridian till you come to the equator. Finally, once
again parallel to itself, slide the pencil along the equator to return to the starting point at
the prime meridian.

Has the pencil orientation changed from its initial one? Explain.

Curvature3, or more precisely the departure of space-time from Minkowskii structure,
reveals itself through the existence of the curvature tensor R�

�⌫⇢

. If space-time is Minkowskii-
flat, every component of the curvature tensor vanishes. An important consequence is that
parallel transport around a closed loop can result in a vector or tensor not returning to its
orginal value, if the closed loop encompasses matter (or its energy equivalent). An experiment
was proposed in the 1960’s to measure the precession of a gyroscope orbiting the earth due to
the e↵ects of the space-time curvature tensor. This eventually evolved into a satellite known
as Gravity Probe B, a 750 million USD mission, launched in 2004. Alas, it was plagued by
technical problems for many years, and its results were controversial because of unexpectedly
high noise levels (solar activity). A final publication of science results in 2011 claims to have
verified the predictions of general relativity to high accuracy, including an even smaller e↵ect
known as “frame dragging” from the earth’s rotation, but my sense is that there is lingering
uneasiness in the physics community regarding the handling of the noise. Do an internet
search on Gravity Probe B and judge for yourself!

When GPB was first proposed in the early 1960’s, tests of general relativity were very few
and far between. Since that time, experimental GR has evolved tremendously, with gravi-
tational lenses, the so-called Shapiro time delay e↵ect, and a beautiful indirect confirmation
of the existence of gravitational radiation. (All these will be discussed in later chapters.)
There is no serious doubt that the leading order general relativity parallel transport pre-
diction must be right—indeed, it appears that we have actually seen this e↵ect directly in
close binary pulsar systems. Elaborate artificial gyroscopes precessing in earth orbit seem
somehow less exciting to many than perhaps they once were.

3“Curvature” is one of these somewhat misleading mathematical labels that has stuck, like “imaginary”
numbers. The name implies an external dimension into which the space is curved or embedded, an unnec-
essary complication. The space is simply distorted.
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5.2 Algebraic identities of R�

⌫�⇢

5.2.1 Remembering the curvature tensor formula.

It is helpful to have a mnemonic for generating the curvature tensor. The hard part is
keeping track of the indices. Remember that the tensor itself is just a sum of derivatives of
� and quadratic products of �. That part is easy to remember, since the curvature tensor
has “dimensions” of 1/x2 where x represents a coordinate. For the coordinate juggling of
R

a

bcd

start with:
@�a

bc

@x

d

+ �⇤
bc

�a

d⇤

where the first abcd ordering is simple to remember since it follows the same placement in
R

a

bcd

, and ⇤ is a dummy variable. For the second �� term, remember to just write out the
lower bcd indices straight across, making the last unfilled space a dummy index ⇤. The
counterpart dummy index that is summed over must then be the upper slot on the other �,
since there is no self-contracted � in the full curvature tensor. There is then only one place
left for upper a. To finish o↵, just subtract the same thing with c and d reversed. Think of
it as swapping your CD’s. We arrive at:

R

a

bcd

=
@�a

bc

@x

d

� @�a

bd

@x

c

+ �⇤
bc

�a

d⇤ � �⇤
bd

�a

c⇤ (204)

5.3 R

�µ⌫

: fully covariant form

The fully covariant form of the stress tensor involves both second order derivatives of g
µ⌫

,
which will be our point of contact with Newtonian theory and the full field equations. It is
also important for the theory of gravitational radiation. So hang on, we have some heavy
weather ahead.

We define
R

�µ⌫

= g

��

R

�

µ⌫

(205)

or
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Remembering the definition of the a�ne connection (90), the right side of (206) is
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The  and ⌫ partial x derivatives will operate on the g�⇢ term and the g-derivative terms. Let
us begin with the second group, the @g/@x derivatives, as it is simpler. With g

��

g

�⇢ = �

�

⇢

,
the terms that are linear in the second order g derivatives are
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If you can sense the beginnings of the classical wave equation lurking in these linear second
order derivatives, the leading terms when g

µ⌫

departs only a little from ⌘

µ⌫

, then you are
very much on the right track.
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We are not done of course. We have the terms proportional to the  and ⌫ derivatives
of g�⇢, which certainly do not vanish in general. But the covariant derivative of the metric
tensor g

��

does vanish, so invoke this sleight-of-hand integration by parts:

g
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@x
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g
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) (209)

where in the final equality, equation (141) has been used. By bringing g

�⇢ out from the
partial derivative, it recombines to form a�ne connections once again. All the remaining
terms of R

�µ⌫

from (207) are now of the form g��:
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It is not obvious at first, but four of these six g�� terms cancel out— the second group with
the fifth, the fourth group with the sixth—leaving only the first and third terms:
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Adding together the terms in (208) and (211), we arrive at
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Note the following important symmetry properties for the indices of R
�µ⌫

. Because they
may be expressed as vanishing tensor equations, they may be established in any coordinate
frame, so we choose a local frame in which the � vanish. They are then easily verified from
the terms linear in the g derivatives in (212):

R

�µ⌫

= R

⌫�µ

(symmetry) (213)

R

�µ⌫
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µ�⌫
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�µ⌫

= R

µ�⌫

(antisymmetry) (214)
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�µ⌫
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�⌫µ

= 0 (cyclic) (215)

5.4 The Ricci Tensor

The Ricci tensor is the curvature tensor contracted on its (raised) first and third indices,
R

a

bad

. In terms of the covariant curvature tensor:

R

µ

= g

�⌫

R

�µ⌫

= g

�⌫

R

⌫�µ

(by symmetry) = g

⌫�

R

⌫�µ

= R

µ

(216)

so that the Ricci tensor is symmetric.

The Ricci tensor is an extremely important tensor in general relativity. Indeed, we shall
very soon see that R

µ⌫

= 0 is Einstein’s Laplace equation. There is enough information
here to calculate the deflection of light by a gravitating body or the advance of a planet’s
orbital perihelion! What is tricky is to guess the general relativistic version of the Poisson
equation, and no, it is not R

µ⌫

proportional to the stress energy tensor T

µ⌫

! Notice that
while R�

µ⌫

= 0 implies that the Ricci tensor vanishes, the converse does not follow: R
µ⌫

= 0
does not necessarily mean that the full curvature tensor (covariant or otherwise) vanishes.

Exercise. Fun with the Ricci tensor. Prove that
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and that g�µR
�µ⌫

= g

⌫

R

�µ⌫

= 0. Why does this mean that R
µ

is the only second rank
covariant tensor that can be formed from contracting R

�µ⌫

? The stage is then set for an
examination of the algebraic properties of R�

µ⌫

, its symmetries, and the Royal Road to GR
via the Bianchi Identities.

We are not quite through contracting. We may form the curvature scalar

R ⌘ R

µ

µ

(217)

another very important quantity in general relativity.

Exercise. The curvature scalar is unique. Prove that

R = g
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and that
g
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⌫
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�µ⌫

= 0.

Justify the title of this exercise.

5.5 The Bianchi Identities

The covariant curvature tensor obeys a very important di↵erential identity, analogous to
div(curl)=0. These are the Bianchi identities. We prove the Bianchi identities in our
favourite freely falling inertial coordinates with � = 0, and since we will be showing that a
tensor is zero in these coordinates, it is zero in all coordinates. In � = 0 coordinates,
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The Bianchi identities follow from cycling: ⌫ replaces ! ,  replaces ! ⌘, ⌘ replaces ! ⌫.
Leave � and µ alone. This gives

R

�µ⌫;⌘ +R

�µ⌘⌫; +R

�µ⌘;⌫ = 0 (219)

An easy way to do the bookkeeping on this is just to pay attention to the g’s: once you’ve
picked a particular value of @2

g

ab

in the numerator, the other @x

c indices downstairs are
unambiguous, since as coordinate derivatives their order is immaterial. The first term in
(219) is then just shown: (g

�⌫

,�g

µ⌫

,�g

�

, g

µ

). Cycle to get the second group for the
second Bianchi term, (g

�⌘

,�g

µ⌘
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�⌫
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µ⌫

). The final term then is (g
�

,�g

µ

,�g

�⌘

, g

µ⌘

).
Look: every g has its opposite when you add these all up, so the sum is clearly zero.

We would like to get equation (219) into the form of a single vanishing covariant tensor
divergence, for reasons that will soon become very clear. Contract � with ⌫, remembering the
symmetries. (In the second term on the left side of [219], swap ⌫ and ⌘ before contracting,
changing the sign.)

R

µ;⌘ �R

µ⌘; +R

⌫

µ⌘;⌫ = 0 (220)

Next, contract µ with :
R;⌘ �R
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⌘;µ �R
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⌘;⌫ = 0 (221)

(Did you understand the manipulations to get that final term on the left?
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Now it is easy to raise µ and contract with :

�g

⌫�

R

µ

�µ⌘;⌫ = �g

⌫�

R

�⌘;⌫ = �R

⌫

⌘;⌫)

Cleaning up, our contracted identity (221) becomes:

(�µ
⌘

R� 2Rµ

⌘

);µ = 0. (222)

Raising ⌘ (we can of course bring g

⌫⌘ inside the covariant derivative to do this—why?), and
dividing by �2 puts this identity into its classic form:✓

R

µ⌫ � g

µ⌫

R

2

◆
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= 0 (223)

Einstein did not know this identity when he was struggling mightily with his theory, but to
be fair neither did most mathematicians! The identities were actually first discovered by the
German mathematician A. Voss in 1880, then independently in 1889 by Ricci. These results
were then quickly forgotten, even, it seems, by Ricci himself. Bianchi then rediscovered
them on his own in 1902, but they were still not widely known in the mathematics com-
munity in 1915. This was a pity, because the Bianchi identities have been called the “royal
road to the Gravitational Field Equations ” by Einstein’s biographer A. Pais. It seems to
have been the mathematician H. Weyl who in 1917 first recognised the importance of the
Bianchi identitites for relativity, but the particular derivation we have followed here was not
formulated until 1922, by Harward. The reason for the identities’ importance is precisely
analogous to Maxwell’s understanding of the restrictions that the curl operator imposes on
the field it generates, and to why the displacement current needs to be added to the equation
r ⇥ B = µ0J : taking the divergence, the right hand source term must be physically con-
served. Maxwell needed and invoked a physical displacement current, (1/c2)@E/@t, added
to the right side of the equation. Here, we shall apply the Bianchi identities to guarantee the
analogue (and it really is a precise mathematical analogue) of “the divergence of the curl is
zero,” a geometrical constraint4 that ensures that the Field Equations have conservation of
the stress energy tensor automatically built into their fundamental formulation.

4Chapter 15 of MTW presents a discussion in the language of di↵erential forms of how to interpret the
Bianchi identities as the notion that “the boundary of a boundary is zero.”

47



6 The Einstein Field Equations

In the spring of 1913, Planck and

Nernst had come to Zürich for the

purpose of sounding out Einstein about

his possible interest in moving to

Berlin...Planck [asked him] what he

was working on, and Einstein described

general realtivity as it was then. Planck

said ‘As an older friend, I must advise

you against it for in the first place

you will not succeed; and even if you

succeed, no one will believe you.’

— A. Pais, writing in ‘Subtle is the
Lord’

6.1 Formulation

We will now apply the principle of general covariance to the gravitational field itself. What
is the relativistic analogue of r2� = 4⇡G⇢? We have now built up a su�ciently strong
mathematical arsenal from Riemannian geometry to be able to give a satisfactory answer to
this question.

We know that we must work with vectors and tensors to maintain general covariance, and
that the Newtonian-Poisson source, ⇢, is a mere component of a more general stress-energy
tensor T

µ⌫

(in covariant tensor form) in relativity. We expect therefore that the gravitional
field equations will take the form

G

µ⌫

= CT

µ⌫

(224)

where G

µ⌫

is a tensor comprised of g
µ⌫

and its second derivatives, or products of the first
derivatives of g

µ⌫

. We guess this since we know that in the Newtonian limit the largest
component of g

µ⌫

is the g00 ' �1 � 2�/c2 component, we need to recover Poisson, and we
are seeking a theory of gravity that does not change its character with scale: that is, it has
no characteristic length associated with it where things start to change. The last condition
may strike you as a bit too restrictive at this stage. And, umm..well, we know it is actually
wrong when applied to the Universe at large! But it is the simplest assumption that we can
make that will satisfy all the basic requirements of a good theory. We’ll come back to the
updates once we have version 1.0.

Next, we know that the stress energy tensor is conserved in the sense of T µ⌫

;⌫ = 0. We know
from our work with the Bianchi identities of the previous section that this will automatically
be satisfied if we take G

µ⌫

to be proportional to the particular linear combination

G

µ⌫

/ R

µ⌫

� g

µ⌫

R

2

(Notice that there is no di�culty shifting indices up or down as considerations demand: our
index shifters g

µ⌫

and g

µ⌫ all have vanishing covariant derivatives and can moved inside and
outside of semi-colons.) We have determined the field equations of gravity up to an overall
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normalisation:

R

µ⌫

� g

µ⌫

R

2
= CT

µ⌫

(225)

The final step is to recover the Newtonian limit. In this limit, T
µ⌫

is dominated by T00, and
g

µ⌫

can be replaced by ⌘

↵�

when shifting indices. The leading order derivative of g
µ⌫

that
enters into the field equations comes from

g00 ' �1� 2�

c

2

where � is the usual Newtonian potential. In what follows, we use i, j, k to indicate spatial
indices, and 0 will always be reserved for time.

The exact 00 component of the field equation reads,

R00 �
1

2
g00R = CT00 (226)

To determine R, notice that while T

ij

is small, R
ij

is not small! In fact, precisely because
T

ij

is small, R
ij

must nearly cancel with the R term in the ij component of our equation:

R

ij

� 1

2
g

ij

R =���
CT

ij

(small), (227)

so that in the Newtonian limit, with g

ij

' ⌘

ij

,

R

ij

' 1

2
⌘

ij

R ! R

i

j

' 1

2
�

i

j

R. (228)

Taking the trace of (228),

3

2
R ' R

k

k

⌘ R�R

0
0 ' R +R00 ! R ' 2R00. (229)

Therefore, returning to (226) with g00 ' ⌘00,

CT00 = R00 �
1

2
⌘00R = R00 +

1

2
(2R00) = 2R00. (230)

Calculating R00 explicitly,

R00 = R

�

0�0 = ⌘

�⇢

R

⇢0�0 = �R0000 +R1010 +R2020 +R3030. (231)

Now, we need only the linear part of R
�µ⌫

in the weak field limit:

R

�µ⌫

=
1

2

✓
@

2
g

�⌫

@x



@x

µ

� @

2
g

µ⌫

@x



@x

�

� @

2
g

�

@x

⌫

@x

µ

+
@

2
g

µ

@x

⌫

@x

�

◆
, (232)

and in the static limit only the final term on the right side of this equation survives:

R0000 ' 0, R

i0j0 =
1

2

@

2
g00

@x

i

@x

j

. (233)
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Finally,

CT00 = C⇢c

2 = 2R00 = 2⇥ 1

2
r2

g00 = � 2

c

2
r2� (234)

This happily agrees with the Poisson equation if C = �8⇡G/c

4. We therefore arrive at the
Einstein Field Equations:

G

µ⌫

⌘ R

µ⌫

� 1

2
g

µ⌫

R = �8⇡G

c

4
T

µ⌫

(235)

The Field Equations first appeared in Einstein’s notes on 25 November 1915, just over a
hundred years ago, after an inadvertent competition with the mathematician David Hilbert,
triggered by an Einstein colloquium at Göttingen. (Talk about being scooped! Hilbert
actually derived the Field Equations first, by a variational method, but rightly insisted on
giving Einstein full credit for the physical theory.)

It is useful to have these equation in a slightly di↵erent form. Contracting µ and ⌫, we
obtain

R =
8⇡G

c

4
T (236)

Thus, we may rewrite the original equation with only the Ricci tensor on the right:

R

µ⌫

= �8⇡G

c

4

✓
T

µ⌫

� 1

2
g

µ⌫

T

◆
⌘ �8⇡G

c

4
S

µ⌫

(237)

where we have introduced the source term,

S

µ⌫

= T

µ⌫

� 1

2
g

µ⌫

T (238)

In vacuum, the Field Equations reduce to their Laplace form,

R

µ⌫

= 0 (239)

One final point. If we allow the possibility that gravity could change its form on di↵erent
scales, it is always possible to add a term of the form ⇤g

µ⌫

to G

µ⌫

, where ⇤ is a constant,
without violating the conservation of T

µ⌫

condition. This is because the covariant derivatives
of g

µ⌫

vanish identically and T

µ⌫

is still conserved. Einstein, pursuing the consequences of
his theory for cosmology, realised that his Field Equations did not produce a static universe.
This is bad, he thought, everyone knows the Universe is static. So he sought a source of
static stabilisation, added the ⇤ term back into the Field Equations

R

µ⌫

� 1

2
g

µ⌫

R + ⇤g
µ⌫

= �8⇡G

c

4
T

µ⌫

, (240)

and dubbed ⇤ the cosmological constant. Had he not done so, he could have made a spec-
tacular prediction: the universe is dynamic, a player in its own game, and must be either
expanding or contracting.5 With the historical discovery of an expanding univese, Einstein
retracted the ⇤ term, calling it “the biggest mistake of my life.” It seems not to have
damaged his career.

5Even within the context of straight Euclidian geometry and Newtonian dynamics, uniform expansion of
an infinite space avoids the self-consistency problems associated with a static model. I’ve never understood
why this simple point is not emphasised more.
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Surprise. We now know that this term is, in fact, present on the largest cosmological
scales, and on these scales it is not a small e↵ect. It mimics (and may well be) an energy
density of the vacuum itself. It is measured to be 70% of the e↵ective energy density in
the Universe. It is to be emphasised that ⇤ must be taken into account only on the largest
scales when the locally much higher baryon and dark matter densities are lowered by e↵ective
smoothing; it is negligible otherwise. The so-called biggest mistake of Einstein’s life was
therefore two-fold: first, introducing ⇤ for the wrong reason, and then retracting it for the
wrong reason!

Except for cosmological problems, we will always assume ⇤ = 0.

6.2 Coordinate ambiguities

There is no unique solution to the Field Equation because of the fact that they have been
constructed to admit a new solution by a transformation of coordinates. To make this point
as clear as possible, imagine that we have solved for the metric g

µ⌫

, and in turns out to be
plain old Minkowski space. Denote the coordinates as t for the time dimension and ↵, �, �
for the spatial dimensions. Even if we restrict ourselves to diagonal g

µ⌫

, we might have found
that the diagonal entries are (�1, 1, 1, 1) or (�1, 1,↵2

, 1) or (�1, 1,↵2
,↵

2 sin2
�) depending

upon whether we happen to be using Cartesian, cylindrical, or spherical spatial coordinate
systems. Thus, we always have the freedom to work with coordinates that simplify our
equations or that make physical properties of our solutions more transparent.

This is particularly useful for gravitational radiation. You may remember when you
studied electromagnetic radiation that the equations for the potentials (both A and �)
simplified considerably when a particular gauge was used—the Lorenz gauge. A di↵erent
gauge could have been used and the potential would have looked di↵erent, but the fields
would have been the same. The same is true for gravitational radiation, in which a coordinate
transformation plays this role.

For the problem of determining g

µ⌫

around a point mass—the Schwarzschild black hole—
we will choose to work with coordinates that look as much as possible like standard spherical
coordinates.

6.3 The Schwarzschild Solution

We wish to determine the form of the metric tensor g
µ⌫

for the space-time surrounding a point
mass M by solving the equation R

µ⌫

= 0, subject to the appropriate boundary conditions.

Because the space-time is static and spherically symmetric, we expect the invariant line
element to take the form

�c

2
d⌧

2 = �B c

2
dt

2 + Adr

2 + C d⌦2 (241)

where d⌦ is the (undistorted) solid angle,

d⌦2 = d✓

2 + sin2
✓ d�

2

and A, B, and C are all functions of the radial variable. We may choose our coordinates so
that C is defined to be r

2 (if it is not already, do a coordinate transformation r

02 = C(r)
and then drop the 0). A and B will then be some unknown functions of r to be determined.
Our metric is now in “standard form:”

�c

2
d⌧

2 = �B(r) c2dt2 + A(r) dr2 + r

2 (d✓2 + sin2
✓ d�

2) (242)
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We may now read the components of g
µ⌫

:

g

tt

= �B(r) g

rr

= A(r) g

✓✓

= r

2
g

��

= r

2 sin2
✓ (243)

and its inverse g

µ⌫ ,

g

tt = �B

�1(r) g

rr = A

�1(r) g

✓✓ = r

�2
g

�� = r

�2(sin ✓)�2 (244)

The determinant of g
µ⌫

is �g, where

g = r

4
AB sin2

✓ (245)

The a�ne connection for a diagonal metric tensor reads

��

µ⌫

=
1

2g
��

✓
@g

�µ

@x

⌫

+
@g

�⌫

@x

µ

� @g

µ⌫

@x

�

◆
NO SUM OVER �. (246)

Obviously, only �’s with at least one repeated index will be present. (Why?) The nonvan-
ishing components follow straightforwardly:

�t

tr

= �t

rt

=
B

0

2B

�r

tt

=
B

0

2A
�r

rr

=
A

0

2A
�r

✓✓

= � r

A

�r

��

= �r sin2
✓

A

�✓

r✓

= �✓

✓r

=
1

r

�✓

��

= � sin ✓ cos ✓

��

�r

= ��

r�

=
1

r

��

�✓

= ��

✓�

= cot ✓ (247)

where A

0 = dA/dr, B0 = dB/dr. We will also make use of this table to compute the orbits
in a Schwarzschild geometry.

Next, we need the Ricci Tensor:

R

µ

⌘ R

�

µ�

=
@��

µ�

@x



�
@��

µ

@x

�

+ �⌘

µ�

��

⌘

� �⌘

µ

��

�⌘

(248)

Remembering equation (167), this may be written

R

µ

=
1

2

@

2 ln g

@x



@x

µ

�
@��

µ

@x

�

+ �⌘

µ�

��

⌘

�
�⌘

µ

2

@ ln g

@x

⌘

(249)

Right. First R
tt

. Remember, static fields.

R

tt

= �@�r

tt

@r

+ �⌘

t�

��

t⌘

� �⌘

tt

��

�⌘

= � @

@r

✓
B

0

2A

◆
+ �t

t�

��

tt

+ �r

t�

��

tr

� �r

tt

��

�r
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= � @

@r

✓
B

0

2A

◆
+ �t

tr

�r

tt

+ �r

tt

�t

tr

� �r

tt

2

@ ln g

@r

= �
✓
B

00

2A

◆
+

B

0
A

0

2A2
+

B

02

4AB
+

�
�
�

B

02

4AB
� B

0

4A

✓
A

0

A

+
�
�
�B0

B

+
4

r

◆
This gives

R

tt

= �B

00

2A
+

B

0

4A

✓
B

0

B

+
A

0

A

◆
� B

0

rA

(250)

Next, R
rr

:

R

rr

=
1

2

@

2 ln g

@r

2
� @�r

rr

@r

+ �⌘

r�

��

r⌘

� �r

rr

2

@ ln g

@r

=
1

2

@

@r

✓
�
�
�A0

A

+
B

0

B

+
4

r

◆
�

������
@

@r
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A

0

2A

◆
+ �⌘
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� A

0

4A

✓
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0

A

+
B

0

B

+
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r

◆
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B
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� 1

2

✓
B

0

B
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� 2

r
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�
�t
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+ (�r
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�
�✓
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+
⇣
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A
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✓
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+
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+
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◆
◆
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So that finally

R

rr

=
B

00

2B
� 1

4

B

0

B

✓
A

0

A

+
B

0

B

◆
� A

0

rA

(251)

Tired? Well, here is a spoiler: all we will need for the problem at hand is R
tt

and R

rr

, so
you can now skip to the end of the section. For the true fanatics, we are just getting warmed
up! On to R

✓✓

:

R

✓✓

=
@��

✓�

@✓

� @��

✓✓
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+ �⌘
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0

2AB

The trigonometric terms add to �1. We finally obtain

R

✓✓

= �1 +
1

A

+
r

2A

✓
�A

0

A

+
B

0

B

◆
(252)
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R

��

is the last nonvanishing Ricci component. No whining now! The first term in (248)
vanishes, since nothing in the metric depends on �. Then,
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= �
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The fact that R
��

= sin2
✓R

✓✓

and that R
µ⌫

= 0 if µ and ⌫ are not equal are a consequence
of the spherical symmetry and time reversal symmetry of the problem. If the first relation
did not hold, then an ordinary rotation of the axes would change the form of the tensor
despite the spherical symmetry, which is impossible. If R

ti

⌘ R

it

were present (i is a spatial
index), the coordinate transformation t

0 = �t would change the components of the Ricci
tensor. But R

µ⌫

must be invariant to this form of time reversal coordinate change. (Why?)
Note that this argument is not true for R

tt

. (Why not?)

Learn to think like a mathematical physicist in this kind of a calculation, taking into
account the symmetries that are present, and you can save a lot of work.

Exercise. Self-gravitating masses in general relativity. We are solving in this section
the vacuum equations R

µ⌫

= 0, but it is of great interest for stellar structure and cosmology
to have a set of equations for a self-gravitating spherical mass. Toward that end, we recall
equation (237):

R

µ⌫

= �8⇡G

c

4
S

µ⌫

⌘ �8⇡G

c

4

⇣
T

µ⌫
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2
T

�

�

⌘
Let us evaluate S

µ⌫

for the case of an isotropic stress energy tensor of an ideal gas in its rest
frame. With

g
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= �B, g

rr
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2
, g
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= r

2 sin2
✓,

the stress-energy tensor
T

µ⌫

= Pg
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+ (⇢+ P/c

2)U
µ

U

⌫

,

where U

µ

is the 4-velocity, show that, in addition to the trivial condition

U

r

= U

✓
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�

= 0,

we must have U

t

= �c

p
B (remember equation [176]) and that

S
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=
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2
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=
A

2
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=
r
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2
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We will develop the solutions of R
µ⌫

= �8⇡GS

µ⌫

/c

4 shortly.
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Enough. We have more than we need to solve the problem at hand. To solve the equations
R

µ⌫

= 0 is now a rather easy task. Two components will su�ce (we have only A and B to
solve for after all), all others then vanish indentically. In particular, work with R

rr

and R

tt

,
both of which must separately vanish, so

R

rr

A

+
R

tt

B

= � 1

rA

✓
A

0

A

+
B

0

B

◆
= 0 (253)

whence we find
AB = constant = 1 (254)

where the constant must be unity since A and B go over to their Minkowski values at large
distances. The condition that R

tt

= 0 is now from (250) simply

B

00 +
2B0

r

= 0, (255)

which means that B is a linear superposition of a constant plus another constant times 1/r.
But B must approach unity at large r, so the first constant is one, and we know from long ago
that the next order term at large distances must be 2�/c2 in order to recover the Newtonian
limit. Hence,

B = 1� 2GM

rc

2
, A =

✓
1� 2GM
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2

◆�1

(256)

The Schwarzschild Metric for the space-time around a point mass is exactly
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2 (257)

This remarkable, simple and critically important exact solution of the Einstein Field Equa-
tion was obtained in 1916 by Karl Schwarzschild from the horrors of the trenches of World
War I. Tragically, Schwarzschild did not survive the war,6 dying from a skin infection five
months after finding his marvelous solution. He managed to communicate his result fully in
a letter to Einstein. His last letter to Einstein was dated December 22, 1915, some 28 days
after the formulation of the Field Equations.

Exercise. The Tolman-Oppenheimer-Volko↵ Equation. Let us strike again while the
iron is hot. Referring back to Exercise (11), we repeat part of our Schwarzschild calculation,
but with the source terms S

µ⌫

retained. Form a familiar combination once again:
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rr
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+
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= � 1
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✓
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0
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✓
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+
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◆
= �8⇡G

c

4
(P + ⇢c

2)

Show now that adding 2R
✓✓

/r

2 eliminates the B dependence:

R

rr

A

+
R

tt

B

+
2R

✓✓

r

2
= � 2A0

rA

2
� 2

r

2
+

2

Ar

2
= �16⇡G⇢

c

2
.

6The WWI deaths of Karl Schwarzschild for the Germans and of Henry Moseley for the British were
incalculable losses for science. Schwarzschild’s son Martin also became a great astronomer, developing much
of the modern theory of stellar evolution.
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Solve this equation for A and show that the solution with finite A(0) is

A(r) =

✓
1� 2GM(r)

r

◆�1

, M(r) =

Z
r

0

4⇡⇢(r0) r02 dr0

Finally, use the equation R

✓✓

= �8G⇡S

✓✓

/c

4 together with hydrostatic equilibrium (180)
(for the term B

0
/B in R

✓✓

) to obtain the celebrated Tolman-Oppenheimer-Volko↵ equation
for the interior structure of general relativistic stars:

dP

dr

= �GM(r) ⇢

r

2

✓
1 +

P

⇢c

2

◆✓
1 +

4⇡r3P

M(r) c2

◆✓
1� 2GM(r)

rc

2

◆�1

This is a rather long, but completely straightforward, exercise.

Students of stellar structure will recognise the classical equation hydrostatic equilibrium
equation for a Newtonian star, with three correction terms. The final factor on the right is
purely geometrical, the radial curvature term A from the metric. The corrective replacement
of ⇢ by ⇢ + P/c

2 arises even in the special relativistic equations of motion for the inertial
density; for inertial purposes P/c

2 is an e↵ective density. Finally the modification of the
gravitating M(r) term also includes a contribution from the density, as though an additional
e↵ective mass density P (r)/3c2 were spread throughout the interior spherical volume within
r, even though P (r) is just the local pressure. In massive stars, this pressure could be
radiative.

6.4 The Schwarzschild Radius

It will not have escaped the reader’s attention that at

r =
2GM

c

2
⌘ R

S

(258)

the metric becomes singular in appearance. R

S

is known as the Schwarzschild radius. Nu-
merically, normalising M to one solar mass M�,

R

S

= 2.95 (M/M�) km, (259)

which is well inside any normal star! The Schwarzschild radius is part of the external vacuum
space-time only for black holes. Indeed, it is what makes black holes black. At least it was
thought to be the feature that made black holes truly black, until Hawking came along in
1974 showed us that quantum field theory changes the behaviour of black holes. But as
usual, we are getting ahead of ourselves. More on “Hawking radiation” later. Let us stick
to classical theory.

I have been careful to write “singular in appearance” because in fact, the space-time is
perfectly well behaved at r = R

S

. It is only the coordinates that become strained at this
point, and these coordinates have been introduced, you will recall, so that they would be
familiar to us, we happy band of observers at in finity, as ordinary spherical coordinates. The
curvature scalar R, for example, remains zero without a ripple as we pass through r = R

S

.
We can see this coordinate e↵ect happening if we start with the ordinary metric on the unit
sphere,

ds

2 = d✓

2 + sin2
✓ d�

2
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and changing to coordinates to x = sin ✓:

ds

2 =
dx

2

1� x

2
+ x

2
d�

2

This looks horrible at x = 1, but in reality nothing is happening. Since x is just the distance
from the z-axis to spherical surface (i.e. cylindrical radius), the “singularity” simply reflects
the fact that at the equator x has reached its maximum value 1. So, dx must be zero at
this point. x is just a bad coordinate at the equator; � is a bad coordinate at the pole. Bad
coordinates happen to good spacetimes. Get over it.

The physical interpretation of the first two terms of the metric (257) is that the proper
time interval at a fixed spatial location is given by

dt

✓
1� 2GM

rc

2

◆1/2

(proper time interval at fixed location). (260)

The proper radial distance interval at a fixed angular location and time is

dr

✓
1� 2GM

rc

2

◆�1/2

(proper radial distance interval at fixed time & angle). (261)

Exercise. Getting rid of the Schwarzschild coordinate singularity. A challenge
problem for the adventurous student only. Make sure you want to do this before
you start. Consider the rather unusual coordinate transformation found Martin Kruskal.
Start with our standard spherical coordinates t, r, ✓,� and introduce new r

0 and t

0 coordi-
nates:

r

02 � c

2
t

02 = c

2
T

2

✓
rc

2

2GM

� 1

◆
exp

✓
rc

2

2GM

◆
2r0ct0

r

02 + c

2
t

02 = tanh

✓
c

3
t

2GM

◆
where T is an arbitrary constant. Show that the Schwarzschild metric transforms to

�c

2
d⌧

2 =

✓
32G3

M

3

c

8
rT

2

◆
exp

✓
�rc

2

2GM

◆
(c2dt02 � dr

02)� r

2
d⌦2

where T is arbitrary constant with dimensions of time, and r is the implicit solution of our
first equation for r

02 � c

2
t

02. The right side of this equation has a minimum of �c

2
T

2 at
r = 0, hence we must have

r

02
> c

2(t02 � T

2)

always. When t

0
< T there is no problem. But when t

0
> T there are two distinct regions:

r

0 = ±c

p
t

02 � T

2! Then the metric has a real singularity at either of these values of r0 (which
is just r = 0), but still no singularity at r0 = ±ct

0, the value r = R

S

.

6.5 Schwarzschild spacetime.

6.5.1 Radial photon geodesic

This doesn’t mean that there is nothing of interest happening at r = R

S

.
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For starters, the gravitational redshift recorded by an observer at infinity relative to
someone at rest at location r in the Schwarzschild space-time is given (we now know) precisely
by

dt =
d⌧

(1� 2GM/rc

2)1/2
(Exact.) (262)

so that at r ! R

S

, signals arrive at a distant observer’s post infinitely redshifted. What
does this mean?

Comfortably sitting in the DWB whilst monitoring the radio signals my hardworking
graduate student is sending me en route from a thesis mission to take measurements of
the r = R

S

tidal forces in a nearby black hole, I grow increasingly impatient. Not only
are the complaints becoming progressively more torpid and drawn out, the transmission
frequency keeps shifting to longer and longer wavelengths, out of my receiver’s bandpass.
(Most irritating.) Eventually, of course, all contact is lost. I never receive any signal of any
kind from within R

S

. R
S

is said to be the location of the event horizon. The singularity at
r = 0 is present, but completely hidden from the outside world at R = R

S

within an event
horizon. It is what Roger Penrose has aptly named “cosmic censorship.”

The time coordinate change for light to travel from r

A

to r

B

following its geodesic path
is given by setting

�(1� 2GM/rc

2)c2dt2 + dr

2
/(1� 2GM/rc

2) = 0

and then computing

t
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=

Z
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Z
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=
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� r
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S

c
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✓
r

B
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S

r

A

�R

S

◆
(263)

which will be recognised as the Newtonian time interval plus a logarithmic correction pro-
poritional to the Schwarzschild radius R

S

. Note that our expression become infinite when a
path endpoint includes R

S

. When R

S

may be considered small over the entire integration
path, to leading order

t

AB

' r

B

� r

A

c
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✓
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R

S
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)
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B

� r

A

◆
(264)

A GPS satellite orbits at an altitude of 20,200 km, and the radius of the earth is 6370 km.
R

S

for the earth is only 9mm! (Make a fist. Squeeze the entire earth inside it. You’re not
even close to making a black hole.)

R

S

r

B

� r

A

' 9⇥ 10�3

(20, 200� 6370)⇥ 103
= 6.5⇥ 10�10

This level of accuracy, about a part in 109, is needed for determining positions on the surface
of the earth to a precision of a few meters (as when your GPS intones “Turn right onto the
Lon-don Road.”). How does the gravitational e↵ect compare with the second order kinematic
time dilation due to the satellite’s motion? You should find them comparable.

6.5.2 Orbital equations

Start with the geodesic equation, written in terms of an arbitrary time parameter p:

d

2
x

�

dp

2
+ ��

µ⌫

dx

µ

dp

dx

⌫

dp

= 0 (265)
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It doesn’t matter what p is, just use your watch. Using the table of equation (247), it is very
easy to write down the equations for the orbits in a Schwarzschild geometry:

d

2(ct)

dp

2
+

B

0

B
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dp

d(ct)

dp

= 0, (266)
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d

2
✓

dp

2
+

2

r

dr

dp

d✓

dp

� sin ✓ cos ✓

✓
d�

dp

◆2

= 0, (268)
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d�
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+ 2 cot ✓
d✓

dp

d�

dp

= 0. (269)

Obviously, it is silly to keep ✓ as a variable. The orbit may be set to the ✓ = ⇡/2 plane.
Then, our equations become:
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2
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0

B
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= 0, (270)
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= 0. (272)

Remember that A and B are functions of r! Then, the first and last of these equations are
particularly simple:

d

dp

✓
B

cdt
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◆
= 0 (273)

d
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✓
r

2d�
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◆
= 0 (274)

It is convenient to choose our parameter p to be close to the time:

dt

dp

= B

�1
, (275)

and of course general relativity conserves angular momentum for a spherical geometry:

r

2d�

dp

= J (constant) (276)

Finally, just as we may form an energy integration constant from the radial motion equation
in Newtonian theory, so too in Schwarzschild geometry. Multiplying (271) by 2Adr/dp, and
using our results for dt/dp and d�/dp, we find:
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or

A

✓
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2
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For ✓ = ⇡/2 orbits,
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using our results for dt/dp, dr/dp and d�/dp. Hence for matter, E > 0, while E = 0 for
photons. To leading Newtonian order E ' c

2, i.e. the rest mass energy per unit mass!
Substituting for B in (278), we find that extremal values of orbital r locations correspond to✓

1� 2GM

rc

2

◆✓
J

2

r

2
+ E

◆
� c

2 = 0 (280)

for matter, and thus to ✓
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2
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for photons.

The radial equation of motion may be written for dr/d⌧ , dr/dt, or dr/d� respectively
(we use AB = 1): ✓
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(284)

From here, it is simply a matter of evaluating a (perhaps complicated) integral over r to
obtain a solution.

6.6 The deflection of light by an intervening body.

The first prediction made by General Relativity Theory that could be tested was that
starlight passing by the limb of the sun would be slightly but measurably deflected by the
gravitational field. This type of measurement can only be done, of course, when the sun is
completely eclipsed by the moon. Fortunately, the timing of the appearance of the theory
with an eclipse was ideal. One of the longest total solar eclipses of the century occured in 29
May 1919. The path of totality extended from a strip in South America, to central Africa.
An expedition headed by A.S. Eddington observed the eclipse from the island of Principe, o↵
the west coast of Africa. Measurements of thirteen stars confirmed that not only did gravity
a↵ect the propagation of light, it did so by an amount that was in much better accord with
general relativity theory rather than Newtonian theory with the velocity set equal to c. (The
latter gives a deflection angle half as large as GR, in essence because the 2GM/rc

2 terms in
both the dt and dx metric coe�cients contribute equally to the photon deflection, whereas in
the Newtonian limit only the dt modification is retained—as we know.) This success earned
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!0"
r0"

"!"
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γ"

Sun"

Figure 2: Bending of light by the gravitational field of the sun. The angle �0 is the
azimuth of the photon (denoted �) orbit at the point of closest approach r0. The total
change in � is then 2�0, and the deflection angle �� from a straightline orbit is 2�0�⇡.
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Einstein press coverage that today is normally reserved for rock stars. Everybody knew who
Albert Einstein was!

Today, not only deflection, but “gravitational lensing” across the electromagnetic spec-
trum has become a standard astronomical technique to discover and probe dark matter in
all its forms: from small planets to huge and di↵use cosmological agglomerations.

Let us return to the classic test. Refer to fig. [1]. The path of a photon is bent as it
encounters the gravitational field of the a body, here the sun. If the asymptotic azimuthal
angle � is taken to be zero radians when the photon is at infinity, then equation (284) tells
us that at radius r, � is
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2
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The trick to make our life a bit simpler here is realise that the point of closest approach,
denoted r0 and calculated from equation (281), is obviously a zero of the denominator of
(285). So forget about c and J , we can rewrite the above as

�(r) =
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(286)

The angle we want is �� = 2�(r0)� ⇡. It remains only to calculate �(r0), a straightforward
enough exercise, since we seek only the leading correction from A = 1. It is more convenient
to set r = r0 after the calculation, to avoid worrying over diverging integrals. With
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To leading order in ✏ (✏ is of course just R
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, but this notation reminds us it is small!):✓
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Finally, �(r) becomesZ 1
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The integrals in question are Z 1

r

r0dr
0

r
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2
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= sin�1(r0/r) (290)
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Einstein’s prediction of the deflection angle of a passing photon due to the presence of a
spherical gravitating mass M is therefore:

�� = 2�(r0)� ⇡ =
2✏

r0
=

4GM

r0c
2

= 1.7500 (M/M�)(R�/r0) (293)

Happily, arcsecond deflections were just about at the limit of reliable photographic meth-
ods of measurement in 1919. Those arcsecond deflections unleashed a true revolutionary
paradigm shift. For once, the words are not an exaggeration.

6.7 The advance of the perihelion of Mercury

For Einstein, the revolution had started earlier, even before he had his Field Equations. The
vacuum form of the Field Equations is, as we know, su�cient to describe gravitational fields
outside of the gravitating bodies themselves, and working with R

µ⌫

= 0, Einstein found,
and on November 18, 1915 presented, the explanation of a 60 year old astronomical puzzle:
what was the cause of Mercury’s excess perihelion advance of 4300 per century? The actual
measured perihelion advance is much larger, but after the interactions from all the planets are
taken into account, the 4300 is a residual 7.5% of the total, that is not explained. According
to Einstein’s biographer A. Pais, the discovery that this perihelion advance emerged from
general relativity was

“...by far the strongest emotional experience in Einstein’s scientific life, perhaps in all his life.
Nature had spoken to him. He had to be right.”

6.7.1 Newtonian orbits

Interestingly, the perihelion first-order GR calculation is not much more di�cult than straight
Newtonian. GR introduces a 1/r2 term in the e↵ective gravitational potential, but there is
already a 1/r2 term from the centrifugal term! Other corrections do not add substantively
to the di�culty. We thus begin with a detailed review of the Newtonian problem, and we
will play o↵ this solution for the perihelion advance.

Conservation of energy is
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2r2
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= E (294)

where J is the (constant) specific angular momentum r

2
d�/dt and E is the constant energy

per unit mass. This is just the low energy limit of (282), whose exact form we may write as
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. (295)

We now identify E with c

2 to leading order, and to next order (c2 � E)/2 with E (i.e. the
mechanical energy above and beyond the rest mass energy). The Newtonian equation may
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Figure 3: Departures from a 1/r gravitational potential cause elliptical orbits not to
close. In the case of Mercury, the perihelion advances by 43 seconds of arc per century.
The e↵ect is shown here, greatly exaggerated.
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be written
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and thence separated: Z
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The integral is standard trigonometric:
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In terms of r = 1/x this equation unfolds and simplifies to
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(301)

With E < 0 we find that ✏ < 1, and that (301) is just the equation for a classical elliptical
orbit of eccentricity ✏. We identify the semi-latus rectum,

L = J

2
/GM (302)

the perihelion r� and the aphelion r+,
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, r+ =
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and the semi-major axis

a =
1

2
(r+ + r�), L = a(1� ✏

2) (304)

Notice that the zeros of the denominator in the integral (299) occur at x� = 1/r� and
x+ = 1/r+, corresponding properly in our arccosine function to � equals 0 and ⇡ respectively.
The relativistic correction will turn out to be the following: when the arccosine advances in
this same way by ⇡, we will find that � advances by a bit more!
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One last technical point. A“lemma” we will shortly make use of isZ
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since the elementary indefinite integral is equal to (�1) times the denominator, and when
evaluated as a definite integral this denominator vanishes at each end point.

Exercise.) The Shows must go on. Show that the semi-minor axis of an ellipse is b = a

p
1� ✏

2.
Show that the area of an ellipse is ⇡ab. Show that the total energy of a two-body bound system is
�Gm1m2/2a, independent of ✏. Show that the period of a two-body bound system is 2⇡

p
a

3
/GM ,

independent of ✏. (There is a very simple way to do the latter!)

6.7.2 Schwarzschild orbits

We begin with equation (284) for Schwarzschild orbits:✓
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As with our Newtonian calculation, this separates nicely, leading toZ
dr A
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(With no loss of generality, we regard � as increasing over the course of its orbit.) In the
denominator, we next expand A(r):
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(308)

Notice the expansion through second order here: first order only brings us to Newtonian
gravity! The terms in the integral’s square root denominator are then
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where we have identified the Newtonian-like energy constant 2E with c

2 � E, and ↵ is
quantity nearly equal to unity. This gives the entire integral a Newtonian appearance that
will facilitate interpretation. Our integration task is
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where J

0 is a redefined angular momentum variable,

J

02 = ↵J

2 (311)
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and
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(Note that it does not matter whether we use J

0 or J in the small 1/c2 term since the
di↵erence is yet higher order.) We thus have✓
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Once again we change variables to r = 1/x,✓
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where the overall sign can be accounted for by integrating from smaller to larger x. The first
integral in (314) ✓
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is identical in form to (298), so we may immediately write down the result
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The second integral in (314) may be written

(1 + ...)

Z
dx (x�GM/J

02)(GM/c

2) + (GM/cJ

0)2✓
2E
J

02 +
2GMx

J

02 � x

2

◆1/2
(317)

The ..., indicates a neglected term of higher order. We will be integrating between x+ and
x� and so by our lemma (305) the term in (x � GM/J

02) vanishes upon integration. The
final remaining integral in (GM/cJ

0)2 is identical to the one we have just done. Putting the
two results together,
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(Again: we need not make the distinction bewteen J and J

0 in small correction terms!) In
advancing along the orbit from aphelion x+ to perihelion x�, the arccosine advances dutifully
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by ⇡. And, in the days of Isaac Newton, so would �! But now Herr Einstein has given us a
bit more of an advance in �: ⇡ plus 3⇡G2

M

2
/c

2
J

2, or from one perihelion to the next, the
advance per orbit is

�� =
6⇡G2

M

2

c

2
J

2
=

6⇡GM

c

2
L

, (319)

using our expression for the semilatus rectum L. With L = 5.546⇥ 1010 m for Mercury and
an orbital period of 7.6 ⇥ 106s, this value of �� works out to be precisely 4300 per century,
which is precisely the anomalous astronomical measurement. Until the yet more stunning
measurements of orbital changes from gravitational radiation energy losses from the binary
pulsar 1913+16 announced in 1982, the perihelion advance of Mercury was relativity’s theory
greatest observational success.

6.7.3 Perihelion advance: another route

The perihelion advance of Mercury is important enough that another derivation is worthwhile
and enlightening. Equation (284) may be written in terms of u = 1/r as✓
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Now di↵erentiate with respect to � and simplify. The resulting equation is remarkably
elegant:
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since E is very close to c

2 for Mercury and the di↵erence here is immaterial. The Newtonian
limit corresponds to dropping the final term on the right side of the equation; the resulting
solution is

u =
GM

J

2
(1 + ✏ cos�) from r =

J

2
/GM

1 + ✏ cos�
(322)

where ✏ is an arbitrary constant. This is just the classic equation for a conic section, with
hyperbolic (✏ > 1), parabolic (✏ = 1) and ellipsoidal (✏ < 1) solutions. For ellipses, ✏ is the
eccentricity.

The general relativistic term 3GMu

2
/c

2 is of course very small, so we are entirely justified
in using the Newtonian solution for u2 in this higher order term. Writing u = u

N

+ �u with
u

N

given by (322), the di↵erential equation becomes
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In Problem Set 2, you will be asked to solve this equation. The resulting solution for
u = u

N

+ �u may be written

u ' GM

J

2
(1 + ✏ cos[�(1� ↵)]) (324)

where ↵ = 3(GM/Jc)2. Thus, the perihelion occurs not with a �-period of 2⇡, but with a
period of

2⇡

1� ↵

' 2⇡ + 2⇡↵, (325)
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Figure 4: Radar echo delay from Venus as a function of time, fit with
general relativistic prediction.

i.e. an advance of

�� = 2⇡↵ = 6⇡

✓
GM

Jc

◆2

(326)

in precise agreement with (319).

6.8 Shapiro delay: the fourth protocol

For many years, the experimental foundation of general relativity consisted of the three
tests we have described that were first proposed by Einstein: the gravitational red shift,
the bending of light by gravitational fields, and the advance of Mercury’s perihelion. In
1964, nearly a decade after Einstein’s passing, a fourth test was proposed: the time delay by
radio signals when crossing near the sun in the inner solar system. The idea, proposed and
carried out by Irwin Shapiro, is that a radio signal is sent from earth, bounces o↵ Mercury,
and returns. One does the experiment when Mercury is at its closest point to the earth,
then repeats the experiment when the planet is on the far side of orbit. There should be
an additional delay of the pulses when Mercury is on the far side of the sun because of the
traversal of the radio waves across the sun’s Schwarzschild geometry. It is this delay that is
measured.

Recall equation (283), using the “ordinary” time parameter t for an observer at infinity,
with E = 0 for radio waves: ✓
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It is convenient to evaluate the constant J in terms of r0, the point of closest approach to
the sun. With dr/dt = 0, we easily find

J

2 =
r

2
0c

2

B0
(328)

where B0 ⌘ B(r0). The di↵erential equation then separates and we find that the time t(r, r0)

69



to traverse from r0 to r (or vice-versa) is
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where we have made use of AB = 1. We do manipulations in the denominator similar to
those done in section 6.6. Expanding to first order in GM/c

2
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This may now be rewritten as:
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Using this in our time integral for t(r0, r) and expanding,
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The required integrals are
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Thus,
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We are interested in 2t(r1, r0) + 2t(r2, r0) for the path from the earth, by the sun, reflected
from the planet, and back.

It may seem straightforward to plug in values appropriate to the earth’s radial location
and the planet’s (either Mercury or Venus, in fact), compute the “expected” Newtonian time
for transit (a sum of the first terms) and then measure the actual time for comparison with
our formula. In practice to know what the delay is, we have to know what the Newtonian
transit time is to fantastic accuracy! In fact, the way this is done is to treat the problem
not as a measurement of a single delay time, but as an entire function of time given by
our solution (336) with r = r(t). Figure (3) shows such a fit near the passage of superior
conjunction (i.e. the far side orbital near the sun in sky projection), in excellent agreement
with theory. Exactly how the parameterisation is carried out would take us too far afield;
there is some discussion in Weinberg’s book, pp. 202–207, and an abundance of topical
information on the internet under “Shapiro delay.”

Modern applications of the Shaprio delay use pulsars as signal probes, whose time passage
properties are altered by the presence of gravitational waves, a topic for the next chapter.
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7 Gravitational Radiation

They are not objective, and (like abso-

lute velocity) are not detectable by any

conceivable experiment. They are merely

sinuosities in the co-ordinate system, and

the only speed of propagation relevant to

them is “the speed of thought.”

— A. S. Eddington writing in 1922 of
Einstein’s suspicions.

On September 14, 2015, at 09:50:45 UTC

the two detectors of the Laser Interfer-

ometer Gravitational Wave Observatory

simultaneously observed a transient grav-

itational wave signal. The signal sweeps

upwards from 35 to 250 Hz with a peak

gravitational wave strain of 1 ⇥ 10�21. It

matches the waveform predicted by general

relativity for the inspiral and merger of a

pair of black holes and the ringdown of the

resulting single black hole.

— B. P. Abbott et al., 2016, Physical
Review Letters, 116, 061102

Gravity is spoken in the three languages. First, there is traditional Newtonian potential
theory, the language used by most practicing astrophysicists. Then, there is the language
of Einstein’s General Relativity Theory, the language of Riemannian geometry that we have
been studying. Finally, there is the language of quantum field theory: gravity is a theory
of the exchange of spin 2 particles, gravitons, much as electromagnetism is a theory arising
from the exchange of spin 1 photons. Just as the starting point of quantum electrodynamics
is the radiation theory of Maxwell, the starting point of quantum gravity must be a classical
radiation theory of gravity. Unlike quantum electrodynamics, the most accurate physical
theory ever created, there is no quantum theory of gravity at present, and there is not even
a consensus approach. Quantum gravity is therefore very much an active area of ongoing
research. For the theorist, this is reason enough to study the theory of gravitational radi-
ation in general relativity. But there are good reasons for the practical astrophysicist to
get involved. In Februrary 2016, the first detection of gravitational waves was announced.
The event singal had been received and recorded on September 14, 2015, and is denoted
G[ravitational]W[ave]150914. The detection was so clean, and matched the wave form pre-
dictions of general relativity in such detail, there can be no doubt that the detection was
genuine. A new way to probe the most impenetrable parts of the universe is at hand.

The theory of General Relativity in the limit when g

µ⌫

is very close to ⌘

µ⌫

is a classical
theory of gravitational radiation, and not just Newtonian theory, in the same way that
Maxwellian Electrodynamics is a classical radiation theory. The field equations for g

µ⌫

� ⌘

µ⌫
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become in the weak field limit a set of rather ordinary looking wave equations with source
terms, like Maxwell’s Equations. The principal di↵erence is that electrodynamics is sourced
by a vector quantity (the vector potential A with the potential � combine to form a 4-
vector), whereas gravitational fields in general relativity are sourced by a tensor quantity
(the stress tensor T

µ⌫

). This becomes a major di↵erence when we relax the condition that
the gravity field be weak: the gravitational radiation itself makes a contribution to its
own source, something electromagnetic radiation cannot do. But this is not completely
unprecedented. We have seen this sort of thing before, in a classical context: sound waves
can themselves generate acoustical disturbances, and one of the things that happens is a
shock wave, or sonic boom. While a few somewhat pathological mathematical solutions for
exact gravitational radiation waves are known, in general people either work in the weak field
limit or resort to numerical solutions of the field equations. Even with powerful computers,
however, precise numerical solutions of the field equations for astrophysically interesting
problems—like merging black holes—have long been a major technical problem. In the last
decade, a breakthrough has occurred, and it is now possible to compute highly accurate
wave forms for these kinds of problems, with critically important predictions for the new
generation of gravitational wave detectors.

As we have noted, astrophysicists have perhaps the most important reason of all to
understand gravitational radiation: we are on the verge of what will surely be a golden age
of gravitational wave astronomy. That gravitational radiation truly exists was established
in 1974, when a close binary (7.75 hour period) system with a neutron star and a pulsar
(PSR 1913+16) was discovered by Hulse and Taylor. So much orbital information could be
extracted from this remarkable system that it was possible to predict, then measure, the rate
of orbital decay (more precisely, the speed-up of the period of the decaying orbit) caused
by the energy carried o↵ by gravitational radiation. The resulting inspiral, though tiny in
practical terms, was large enough to be cleanly and clearly measurable. General relativity
turned out to be exactly correct (Taylor & Weisberg, ApJ, 1982, 253, 908), and the 1993
Nobel Prize in Physics was awarded to Hulse and Taylor for this historical achievement.

The September 2015 gravitational wave detection established that i) the reception and
analysis of gravitational waves is feasible and will soon become a widely-used probe of the
universe; ii) black holes exist beyond any doubt whatsoever, this is the proverbial “smoking-
gun”; iii) the full dynamical content of strong field general relativity on the scales of stellar
systems is completely correct. This achievement is a true historical milestone in physics.
Some have speculated that its impact on astronomy will rival Galileo’s introduction of the
telescope. Perhaps Hertz’s 1887 detection of electromagnetic radiation in the lab is another
apt comparison. (Commerical exploitation of gravity waves is probably some ways o↵!
Maybe it can be taxed.)

There is more to come. In the near future, extremely delicate pulsar timing experiments,
in which arrival times of pulses are measured to fantastic precision, will come on line. In
essence, this is a measure of the Shapiro delay, not caused by the Sun or a star, but by the
passage of a gravitational wave.

The subject of gravitational radiation is complicated and computationally intensive. Even
the basic basics involve a real e↵ort. Although the topic lies outside the syllabus, I would like
to present a discussion for the strongly motivated student. For the astrophysical applications
relevant to this course, skip to page (83) and simply take the gravitational wave luminosity
formula as given.
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7.1 The linearised gravitational wave equation

We will always assume that the metric is close to Minkowski space,

g

µ⌫

= ⌘

µ⌫

+ h

µ⌫

(337)

To leading order, when we raise and lower indices we may do so with ⌘
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. Be careful with
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µ⌫ itself:
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. (You can raise the index of g with ⌘ only when approximating g
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and that we can slide dummy indices “up-down” sometimes:
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The story begins with the Einstein Field Equations cast in a form in which the “linearised
Ricci tensor” is isolated. Specifically, we write
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where R
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is all the Ricci tensor terms linear in h
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all terms quadratic in h
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, and so
forth. The linearised a�ne connection is

��

µ⌫

=
1

2
⌘

�⇢

✓
@h

⇢⌫

@x

µ

+
@h

⇢µ

@x

⌫

� @h

µ⌫

@x

⇢

◆
=

1

2

 
@h

�

⌫

@x

µ

+
@h

�

µ

@x

⌫

� @h

µ⌫

@x

�

!
. (343)

In terms of h
µ⌫

and h = h
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, from equation (208) on page 44, we explicitly find
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where
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is the d’Alembertian (clearly a Lorentz invariant), making a most welcome appearance into
the proceedings. Contracting µ with ⌫, we find that
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where we have made use of
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The full, nonlinear Field Equations may then formally be written
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where
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Though composed of geometrical terms, the quantity ⌧

µ⌫

is written on the right side of the
equation with the stress energy tensor T

µ⌫

, and is interpreted as the stress energy contribution
of the gravitational radiation itself. We shall have more to say on this in section 7.4. In linear
theory, ⌧

µ⌫

is neglected in comparison with the ordinary matter T
µ⌫

.

This is a bit disappointing to behold. Even the linearised Field Equations look to be a
mess! But then you may have forgotten that Maxwell’s wave equations for the potentials are
not, at first, very pretty. Let me remind you. Here are the equations for the scalar potential
� and vector potential A:
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But we know the story here well. Work in the Lorenz gauge, which we are always free to do:
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In invariant 4-vector language, this is just @
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↵ = 0. Then, the dynamical equations simplify:
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and physically transparent Lorentz-invariant wave equations emerge. Might something sim-
ilar happen for the Einstein Field Equations?

That the answer might be YES is supported by noticing that G(1)
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can be written entirely
in terms of the “Bianchi-like” quantity
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Using this into (347), the Field Equation becomes
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(It is easiest to verify this by starting with (356), substituting with (355), and showing that
this leads to (347).)

Interesting. Except for 2h̄

µ⌫

, every term in this equation involves the divergence of h̄µ

⌫

or h̄µ⌫ . Hmmm. Shades of Maxwell’s @A↵

/@x

↵. In the Maxwell case, the freedom of gauge
invariance allowed us to pick the gauge in which @A

↵

/@x

↵ = 0. Does our equation have a
gauge invariance that will allow us to do the same for gravitational radiation so that we can
set these h̄-divergence derivatives to zero?

It does. Go back to equation (347) and on the right side, change h
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and the ⇠

µ

represent any vector function. You will find that the form of the equation
is completely unchanged, i.e. the ⇠

µ

terms cancel out identically! This is a true gauge
invariance.

In this case, what is happening is that an infinitesimal coordinate transformation itself
is acting as a gauge transformation. If

x

0µ = x

µ + ⇠

µ(x), or x

µ = x

0µ � ⇠

µ(x0) to lead order. (358)

then
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0
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With ⌘

0 identical to ⌘, we must have

h

0
µ⌫

= h

µ⌫

� @⇠

⌫

@x

µ

� @⇠

µ

@x

⌫

(360)

as before. But don’t confuse general covariance under coordinate transformations with this
gauge transformation. Unlike general covariance, the gauge transformation doesn’t actually
change the coordinates. We keep the same x’s and add a group of certain functional deriva-
tives to the h

µ⌫

(analogous to adding a gradient r� to A in Maxwell’s theory) and we find
that the equations remain identical (just as we would find if we took r⇥[A +r�] in the
Maxwell case).

Just as the Lorenz gauge @
↵

A

↵ = 0 was useful in the case of Maxwell’s equations, so now
is the so-called harmonic gauge:

@h̄

µ

⌫

@x

µ

=
@h

µ

⌫

@x

µ

� 1

2

@h

@x

⌫

= 0 (361)

For then, the Field Equations (356) take the “wave-equation” form

2h̄

µ⌫

= �16⇡GT

µ⌫

c

4
(362)
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How we can be sure that even with our gauge freedom we can be certain of finding the right
⇠

µ to ensure the emergence of (362). If we have been unfortunate enough to be working in a
gauge in which equation (361) is not satisfied, then form h

0
µ⌫

à la equation (360) and demand
that @h0µ

⌫

/@x

µ = (1/2)@h0
/@x

⌫ . We find that this implies

2⇠

⌫

=
@h̄

µ

⌫

@x

µ

, (363)

a wave equation for ⇠
⌫

identical in form to (362). For this, a solution certainly exists. Indeed,
our experience with electrodynamics has taught us that the solution to the fundamental
radiation equation (362) takes the form

h̄

µ⌫

(r, t) =
4G

c

4

Z
T

µ⌫

(r0
, t�R/c)

R

d

3
r

0
, R ⌘ |r � r

0| (364)

and hence a similar solution exisits for (363). The h̄
µ⌫

, like their electrodynamic counterparts,
are determined at time t and location r by a source intergration over r0 taken at the retarded
times t

0 ⌘ t � R/c. In other words, disturbances in the gravitional field travel at a finite
speed, the speed of light c.

7.1.1 Come to think of it...

You may not have actually seen the solution (364) before, and it is important. Let’s derive
it.

Consider the equation

� 1

c

2

@

2 

@t

2
+r2 = �4⇡f(r, t) (365)

We specialise to the Green’s function solution

� 1

c

2

@

2
G

@t

2
+r2

G = �4⇡�(r)�(t) (366)

Of course, our particular choice of origin is immaterial, as is our zero of time, so that we
shall replace r by R ⌘ r � r

0 and t by ⌧ ⌘ t � t

0 at the end of the calculation, with the
primed values being fiducial reference points. The solution will still be valid with these shifts
of space and time origins.

Fourier transform (366) by integrating over
R
e

i!t

dt and denote the fourier transform of
G by G̃:

k

2
G̃+r2

G̃ = �4⇡�(r) (367)

where k

2 = !

2
/c

2. Clearly G̃ is a function only of r, hence the solution to the homogenous
equation away from the origin,

d

2(rG̃)

dr

2
+ k

2(rG̃) = 0,

is easily found to be G̃ = e

±ikr

/r. The delta function behaviour is actually already included
here, as can be seen by taking the limit k ! 0, in which we recover the correct potential of
a point charge, with the proper normalisation already in place. The back transform gives

G =
1

2⇡r

Z 1

�1
e

±ikr�i!t

d! (368)
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which we recognise as a Dirac delta function (remember !/k = c):

G =
�(t± r/c)

r

! �(t� r/c)

r

! �(⌧ �R/c)

R

(369)

where we have selected the retarded time solution t� r/c as a bow to causality, and moved
thence to ⌧ , R variables for arbitary locations and times. We thus see that a flash at t = t

0

located at r = r

0 produces an e↵ect at a time R/c later, at a distance R from the flash. The
general solution constructed from our Green’s function is

 =

Z
f(r0

, t

0)

R

�(t�R/c� t

0)dt0dr0 =

Z
f(r0

, t

0)

R

dr

0 (370)

where t

0 = t�R/c, the retarded time.

7.2 Plane waves

To understand more fully the solution (364), consider the problem in which T

µ⌫

has an
oscillatory time dependence, e�i!t

0
. The source, say a binary star system, occupies a finite

volume; we seek the solution for h̄
µ⌫

at distances huge compared with the scale of the source
itself, i.e. r � r

0. Then,
R ' r � er · r0 (371)

where er is a unit vector in the r direction, and

h̄

µ⌫

(r, t) ' exp[i(kr � !t)]
4G

rc

4

Z
T

µ⌫

(r0) exp(�ik · r0) d3r (372)

with k = (!/c)er the wavenumber in the radial direction. Since r is huge, this has the
asymptotic form of a plane wave. Hence, h̄

µ⌫

and thus h

µ⌫

itself have the form of simple
plane waves, travelling in the radial direction, at large distances from the source generating
them. These waves turn out to have some remarkable polarisation properties, which we now
discuss.

7.2.1 The transverse-traceless (TT) gauge

Consider a traveling plane wave for h
µ⌫

, orienting our z axis along k, so that

k

0 = !/c, k

1 = 0, k

2 = 0, k

3 = !/c and k0 = �!/c, k

i

= k

i (373)

where as usual we raise and lower indices with ⌘

µ⌫

or its numerical identical dual ⌘µ⌫ .

Then h

µ⌫

takes the form
h

µ⌫

= e

µ⌫

a exp(ik
⇢

x

⇢) (374)

where a is an amplitude and e

µ⌫

= e

⌫µ

a polarisation tensor, again with the ⌘’s raising and
lowering subscripts. Thus

e

ij

= e

i

j

= e

ij (375)

e

0i = �e

i

0 = e

0
i

= �e0i (376)

e

00 = e00 = �e

0
0 (377)
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The harmonic constraint
@h

µ

⌫

@x

µ

=
1

2

@h

µ

µ

@x

⌫

(378)

implies
k

µ

e

µ

⌫

= k

⌫

e

µ

µ

/2 (379)

For ⌫ = 0 this means
k0e

0
0 + k3e

3
0 = k0(e

i

i

+ e

0
0)/2, (380)

or
�(e00 + e30) = (e

ii

� e00)/2. (381)

When ⌫ = j (a spatial index),

k0e
0
j

+ k3e
3
j

= k

j

(e
ii

� e00)/2 (382)

The j = 1 and j = 2 cases reduce to

e01 + e31 = e02 + e32 = 0, (383)

while j = 3 yields
e03 + e33 = (e

ii

� e00)/2 = �(e00 + e03) (384)

Equations (383) and the first=last equality of (384) yield

e01 = �e31, e02 = �e32, e03 = �(e00 + e33)/2 (385)

Using the above expression for e03 in the first=second equality of (384) then gives

e22 = �e11 (386)

Of the 10 independent components of the symmetric e

µ⌫

the harmonic condition (378) thus
enables us to express e0i and e22 in terms of e3i, e00, and e11. These latter 5 components plus
a sixth, e12, remain unconstrained for the moment.

But wait! We have not yet used the gauge freedom of equation (360) within the harmonic
constraint. We can still continue to eliminate components of e

µ⌫

. In particular, let us choose

⇠

µ

(x) = i✏

µ

exp(ik
⇢

x

⇢) (387)

where the ✏

µ

are four constants to be chosen. This satisfies 2⇠

µ

=0, and therefore does not
change the harmonic coordinate condition, @

µ

h̄

µ

⌫

= 0. Then following the prescription of
(360), we generate a new, but physically equivalent polarisation tensor,

e

0
µ⌫

= e

µ⌫

+ k

µ
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⌫

+ k

⌫

✏

µ

(388)

and by choosing the ✏
µ

appropriately, we can eliminate all of the e0
µ⌫

except for e011, e
0
22 = �e

0
11,

and e

0
12. In particular, using (388),

e

0
11 = e11, e

0
12 = e12 (389)

unchanged. But with k = !/c,

e

0
13 = e13 + k✏1, e

0
23 = e23 + k✏2, e

0
33 = e33 + 2k✏3, e

0
00 = e00 � 2k✏0, (390)

so that these four components may be set to zero by a simple choice of the ✏

µ

. We may
work in this gauge, which is transverse (since the only e

ij

components that are present are
transverse to the z direction of propagation) and traceless (since e11 = �e22). Oddly enough,
this gauge is named the transverse-traceless (TT) gauge. Notice that in the TT gauge, h

µ⌫

vanishes if any of its indices are 0, whether raised or lowered.
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7.3 The quadrupole formula

In the limit of large r (“compact source approximation”), equation (364) is:

h̄

µ⌫(r, t) =
4G

rc

4

Z
T

µ⌫(r0
, t

0)d3r0, (391)

where t

0 = t � r/c is the retarded time. Moreover, for the TT gauge, we are interested in
the spatial ij components of this equation, since all time indices vanish. (Also, because h̄

µ⌫

is traceless, we need not distinguish between h and h̄.) The integral over T
ij

may be cast in
a very convenient form as follows.
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where the first equality follows because the first integral reduces to a surface integration of
T

ik at infinity, where it is presumed to vanish. ThusZ
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where the second equality uses the conservation of T µ⌫ . Remember that t

0 is the retarded
time. As T

ij

is symmetric in its indices,
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Continuing in this same spirit,
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Using exactly the same reasoning as before,Z
(T 0i
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Therefore, Z
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Inserting this in (391), we obtain the quadrupole formula for gravitational radiation:

h̄

ij =
2G

c

6
r

d

2
I

ij

dt

02 (398)

where I

ij is the quadrupole-moment tensor of the energy density:

I
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Z
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To estimate this numerically, we write

d

2
I

ij

dt

02 ⇠ Ma

2
c

2
!

2 (400)

where M is the characteristic mass of the rotating system, a an internal separation, and !

a characteristic frequency, an orbital frequency for a binary say. Then

h̄

ij ⇠ 2GMa

2
!

2

c

4
r

' 7⇥ 10�22(M/M�)(a
2
11!

2
7/r100) (401)

where M/M� is the mass in solar masses, a11 the separation in units of 1011 cm (about a
separation of one solar radius), !7 the frequency associated with a 7 hour orbital period
(similar to PSR193+16) and r100 the distance in units of 100 parsecs, some 3 ⇥ 1020 cm. A
typical rather large h one might expect at earth from a local astronomical source is then of
order 10�21.

What about the LIGO source, GW150914? How does our formula work in this case? The
distance in this case is cosmological, not local, with r = 1.2 ⇥ 1022 km, or in astronomical
parlance, about 400 megaparsecs (Mpc). In this case, we write (401) as

h̄

ij ⇠ 2GMa

2
!

2

c

4
r

=

✓
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⇣
a!

c

⌘2
, (402)

since 2GM�/c
2 is just the Sun’s Schwarzschild radius. (One Gpc=103Mpc = 3.0856 ⇥

1022km.) The point is that (a!/c)2 is a number not very di↵erent from 1 for a relativistic
source, perhaps 0.1 or so. Plugging in numbers with M/M� = 60 and (a!/c)2 = 0.1, we find
h̄

ij

= 1.5⇥ 10�21, just about as observed at peak amplitude.

Exercise. Prove that h̄ij given by (398) is an exact solution of 2h̄

ij = 0, for any r, even if r is not
large.

7.4 Radiated Energy

We have yet to make the link between h

µ⌫

and the actual energy flux that is carrried o↵
by the time varying metric coe�cients. Alas, properly deriving an expression for the energy
flux carried by gravitational waves is a labourious task. Whereas we have thus far worked
only to linear order in the G

µ⌫

tensor, the stress energy tensor of (weak) gravitational waves

is contained in the G

(2)
µ⌫

terms, which are quadratic in the h

µ⌫

amplitudes. That is, with
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(403)

we may also write the Field Equation in the form,

G

(1)
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4
, (404)

where

⌧

µ⌫

=
c

4

8⇡G
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(2)
µ⌫

(405)
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is to leading order the stress energy tensor of the gravitational waves themselves. The
problem is that evaluating G

(2)
µ⌫

is a long digression, and I will avoid it here. The motivated
reader is refered to either Weinberg’s text or Hobson, Efstahiou & Lasenby for the nitty-gritty
details.

We can at least motivate the general form of the energy flux in gravitational waves, which
in the transverse traceless (TT) in the k direction is given by:

F
k

= � c

4

32⇡G

@h
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(406)

To see why F
k

has the general form it does, start with the fundamental wave equation in
the harmonic gauge (not necessarily the TT gauge), written as
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Multiply by @h̄
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This can be rearranged in the form of a conservation equation:
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If we mulitply by 1/2,
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we have an equation that states that the time derivative of one quantity, plus the divergence
of another, equals a source term, which is indeed the form of a conservation equation. In
particular, we recognise

F
k

= � 1
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@h̄

µ⌫

@t
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@x

k

(411)

as the energy flux associated with gravitational waves. The form of this flux, a product of t
and x

k derivatives, is unique to the homogeneous wave equation, but only up to an overall
normalisation constant. (This is why the energy flux for sound waves, for example, can be
written the same form using the velocity potential function instead h̄

µ⌫

.) The nomalisation
constant, this factor of 1/2 that was slipped in, is for now just cheat; we have not derived it
of course. In reality, it is fixed by the identification of the right side of the energy equation
(410) as minus the rate at which the gravitational field does work on the sources. This is
a di�cult calculation. Ultimately, it is the same factor of 2 in the relationship between h00
and the Newtonian potential, but it is not easy to show this. (See MTW, Chapter 36, for
a discussion of the “radiation reaction” back on slow moving sources.) For our first glimpse
at gravitational radiation, we will leave it at that. But at least you can get a sense for why
the flux has the form it does.
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7.5 The energy loss formula for gravitational waves

Our next step is to evaluate the h

TT

ij

quantities in terms of the transverse and traceless
components of I

ij

. First, we work only with the traceless component, denoted J

ij

:

J

ij

= I

ij

� �

ij

3
I (412)

where I is the trace of I
ij

. Next, we address the transverse property. The projection of a
vector v onto a plane perpendicular to a unit direction vector n is accomplished simply by
removing the component of v along n. Denoting the resulting vector as w,

w = v � (n · v)n (413)

or
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where we have introduced the projection tensor
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Projecting tensor components presents no di�culties,
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nor does the extraction of a projected tensor that is both traceless and transverse:

w

TT

ij

=

✓
P

ik

P

jl

� 1

2
P

ij

P

kl

◆
v

kl

, ! w

TT

ii

= (P
ik

P

il

� P

kl

) = (P
kl

� P

kl

) = 0. (417)

So with
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we have
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Recalling that t0 = t� r/c and the J

TT ’s are functions of t0 (not t!),
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where, in the second expression we retain only the dominant term in 1/r. The radial flux of
gravitational waves is then given by (406):
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Note the remarkable 1/c9 dependence!

The final steps are a matter of a straightforward but somewhat tedious calculation to
write out the J

TT

ij

in terms of the J

ij

using the projection operator. (It is here that the fact
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that J

ij

is traceless is a computational advantage.) With Ẋ standing for dX/dt

0, you will
find
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(422)

The gravitational wave luminosity is an integration of this distribution over all solid angles,
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which is pretty simple: the two vector components are not the same it vanishes by symmetry
(e.g. the average of xy over a sphere is zero), otherwise the average of x2 or y2 or z2 on the
unit sphere is clearly just 1/3 of x2 + y

2 + z

2 = 1. More scary isZ
n

i

n

j

n

k

n

l

d⌦ =
4⇡

15
(�

ij

�

kl

+ �

ik

�

jl

+ �

il

�

kj

), (425)

but keep calm and think. The only way this thing cannot vanish is if two of the indices
agree with one another and the remaining two indices also agree with one another. (Maybe
the second pair is just the same pair as the first, maybe not.) But this index agreement
requirement is precisely what the symmetric combination of delta functions ensures. To
get the 4⇡/15 factor, set i = j and sum, and the same thing with l = k. The integral on
the left is then trivially

R
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n

l

n

l

d⌦ =
R
d⌦ = 4⇡. The combination of delta functions is

9+3+3 = 15. Hence the normalisation factor 4⇡/15. Putting this all together and carrying
out the integral, the total gravitational luminosity is given by a beautifully simple formula,
first derived by Albert Einstein in 1918:
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7.6 Gravitational radiation from binary stars

In Weinberg’s 1972 text, gravitational radiation detection looms as a very distant possibility,
and rightly so. The section covering this topic devotes its attention to the possibility that
rapidly rotating neutron stars might just be a good source. But, alas, for this to occur
the neutron star would have to possess a sizeable and rapidly varying quadrupole moment,
and this neutron stars do not possess. Neutron stars are nearly exact spheres, even when
rotating rapidly as pulsars. They are in essence perfectly axisymmetric; even were they to
have quadrupole moment, it would not change with time.

The possibility that Keplerian orbits might be interesting from the point-of-view of mea-
suring gravitational radiation is never mentioned in Weinberg. Certainly ordinary orbits
involving ordinary stars are not a promising source. But compact objects (white dwarfs,
neutron stars or black holes) in very close binaries, with orbital periods measured in hours,
were discovered within two years of the book’s publication, and these turn out to be ex-

tremely interesting. They are the central focus of modern day gravitational wave research.
As we have noted earlier, the first confirmation of the existence of gravitational radiation
came from the binary pulsar system 1913+16, in which the change in the orbital period from
the loss of wave energy was inferred via the arrival times of the pulsar signal. The radiation
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level itself was well below the threshold of direct detection. Over long enough time scales, a
tight binary of compact objects may lose enough energy through gravitational radiation that
the resulting inspiral goes all the way to completion and the system coalesces or explodes
in a supernova. The current expectation is that there are enough merging binaries that the
final frenzied minutes and, in the case of black holes coalescence itself, will emit detectable
gravitational wave signatures. Such waveforms can now be determined numerically to high
precision (F. Pretorius 2005, Phys. Rev. Lett. 95, 121101), and the hope is that they will
soon be identified on a regular basis with highly sophisticated interferometric devices.

Let us apply equation (426) to the case of two point masses in a classical Keplerian orbit.
There is of course no contradiction between assuming a classical orbit and calculating its
gravitational energy loss. We are working here in the regime in which the losses themselves
exert only a tiny change on the orbit over one period, and the objects themselves, while close
by ordinary astronomical standards, are separated by a distance well beyond their respective
Schwarzschild radii. (Pretorius [2005] does not make this restriction, of course!)

The orbital elements are defined on page 65. The separation r of the two bodies is given
as a function of azimuth � as

r =
L

1 + ✏ cos�
(427)

where L is the semilatus rectum and ✏ is the orbital eccentricity. With M being the total
mass of the individual objects, M = m1 + m2, l the constant specific angular momentum,
and a is the semi-major axis, we have
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and thus
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The distance from the center-of-mass of each body is denoted r1 and r2. Writing these as
vector quantities,

r1 =
m2r

M

, r2 = �m1r

M

(430)

Thus the coordinates in the xy orbital plane are
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The nonvanishing moment tensors I
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are then
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where µ is the reduced mass m1m2/M . It is a now lengthy, but entirely straightforward task
to di↵erentiate each of these moments three times. You should begin with the relatively
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easy ✏ = 0 case when reproducing the formulae below, though I present the results for finite
✏ here:
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Now equation (426) yields after some assembling:
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Our final step is to average L

GW

over an orbit. This is not simply an integral over d�/2⇡.
We must integrate over time, i.e., over d�/�̇, and then divide by the orbital period to do a
time average. Once again, the words “lengthy but straightforward” are a good description!
The answer is
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where

f(✏) =
1 + (73/24)✏2 + (37/96)✏4
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2)7/2
(442)

and � indicates solar units of mass (1.99⇥1030 kg) and length (one solar radius is 6.955⇥108

m). (Peters and Mathews 1963). Equations (441) and (442) give the famous gravitational
wave energy loss formula for a classical Keplerian orbit. Notice the dramatic e↵ect of finite
eccentricity via the f(✏) function. The first binary pulsar to be discovered, PSR1913+16,
has an eccentricity of about 0.62, and thus an enhancement of its gravitational wave energy
loss that is boosted by more than an order of magnitude relative to a circular orbit.

This whole problem must have seemed like an utter flight of fancy in 1963: the concept
of a neutron star was barely credible and not taken seriously; the notion of pulsar timing
was simply beyond conceptualisation. A lesson, perhaps, that no good calculation of an
interesting physical problem ever goes to waste!

Exercise. When we studied Schwarzschild orbits, there was an exercise to show that the
total Newtonian orbital energy of a bound two body system is �Gm1m2/2a and that the
system period is proportional to a

3/2, independent of the eccentricity. Use these results to
show that the orbital period change due to the loss of gravitational radiation is given by
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This is a measurable quantity! Stay tuned.
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7.7 Detection of gravitational radiation

7.7.1 Preliminary comments

The history of gravitational radiation has been somewhat checkered. Albert Einstein himself
stumbled several times, both conceptually and computationally. Arguments of fundamental
principle persisted through the early 1960’s; technical arguments still go on.

At the core of the early controversy was the question of whether gravitational radiation
existed at all! The now classic Peters and Mathews paper of 1963 begins with a disclaimer
that they are assuming that the “standard interpretation” of the theory is correct. The
confusion concerned whether the behaviour of h

µ⌫

potentials were just some sort of math-
ematical coordinate e↵ect, devoid of any actual physical consequences. For example, if we
calculate the a�ne connection �µ

⌫�

and apply the geodesic equation,
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and ask what happens to a particle initially at rest with dx

⌫

/d⌧ = (�c,0). The subsequent
evolution of the spatial velocity components is then
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But equation (343) clearly shows that �i

00 = 0 since any h with a zero index vanishes for our
TT plane waves. The particle evidently remains at rest. Is there is no e↵ect of gravitational
radiation on ordinary matter?!

Coordinates, coordinates, coordinates. The point, once again, is that coordinates by
themselves mean nothing, any more than does the statement “My house is located at the
vector (2, 1.3).” By now we should have learned this lesson. We picked our gauge to make
life simple, and we have simply found a coordinate system that is frozen to the individual
particles. There is nothing more to it than that. The proper spatial separation between two
particles with coordinate separation dx

i is ds2 = (⌘
ij

�h

ij

)dxi

dx

j, and that separation surely
is not constant because h11, h22, and h12 = h21 are wiggling even while the dx

i are fixed. It
was Richard Feynman who in 1955 seems to have given the simplest and most convincing
argument for the existence of graviational waves. If the separation is between two beads on
a rigid stick and the beads are free to slide, they will oscillate with the tidal force of the
wave. If there is now a tiny bit of stickiness, the beads will heat the stick. Where did that
energy come from? It could only be the wave. The “sticky bead argument” became iconic
in the relativity community.

The two independent states of linear polarisation of a gravitational wave are sometimes
referred to as + and ⇥, “plus” and “cross.” The behave similarly, but rotated by 45�. The
+ wave as it passes initially causes a prolate distortion along the vertical part of the plus
sign, squeezes from prolate to oblate distorting along the vertical axis, then squeezes inward
from oblate to prolate once again. The ⇥ wave shows the same oscillation pattern along a
rotation pattern rotated by 45�. (An excellent animation is shown in the Wikipedia article
“Gravitational Waves.”) These are true physical distortions caused by the tidal force of the
gravitational wave.

In the midst of what had been intensively theoretical investigations and debate surround-
ing of gravitational radiation, in 1968 a physicist named Joseph Weber suddenly announced
that he had actually detected gravitational radiation experimentally in his lab coming in
prodigious amounts from the centre of the Milk Way Galaxy! His technique was to use what
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are now called “Weber bars”, giant cylinders of aluminum fitted with special piezoelectric
devices that can convert tiny mechanical oscillations into electrical signals. The gravitational
waves distorted these great big bars by a tiny, tiny amount, and the signals were picked up.
Or at least that was the idea. The dimensionless relative strain �l/l of a bar of length l due
to passing wave would be of order h

ij

, or 10�21 by our optimistic estimate. (Demonstrate this
last statement.) Too make a long, sad story very short, Weber had made elementary errors
and was discredited. But his legacy was not wholly negative: the possibility of detecting
gravitational waves gradually caught on and became part of mainstream physics. Fifty years
later, LIGO has at last directly detected strains at the level of h ⇠ 10�21. This is borders
on magic: if l is 10 km, �l is 10�15 cm, one percent of the radius of a proton!

7.7.2 Indirect methods: orbital energy loss in binary pulsars

In 1974, a remarkable binary system was discovered by Hulse and Taylor (1975, ApJ (Let-
ters), 195, L51). One of the stars was a pulsar with a pulse period of 59 milliseconds, i.e., a
neutron star that rotates about 17 times a second. The orbital period was 7.75 hours, a very
tight binary with a separation of about the radius of the Sun. The other star was not seen,
only inferred, but the very small separation between the two stars together with the absence
of any eclipse of the pulsar suggested that the companion was also a compact star. (If the
binary orbital plane were close to being in the plane of the sky to avoid observed eclipses,
then the pulsar pulses would show no Doppler shifts, in sharp contradiction to observations.)

What made this yet more extraordinary is that pulsars are the most accurate clocks in
the universe, far more accurate than any earthbound atomic clock. The most accurately
measured pulsar has a pulse period known to 17 significant figures! Indeed, pulsars can be
calibrated only by ensemble averages of large numbers of atomic clocks. Nature has placed
its most accurate clock in the middle of binary system in which fantastically precise timing
is required. This then, is the ultimate general relativity laboratory.

Classic nonrelativistic binary observation techniques allow one to determine five param-
eters from observations of the pulsar: the semimajor axis projected against the plane of
the sky (a sin i), the eccentricity e, the orbital period P , and two parameters related to the
periastron (the point of closest separation): its angular position within the orbit and a time
reference point for when it occurs.

Relativistic e↵ects, something new and beyond standard analysis, give two more param-
eters. The first is the advance of the perihelion (exactly analogous to Mercury) which in
the case of PSR 1913+16 is 4.2� per year. (Recall that Mercury’s is only 43 arc seconds
per century!) The second is the second order (⇠ v

2
/c

2) Doppler shift of the pulse period
from both the gravitational redshift of the combined system and the rotational kinematics.
These seven parameters allow a complete determination of the masses and orbital compo-
nents of the system, a neat achievement in itself. The masses of the neutron stars are
1.4414M� and 1.3867M�, remarkably similar to one another and remarkably similar to the
Chandrasekhar mass 1.42M�

7. (The digits in the neutron stars’ masses are all significant!)
More importantly, there is a third relativistic e↵ect also present, and therefore the problem
is over-constrained. That is to say, it is possible to make a prediction. The orbital period
shortens due to the inspiraling caused by the loss of mechanical energy carried o↵ by gravita-
tional radiation, equation (441). Thus, by monitoring the precise arrival times of the pulsar
signals coming from the slowly decaying orbit, the existence of gravitational radiation could
be quantitatively confirmed, even though the radiation itself was not directly observable.

7This is the upper limit to the mass of a white dwarf star. If the mass exceeds this value, it collapses to
either a neutron star or black hole, but cannot remain a white dwarf.
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Figure 5: The cumulative change in the periastron event (“epoch”) caused by the inspiral
of the pulsar PSR1913+16. The dots are the data, the curve is the prediction, not the
best fit! This prediction is confirmed to better than a fraction of a percent.
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Figure [5] shows the results of many years of observations. The dots are the cumulative
change in the time of periastron due to the more progressively more rapid orbital period as
the neutron stars inspiral from gravitational radiation losses. Without the radiation losses,
there would still be a perihelion advance of course, but the time between perihelia would not
change–it would just be a bit longer than an orbital period. The cumulative change between
perihelia is an indication of actual energy loss. The solid line is not a fit to the data. It is the
prediction of general relativity of what the cumulative change in the “epoch of perihelion”
(as it is called) should be, according to the energy loss formula of Peters and Mathews, (441).
This beautiful precision fit leaves no doubt whatsover that the quadrupole radiation formula
of Einstein is correct. For this achievement, Hulse and Taylor won a well-deserved Nobel
Prize in 1993. It must be just a coincidence that this is about the time that the data points
seem to become more sparse.

Direct detection of gravitational waves is a very recent phenomenon. There are two
types of gravitational wave detectors currently in operation. The first is based on a classic
19th century laboratory apparatus: a Michelson interferometer. The second makes use
of pulsar emission pulses—specifically their arrival times—as a probe of the h

µ⌫

caused by
gravitational waves as they propagate across our line of site to the pulsar. The interferometer
detectors are designed for wave frequencies from ⇠ 10 Hz to 1000’s of Hz. This is now up
and running. By contrast, the pulsar measurements are sensitive to frequencies of tens to
hundreds of micro Hz. A very di↵erent range, measuring physical processes on very di↵erent
scales. This technique has yet to be demonstrated. The high frequency interferometers
measure the gravitational radiation from stellar-mass black holes or neutron star binaries
merging together. The low frequency pulsar timing will measure black holes merging, but
with masses of order 109 solar masses. These are the masses of galactic core black holes in
active galaxies.

7.7.3 Direct methods: LIGO

LIGO, or Laser Interferometer Gravitational-Wave Observatory, detects gravitational waves
as described in figure (6). In the absence of a wave, the arms are set to destructively interfere,
so that no light reaches the detector. The idea is that a gravitational wave passes through the
apparatus from above or below, each period of oscillation slightly squeezing one arm, slightly
extending the other. With coherent laser light traversing each arm, when it re-superposes at
the centre, the phase will become ever so slightly out of precise cancellation, and photons will
appear in the detector. In practice, the light makes many passages back and forth along a
4 km arm before analysis. The development of increased sensitivity comes from engineering
greater and greater numbers of reflections, and thus a greater e↵ective path length. There are
two such interferometers, one in Livingston, Louisiana, the other in Hanford, Washington,
a separation of 3000 km. Both must show a simultaneous wave passage (actually, with an
o↵set of 10 milliseconds for speed of light travel time) for the signal to be verified.

This is a highly simplified description, of course. All kinds of ingenious amplification
and noise suppression techniques go into this project, which is designed to measure induced
strains at the incredible level of 10�21. This detection is only possible because we measure
not the flux of radiation, which would have a 1/r2 dependence with distance to the source,
but the h

ij

amplitude, which has a 1/r dependence.

7.7.4 Direct methods: Pulsar timing array

Pulsars are, as we have noted, fantastically precise clocks. Within the pulsar cohort, those
with millisecond periods are the most accurate of all. The period of PSR1937+21 is known to
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Figure 6: A schematic interferometer. Coherent light enters from the laser at the left.
Half is deflected 45� upward by the beam splitter, half continues on. The two halves
reflect from the mirrors. The beams re-superpose at the splitter, interfere, and are
passed to a detector at the bottom. If the path lengths are identical or di↵er by an
integral number of wavelengths they interfere constructively; if they di↵er by an odd
number of half-wavelengths they cancel one another. In “null” mode, the two arms
are set to destructively interfere so that no light whatsoever reaches the detector. A
passing gravity wave just barely o↵sets this precise destructive interference and causes
laser photons to appear in the detector.
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Figure 7: A schematic view of a gravitational wave passing through
an array of pulsar probes.

be 1.5578064688197945 milliseconds, an accuracy of one part in 1017. One can then predict
the arrival time of a pulse to this level of accuracy as well. By constraining variations in
pulse arrival times from a single pulsar, we can set an upper limit to amount of gravitational
radiation that the signal has traversed. But we don’t just have one pulsar. But why settle for
one pulsar and mere constraints? We have many, distributed more or less uniformly through
the galaxy. If the arrival times from this “pulsar timing array” (PTA) were correlated with
one another in a mathematically calculable manner, this would be a direct indication of
the passage of a gravitational wave. This technique is sensitive to very long wavelength
gravitational radiation, light-years in extent. At the time of this writing, there are only
upper limits from the PTA measurements.
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