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Introduction and structure of the course. 

The study of light has been an important part of science from its beginning. The ancient 

Greeks and, prior to the Middle Ages, Islamic scholars provided important insights. With 

the coming of the Scientific Revolution in the 16
th

 and 17
th

 centuries, optics, in the shape 

of telescopes and microscopes, provided the means to study the universe from the very 

distant to the very small. Newton introduced a scientific study also of the nature of light 

itself. Today Optics remains a key element of modern science, not only as an enabling 

technology, but in Quantum Optics, as a means of testing our fundamental understanding 

of Quantum Theory and the nature of reality itself.  

 Geometrical optics, studied in the first year, ignored the wave nature of light and 

so, in this course, we focus particularly on Physical Optics where the primary 

characteristic of waves viz. interference, is the dominant theme. It is interference that 

causes diffraction – the bending of light around obstacles. So we begin with a brief 

résumé of elementary diffraction effects before presenting, in chapter 2, the basics of 

scalar diffraction theory. By using scalar theory we ignore the vector nature of the 

electric field of the wave, but we return to this aspect at the end of the course when we 

think about polarization of light. Scalar diffraction theory allows us to treat 

mathematically the propagation of light and the effects of obstructions or restrictive 

apertures in its path. We then introduce a very powerful mathematical tool, the Fourier 

transform and show how this can help in solving difficult diffraction problems. Fourier 

methods are used very widely in physics and recognise the inter-relation of variables in 

different dimensions such as “time and frequency” or “space and spatial frequency”. The 

latter concept will be useful to us in understanding the formation of images in optical 

systems. Having established the mathematical basis for describing light we turn to 

methods of analysing the spectral content of light. The spectrum of light is the primary 

link between optics and atomic physics and other sciences such as astrophysics. The basis 

for almost all instruments for spectral analysis is, again, interference. The familiar 

Young’s slit, two-beam, interference effect, in which the interference arises from division 

of the wave-front by two slits, is generalised to multiple slits in the diffraction grating 

spectrometer. The alternative method of producing interference, by division of amplitude, 

is then considered. Again we begin with the case of two beams: the Michelson 

interferometer and move on to multiple-beam interference in the Fabry-Perot 

interferometer. These devices are important tools and play a key role in modern laser 

physics and quantum optics. The reflection and transmission of light at boundaries 

between dielectric media is an important feature of almost all optical instruments and so 

we then consider how the physics of wave reflection at boundaries can be engineered to 

produce surfaces with high or partial reflectivity or even no reflectivity at all. Finally we 

return to the vector nature of the electric field in the light wave. The direction in which 

the E-field points defines the polarization and this can be random in un-polarized light, 

fixed in space in linearly polarized light or rotating in space in the case of elliptically or 

circularly polarized light. We will study how to produce, manipulate and analyse the state 

of polarization of light.   



1. Waves and Diffraction 
 

1.1 Mathematical description of a wave 

 

        Figure 1.1 
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 t : phase change with time,   

  kz : phase change with distance, k = 2  

  : arbitrary initial phase 

 

Note: this convention for a wave travelling from left to right i.e. in the positive z direction 

follows that used in Quantum Mechanics to describe wave functions. 

 

1.2 Interference 
Addition of amplitudes from two sources gives interference e.g. Young's slits: 

 

 
  Figure 1.2 Young's slits 
 

Two slits separated by d illuminated by monochromatic plane waves 

Amplitude up at a point P a large distance, D, from the slits 
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Putting  ,sin)( 21 drr     r1  r2  r,  intensity is: 
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1.3 Phasors 

The amplitude of a wave is represented by the length of a “vector” on an Argand 

diagram. The phase of the wave is represented by the angle of the vector relative to the 
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Real axis of the Argand diagram. 

The phasor is then:  
iue   

 
Figure 1.3 Phasor diagram 

 

Example: Young's slits. 

 
Figure 1.4 Phasor diagram for two slit problem. 

 

Amplitude from each slit on screen:  ruo   

Phase difference  , owing to path difference :sind   sinkd   

Resultant amplitude is then 
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1.4 Diffraction from a finite slit 
Monochromatic plane wave incident on aperture of width a. Observation plane at large 

distance D from aperture. Amplitude in plane of aperture: uo per unit length. 

 

 
 

Figure 1.5 Contributions to amplitude at P from elements dy in slit. 
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An infinitesimal element of length dy at position y contributes at P an amplitude:  
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The total amplitude at P arising from all contributions across the aperture:  
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The intensity is then:    )0(II p  sinc
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    Figure 1.6 Intensity pattern from single slit, Ip = I(0)sinc

2. 
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Hence angular width   of diffraction peak is:  
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1.5 Diffraction from a finite slit: phasor treatment 

 
 

Figure 1.7 Construction showing elements at extreme edges of aperture contributing 

first and last phasors
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On axis,   the phasor elements sum to  Rp  Off axis,  ≠ 0  successive phase shifts 

between adjacent phasors bend the phasor sum to form a section of a regular polygon. 

 

      
Figure 1.8 (a) Phasor diagram for finite slit showing resultant Rp for  and  ≠ 0 

 

The phase difference between first and last phasors for ≠ is  

 

 sinka  

 

In the limit as the phasor elements 0 the phasors form an arc of a circle of radius R. 

The length of the arc is Ro and the length of the chord representing the resultant is Rp . 

 
 

Figure 1.8 (b) Phasor diagram in the limit as phasor elements  .0   

 

The amplitude at  relative to the amplitude at = 0 : 

 

)2/(sinc
.

)2/sin(2

  

  







R

R

arcoflength

chordoflength
 

Then the intensity at : 

          I() = I(0) sinc
2
(/2) = I(0) sinc

2 

 

 
Figure 1.9 Phasor diagram showing mimina for increasing phase shift  between 

extremes of slit as  increases. 

 

The first minimum occurs when the phasor arc bends to become a full circle i.e. the phase 

difference between first and last phasor elements  the angular width is:  
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1.6 Diffraction in 2 dimensions 

Recall that the amplitude resulting from a plane wave illumination of an aperture of the 

form of a slit of width a in the y - direction (eqn 1.4):  
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Consider the aperture to have a width b  in the x -direction, then the angular variation of 

the diffracted amplitude in the x -direction is : 
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Figure 1.10 General 2-D aperture in x,y  plane. 
 

 u(x,y)  is the amplitude distribution function for the aperture. For a circular aperture of 

diameter a the diffraction pattern is a circular Bessel Function. The angular width to the 

first minimum is:     
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Figure 1.11. Point Spread Function for circular aperture. 

 

A point source imaged by a lens of focal length f and diameter a gives a pattern with a 

minimum of radius r = f/a.  This is the Point Spread Function or instrument function 

analogous to the impulse function of an electrical circuit giving its response to a              

-function impulse. 
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2. Fraunhofer Diffraction 

 
So far we have considered diffraction by 

(a) Apertures or slits illuminated by plane waves 

(b) Observation at a large distance where the phase difference between contributions 

from secondary sources in the diffracting plane separated by y is given to a good 

approximation by:  
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These are special cases where the phase difference is a linear function of the position y 

in the diffracting aperture. 

 

2.1 Fraunhofer diffraction 
Definition: “A diffraction pattern for which the phase of the light at the observation point 

is a linear function of position for all points in the diffracting aperture is Fraunhofer 

Diffraction.” 

 

By linear we mean that the wave front deviates from a plane wave by less than 20/
across the diffracting aperture. 

 

 

 
 

Figure 2.1 Wavefronts incident on and exiting from a plane aperture. 
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Alternatively,  

   

“Fraunhofer diffraction is the diffraction observed in the image plane of an optical 

system.” 
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Figure 2.2 Fraunhofer condition for plane waves: image is at infinity as source is at 

focal length from lens. 

 

Consider a point source at the focal point of a lens so that collimated light (plane waves) 

are incident on an aperture behind the lens. The image of the source is at ∞.  

Fraunhofer Diffraction however will be observed at P if BC ≤ 

 

 

 
 

Figure 2.3 Fraunhofer diffraction observed in the image plane of a lens. 

 

If the observation point P lies in the image plane of the lens so that curved wavefronts 

converge from the lens to P then no plane waves are involved. The lens and diffracting 

aperture however can be replaced by an equivalent system where diffraction of plane 

waves occurs. Note however that this means plane waves are not necessary to observe 

Fraunhofer diffraction. The key criterion is that ... 

 

                    the phase varies linearly with position in the diffracting aperture. 

 

A further consequence of noting that Fraunhofer diffraction is observed in the image 

plane is that the position of the aperture is not important. 

 

O

P

A

B
C

u v

Equivalent lens
system

O

O

P

P



 
 

Figure 2.4 Equivalent lens system showing that Fraunhofer diffraction is independent 

of position of aperture  
 

2.2 Diffraction and wave propagation 

 

Consider a plane wave surface at -z. This reproduces itself at a second plane z = 0. 

Huygens secondary sources in the wave front radiate to a point P in the second plane. 

 
Figure 2.5 Huygens secondary sources on plane wave at -z contribute to wave at P. 

 

The amplitude at P is the resultant of all contributions from the plane at –z. 
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 ou is the amplitude from element of area dS. 

 (n,r) is the obliquity factor - this accounts for the fact that the wave propagates only in 

the forward direction. n is a unit vector normal to the wave front and is a 

proportionality constant - to be determined. 

We determine  by a self-consistency argument i.e. the plane wave at -z must reproduce 

itself at z = 0. We consider the amplitude at a point P a distance q from the wave such 

that q = m  where m is an integer and  m>>1 . i.e. P is a large distance from O, a point 

on the wave front lying on a normal through P. We now construct elements of the 

wavefront of equal area A centred on O. 
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Figure 2.6 Construction of elements of 

equal area on plane wavefront. 
 

The first element is a circle, the n
th

 is an annulus of outer radius n   
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Consequently the difference in distance r from successive elements to P is constant 
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Therefore the phase difference between waves from successive elements is also constant: 
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Hence we may treat contributions from each element of the wavefront as a Phasor. 

[Note: we ignore, for the moment, the small difference in amplitude at P between 

successive elements arising from the small increase in distance rn as n increases. We 

also ignore the small change in (n,r) ] 

Add contributions of elements (phasors) until the last phasor added is   out of phase 

with the first. The area of the wavefront covered by these elements is the First Half 

Period Zone, 1
st
  HPZ. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Construction of  

the First Half Period Zone 
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The difference in path-length from the outer element of the 1st HPZ to P and from O to P 

is .2/  

 

 
Figure 2.8 Phase shift of   arises at edge of 1

st
 HPZ 

 

 The radius of the 1
st
 HPZ is   is given by:    
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Recalling our diffraction integral we write the contribution to the amplitude at P from the 

1
st
 HPZ: 
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From the phasor diagram, the amplitude from the 1
st
 HPZ is the length of the phasor arc, 

. ou   

The resultant R is then the diameter of the circle of which the phasor arc defines half the 

circumference:  
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The resultant phasor lies along the imaginary axis so: 
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Add further elements until the final phasor is in phase with the first i.e. a phase difference 

of 2 .   The area of the wavefront now defines the first Full Period Zone 1
st
 FPZ. 

The resultant from the 1
st
 FPZ is not exactly zero owing to the term 1/r  (inverse square 

law for intensity) and the obliquity factor (n,r). 

Adding further elements gives a slow spiral. 

 

 
 

Figure 2.9 As n   resultant of zones tends to half the resultant of the 1st HPZ 
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Adding contributions from the whole wave (integrating over infinite surface) gives 

resultant equal to ½ the 1
st 

HPZ. Therefore 
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Self-consistency demands that this wave at P matches the original wave at O: 
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This is the Fresnel-Kirchoff diffraction integral. 

  



3. Fourier methods in Optics 
 

3.1 The Fresnel-Kirchoff integral as a Fourier Transform 
The Fresnel-Kirchoff diffraction integral tells us how to calculate the field Up in an 

observation plane using the amplitude distribution uo in some initial plane 
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where the limits of integration will be defined by the boundary of the aperture. We 

simplify by: 

 

Ignoring the obliquity factor i.e. put 1),( rn , 

         Restricting to one dimension: dS → dx, 

         Ignoring the  r1   term by considering only a small range of r, 

         Using the Fraunhofer condition: 
xikrikikr eee  sin 

 , 

         Absorbing  
rike

 into the constant of proportionality: 

 

Since the integral will be zero wherever the amplitude function u(x) is zero the limits of 

integration can be safely extended to infinity. The amplitude up as a function of angle  is 

then: 
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where k sin . 

          We note that A( is the Fourier transform of u(x). 

 

 

 

 

 

More precisely: the Fraunhofer diffraction pattern expressed as the amplitude, as a 

function of angle, is the Fourier transform of the function representing the amplitude of 

the incident wave, as a function of position in the diffracting aperture. The Fraunhofer 

diffraction is expressed as a function of  k sin   where  is the angle of the diffracted 

wave relative to the wave vector k of the wave incident on the aperture. 

 

The inverse transform relation is:  
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The Fraunhofer diffraction pattern is proportional to the Fourier transform 

of the transmission function (amplitude function) of the diffracting aperture. 



3.2 The Convolution Theorem 

The convolution of two functions f(x)  and g(x)  is a new function, h(x),  defined by: 
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The Fourier transform, F.T., of  )(xf   is  )(F   

The Fourier transform, F.T., of  )(xg   is  )(G   

The Fourier transform, F.T., of  )(xh   is  )(H   

  

The Convolution Theorem states that the Fourier transform of a convolution of two 

functions is the product of the Fourier transforms of each of the two functions: 
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3.3 Some useful Fourier transforms and convolutions 
(a) We can represent a wave of constant frequency o  as a function of time t. 
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i.e.  V( represents the spectrum of a monochromatic wave of frequency  and is a delta 

function in frequency space. 

 
 

Figure 3.1 A wave of constant frequency (monochromatic) and its Fourier transform 

 

Alternatively the inverse transform relations allow us to represent the F.T. of a delta 

function: 
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(b) The double slit function, i.e. two delta-functions separated by d : 
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(c) A comb of delta functions: 

 

 
 

Figure 3.2 A comb of  -functions and their transform 

 

)( )(
1

0

s

N

m

c mxxxv 




  

The F.T. of  )(xvc   is:  

)sin(

)sin(
 )(

2
1

2
1

s

si

c
x

xN
eV




   

where  

sxN  )1(
2

1
  

The factor e
i

is simply the consequence of starting our comb at x = 0. This factor can be 

eliminated by shifting our comb to sit symmetrically about the origin. This result 

illustrates the “Shift Theorem”. 

 

(d) The top-hat function:  
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[What would be the result if the top-hat was shifted to sit between x = 0 and x = a?] 
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Now some useful convolutions: 

 

(e) The double slit:  
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(f) The grating function: 
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(g) The triangle function: 
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This is a self-convolution. The self-convolution is known also as the autocorrelation 

function. 

 

 

3.4 Fourier Analysis 
A periodic function V(t) may be represented by a Fourier series. 
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V(t) is the result of synthesis of the set of Fourier components. 

Fourier analysis is the reverse process - finding the components (amplitude and phase) 

that make up V(t).  The coefficients are found by integrating the function over a period  
of the oscillation. 
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In general: 
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This last expression represents a Fourier transform - suggesting that this operation 

analyses the function V(t)  to find the amplitudes of the Fourier components Ap. 

 

  



3.5 Spatial frequencies 
Consider a plane wave falling normally on an infinite screen with amplitude transmission 

function: )sin(1)( xxu s  i.e. a grating with periodic pattern of width 
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The Fraunhofer diffraction pattern is then: 
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The sinusoidal grating has a Fraunhofer diffraction pattern consisting of zero order and + 

first orders  2// sd  . 

An additional spatial frequency n will lead to additional first orders at  2/n . 

[Note: a finite screen will result in each order being spread by the diffraction pattern of 

the finite aperture, i.e. the “spread function” of the aperture.] 

 

3.6 Abbé theory of imaging 
We consider an object consisting of an infinite screen having a sinusoidal transmission 

described by a function u(x) so that the amplitude transmission repeats with a spacing d. 

This acts as an object at a distance u from a lens of focal length f. 

 

 
Figure 3.3 Object u(x) imaged by lens to v(x). 

 

Diffraction orders are waves with parallel wave vectors at angles  and +d. 

A lens brings these parallel waves to a focus as “points” in the focal plane separated by a 

= f/d. Apart from a phase factor, the amplitude in the focal plane is the F.T. of )(xu . 

This plane is the Fourier plane. 

 

Zero and first order “points” act as coherent sources giving two-beam interference at 

positions beyond the focal plane. In the image plane, distance v from the lens, the 

a

d
d’

f D
u v

u(x) v(x)

Fourier plane
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interference pattern is maximally sharp, v = f + D. The interference pattern is a sinusoidal 

fringe system with spacing:  

 

a

D
d


  

From geometry  

v

d

u

d 
  

Hence:  

fvu

111
  

For a finite grating the “points” will be spread by diffraction at the effective aperture of 

the grating. [Note that we can describe such a grating as a convolution of an infinite sine 

wave with a top-hat function.] 

 

Any object amplitude distribution may be synthesised by a set of sinusoidal functions. 

Each Fourier component with a specific spatial frequency contributes + orders to the 

diffraction pattern at specific angles  to the axis. The aperture a of the lens and object 

distance u determine the maximum angle  max from which light may be collected. 

Diffraction orders at angles greater than  max do not contribute to the final image. The 

corresponding spatial frequencies will be missing from the image. Higher spatial 

frequencies contribute to sharp edges in the object distribution. The lack of high spatial 

frequencies in the image leads to blurring and loss of resolution. 

 

[Note: the discussion so far is valid only for coherent light i.e. light waves having a fixed 

phase relationship across the aperture in the object plane. In practice for microscopic 

objects this condition is partially fulfilled even for white light illumination.] 

 

3.7 The Compound Microscope  
Figure 3.4 shows the arrangement of the compound microscope. Basically a very short 

focal length lens, the objective, forms a real, inverted, image of the specimen in the 

image plane, giving a linear magnification of v/u. The eye-piece is basically a simple 

magnifier used to view the real image which is located at the focal length of the eyepiece 

giving a virtual image at infinity. This allows viewing with minimum eyestrain. The 

minimum dimension of spatial structure in the object dmin that can be resolved is such that 

the associated diffraction order will be at the maximum angle  max that can be collected 

by the objective lens. 

 

min
maxsin

d
   

Spatial frequencies, having dimensions smaller than mind , will diffract to larger angles, 

miss the objective, and thus not appear in the image. The minimum spatial dimension dmin 



 
 

Figure 3.4 The Compound Microscope. The object at distance u from objective with 

focal length Of  is imaged at distance v  This real image is at the focal length Ef
 from 

the eyepiece giving an angular magnification  /   where  /  is the angle subtended 

by the real image if it was at the near point of the eye, distance D. Approximately, 

Ofu   and Lv   , the length of the tube. In this approximation the magnification is 

EO ffDLM      

 

that can be resolved may be increased by immersing the objective and object in oil of 

refractive index no; the oil immersion objective:  

min

maxo sin
d

n


   

max0 sinn is the Numerical Aperture and defines the ultimate resolution of the device. 

 

 
 

Figure 3.5. First order diffracted waves from spatial structures < dmin are collected by 

the lens and interfere in the image plane with zero order waves to form sinusoidal 

structure in the image. Light from smaller spatial structures (higher spatial 

frequencies)  are diffracted to angles >  max, miss the objective and do not interfere 

with zero order in the image.  
 

3.7 Diffraction effects on image brightness 
Normal image brightness is determined by the f/no. of the optical system i.e. f/dA where 

dA is the limiting aperture. When the image size approaches the order of the PSF ~ /dA 

light is lost from the image by diffraction. This is diffraction limited imaging. 

 

For non-diffraction limited imaging:   Image brightness 2

Ad  

For diffraction limited imaging:   Image brightness 
4

Ad  

 max



4 Optical instruments and fringe localization 

 
Optical instruments for spectroscopy use interference to produce a wavelength-dependent 

pattern. The interfering beams are produced either by division of wavefront or by division 

of amplitude. The diffraction grating divides the wavefront into multiple beams. The 

Michelson divides the amplitude into two beams and the Fabry-Perot interferometer 

divides the amplitude into multiple beams. It is important to know where to look for the 

fringes. Before looking at specific instruments we consider the general question of fringe 

localization. 

 

4.1 Division of wavefront 
(a) Two-slit interference, Young's Slits 

 

 
 

  Figure 4.1 Young's slit fringes are observed throughout the region beyond the screen 

containing the two slits. 

 

The fringes are non-localized and usually observed under the Fraunhofer condition. 

 

(b) N-slit diffraction, the diffraction grating. 

 

 
  Figure 4.2 Diffraction grating fringes. 

 

Again we usually observe the Fraunhofer condition. A monochromatic plane wave is 

diffracted i.e. suffers constructive interference at angle .   Parallel light interferes at 

infinity or in the focal plane of a lens. The fringes are localized at infinity or in the image 

plane of the instrument. 
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 

to 8

f



4.2 Division of amplitude 
The interference may involve two beams (Michelson) or multiple beams (Fabry-Perot). 

The situations are modelled by reflection of light from a source at two surfaces. The 

source may be a point or extended and the surfaces may be at an angle (wedged) or 

parallel. The images of the source in the reflecting surfaces act as two effective sources. 

 

4.2.1 Point source 

(a) Wedge. 

 
  Figure 4.3 A point source O provides images P, P' in reflecting surfaces forming a 

wedge. 
 

This system is equivalent to 2-point sources or Young's slit situation. Therefore the 

fringes are non-localized fringes of equal thickness.   .   

 

(b) Parallel 

 
  Figure 4.4 A point source reflected in two parallel surfaces again provides two images 

P, P'  
 

This is similar to the wedge situation with 2-point sources. The fringes are non-localized 

fringes of equal inclination.   
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4.2.2 Extended source 

(a) Wedge 

 
Figure 4.5. Extended source OS provides two images PR and P'R' by reflection at 

wedged reflecting surfaces. 

 

Each point on the extended source produces non-localized fringes. Overlap of all these 

patterns gives no visible fringes. However at the apex of the wedge the path difference is 

zero and is the same for all points on the effective sources so fringes are visible in this 

region. The zero order fringe is a straight line fringe in the plane of the wedge. Other 

low-order fringes may be seen if the source is not too large and the wedge angle not too 

big. The fringes are of equal thickness and localized in the plane of the wedge e.g. 

Newton's Rings. 

 

(b) Parallel 

 
Figure 4.6 Upper figure shows two images of extended source by reflection in parallel 

slab of thickness t.  Lower figure shows fringes of equal inclination formed in focal 

plane of a lens by light from the two images of the source. 

 

Close to plate overlapping patterns lead to no visible fringes. At large distance the fringes 

become wider and exceed the displacement of the overlap. Fringes become visible and 

are fringes of equal inclination and localized at infinity. These fringes are more 

conveniently observed in the focal plane of a lens. e.g. the eye. 

 

Reflecting surfaces separated by t lead to two images separated by 2t or x = 2t. Parallel 

light at an angle of inclination  to the axis from equivalent points on the effective 
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sources are brought together in the focal plane. The path difference is xcos  and the 

phase difference : 





 cos

2
x    (4.1) 

Bright fringes (constructive interference) occurs when the phase difference p2   

(p = integer) or 

 px cos     (4.2) 

 

For small angles the angular size of the fringes is given by  

x
pp




22

1

2    

Hence radii of fringes in focal plane of lens with focal length  :f   

x

f
rr pp

22

1

2 2
     (4.3) 

As x increases, fringes get closer together. As x decreases → 0 fringes get larger and fill 

the field of view. The behaviour of the fringes formed by parallel surfaces will be 

important for the Michelson and Fabry-Perot interferometers. 

  



5 The diffraction grating spectrograph 
 

5.1 Interference pattern from a diffraction grating 
Consider a plane wave of wavelength  incident normally on a reflecting or transmitting 

grating of N slits separated by d.  The amplitude contributed by each slit is u and the 

intensity of the interference pattern is found by adding amplitudes and taking the squared 

modulus of the resultant. 

 

(1)  N = 2 

 
Figure 5.1  Intensity pattern and associated phasor diagram for 2-slit interference 

 

)
2

(cos4)( 22 
 uI      (5.1) 

where      



 sin

2
d  

Principal maxima at  2,0 n , of intensity 4u
2
. One minimum beween principal 

maxima. 

 

(2)  N = 3 

 
 

Figure 5.2 Phasor diagrams for 3-slit interference and intensity pattern 
 

Using phasors to find resultant amplitude 

 

(a)   2,0 n   Principal maxima of intensity 9u
2
. Two minima between principal 

maxima. 

(b)  3/2              Minimum / zero intensity 

(c)                 Subsidiary maxima of intensity u
2
  

(d)  3/4              Minimum / zero intensity 
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(3)  N = 4 

Principal maxima at  2,0 n  of intensity 16u
2
. Three minima 

between principal maxima. 

 

In general we have principal maxima at  2,0 n , intensity .2N  (N – 1)  minima at 

N
n 2  and width of principal maxima  

N
1  . 

 

 
 

Figure 5.3 Phasor diagrams for N-slit interference and intensity pattern 
 

Amplitude of  N phasors: 
 )1(2  ...  Niii ueueueuA  

Hence intensity:  
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5.2 Effect of finite slit width 
Grating of  N slits of width a separated by d is a convolution of a comb of N  functions 

f(x) with a single slit (top-hat function) g(x):  
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Using the Convolution Theorem with, 
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where  sinkd  and  sinka  

 

5.3 Diffraction grating performance 

 
5.3.1 The diffraction grating equation 

The equation for  )(I   gives the positions of principal maxima,  2,0 n , n is an 

integer: the order of diffraction (this is also the number of wavelengths in the path 

difference). For normal incidence on the grating. Principal maxima occur for  

 

 nd sin     (5.4) 

5.3.2 Angular dispersion 

The angular separation d between spectral components differing in wavelength by d







cosd

d

d

n
     (5.5) 

5.3.3 Resolving power 

 

 
Figure 5.4 (a)The phase shift min the change in   between the maxima and first 

minimum in phase space, corresponds to an angular separation  minin real space. 

(b)The fringes are resolved if the angular width to the first minimum min equals the 

angular separation   of the two wavelengths. 

 

Principal maxima for wavelength occur for a phase difference of n2. The change 

in phase difference  between the maximum and the first minimum ismin  
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Angular width to first minimum min  is found from  
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Thus the phase difference between the maximum and first minimum is: 
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The angular separation    of principal maxima for  and  is found from (5.5):  
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The resolution criterion is:  

min   

Hence the Resolving Power is:  

nN



    (5.8) 

 

5.3.4 Free Spectral Range 

The n
th

 order of  and (n + 1)
th

 order of (FSR)  lie at same angle  . 

{ ))(1(sin   ndn }. Hence overlap occurs for these wavelengths at this 

angle. The Free Spectral Range is thus:  

)1( 


n
FSR


    (5.9) 

Note: the Resolving Power  n   and the FSR  ./1 n   

 

5.4 Blazed (reflection) gratings 
The Blaze angle  is set to reflect light into the same direction as the diffracted order of 

choice for a given wavelength. For incident angle  and diffracted angle   the blaze 

angle will be :  

)(
2

1
   

where   and   satisfy the grating equation  

 

 nd  )sin(sin     (5.10) 
 



 
 

Figure 5.5 (a) Diffraction angle     Reflection angle     for ordinary grating. (b) 

Blazed grating reflects light at same angle as diffracted order 

 

 
 

Figure 5.6 (a) Grating intensity pattern and single slit diffraction pattern. (b) Effect of 

single slit diffraction envelope on grating diffraction intensity for unblazed grating.  

(c) Grating intensity pattern for blaze set to reflect light into 2nd order. 
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5.5 Effect of slit width on resolution and illumination 
Consider the imaging forming system consisting of two lenses of focal length f1 and f2. 

The image of a slit of width xs has a width:  

si x
f

f
x 




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


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1

2    (5.11) 

 

 
Figure 5.7 (a) Image forming system to image slit of widthxs  to image xi . (b) 

Images of slit are spectrally dispersed by diffraction at grating. Slit is imaged at angle    

from diffraction grating leading to foreshortening by cos. 

 

In a diffraction grating spectrograph the image is viewed at the diffraction angle  and so 

is foreshortened by cos . 

si x
f

f
x 










cos1

2  

The minimum resolvable wavelength difference, R , has an angular width R :  
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Wavelengths having difference R are separated in the image plane of lens f2  by xR : 
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where we used 
nN

R


   

Resolution is achieved provided: Ri xx   and the limiting slit width xs  is then: 
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Note: the optimum slit width is such that the diffraction pattern of the slit just fills the 

grating aperture, W = Nd. 

 

   Rs xx  : resolution reduced by overlap of images at different wavelengths  

   Rs xx  :  resolution not improved beyond diffraction limit but  brightness is reduced. 

 

  The point of this exercise is to compare the size of the slit image in the “real” spectrograph with the size predicted 

using the theoretical resolving power. The key difference between the two is that the image in the real 

spectrograph, because it is observed at the diffraction angle , is foreshortened by a factor cos . So this means 

that we have to make the observed image size xi larger by a factor 1/ cos  in order to compare like with like. 

The theoretical resolving power leads us to a value for the angular separation of wavelengths that differ by R . 

Using our expression for the angular dispersion we find this angular separation to be: 
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This is equation (5.13). We now need to find the spatial extent of the image, xR, corresponding to this theoretical 

resolution and this is given simply by the relation fwhere the focal length in this case is f2 
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then using,
nN

R


    :   


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f
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This is equation (5.14).  

NB. This calculated “theoretical” image size does not include any foreshortening effect.

 

Now consider the size of the image in the “real” spectrograph that will exhibit foreshortening. The size of the 

image formed in the lens imaging system of the spectrograph is determined by the linear magnification of the lens 

system: M = v/u = f2/f1.  So the size of any image is related to the entrance slit width xs by the relation: 
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When an image is viewed in the diffracted beam at angle  there is a foreshortening by a factor of cos , i.e. 

cosii xx  . Conversely any image of size ix viewed in the diffracted beam corresponds to an un-

foreshortened image that will be larger by the same factor i.e. cos1 .  
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This is equation (5.12). It is this image size – without the effect of foreshortening – that needs to be compared to 

the theoretical image size. In order to achieve the theoretical resolving power we need to have: Ri xx 

 In which case: 
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Or the limiting slit width is 

   1

Nd

f
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We note that if the slit is less than this limiting value the resolution is not improved – the image simply becomes 

less bright – we have diffraction limited imaging.  

 



6 The Michelson (Fourier Transform) Interferometer 
 

A two-beam interference device in which the interfering beams are produced by division 

of amplitude at a 50:50 beam splitter. 

 

 
Figure 6.1 The Michleson interferometer. The beam splitter BS sends light to mirrors 

M1 and M2 in two arms differing in length by t. M’2 is image of M2 in M1 resulting 

effectively in a pair of parallel reflecting surfaces illuminated by an extended source as 

in figure 5.6. CP is a compensating plate to ensure beams traverse equal thickness of 

glass in both arms. 

 

6.1 Michelson Interferometer 
Distance from beam splitter to mirrors differs by t in the two paths, and  is the angle of 

interfering beams to the axis. Resulting phase difference between beams:  
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Constructive interference occurs at 2p, where p is an integer,  x cos = p. Thus on 

axis the order of interference is p = x/ . 

 

Symmetry gives circular fringes about axis. The fringes are of equal inclination and 

localized at infinity. They are viewed therefore in the focal plane of a lens. Fringe of 

order p has radius rp in the focal plane of a lens (focal length, f,  see section 5.2.2(b).  

 

     
x

f
rr pp

22

1

2 2
      (6.2) 

Two-beam interference pattern:  
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where  
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
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  , the wavenumber. 
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Figure 6.2 Input spectrum of monochromatic source and resulting interferogram 

obtained from scanning Michelson interferometer.  

 

6.2 Resolving Power of the Michelson Spectrometer. 
Consider that we wish to resolve two wavelengths  and  that differ by . The 

corresponding wavenumbers are 1 and 2  and they provide two independent 

interferograms so the resultant is the sum of the two:  
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Let the two components have equal intensity: so  )()()( 02010  III    is the intensity 

of each interferogram at x = 0. Then  
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Figure 6.3 (a) Interferogram of source component 1  (b) interferogram of source 

component   2 .  (c) Interferogram of combined light showing added intensities (a) and 

(b). Note visibility of fringes cycles to zero and back to unity for equal intesity 

components. To resolve the complete cycle requires a path difference xmax  
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This looks like an interferogram of a light source with mean wavenumber   221      

multiplied by an envelope function   x22cos 21   . This envelope function goes 

first to a zero when a “peak” of interferogram for 1  first coincides with a zero in the 

interferogram for 2 . The visibility (or contrast) of the fringes cycles to zero and back to 

unity; the tell-tale sign of the presence of the two wavelength components. The number 

of fringes in the range covering the cycle is determined by the wavenumber difference  

21   . The instrument will have the power to resolve these two wavenumbers 

(wavelengths) if the maximum path difference available, xmax, is just sufficient to record 

this cycle in the envelope of the interferogram. The minimum wavenumber difference 

min  that can be resolved is found from the value of xmax giving the cycle in the cosine 

envelope function:  


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2
2 x  
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1

x
      (6.5) 

This minimum resolvable wavenumber difference is the instrument width as it represents 

the width of the spectrum produced by the instrument for a monochromatic wave.  
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x
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Hence the Resolving Power RP is:  
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6.3 The Fourier Transform spectrometer 
In Figure 6.1 we see that the interferogram looks like the Fourier transform of the 

intensity spectrum. The interferogram produced using light of two wavenumbers 1 and 

2   is  
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In the case of multiple discrete wavelengths:  
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First term on r.h.s. is ½ Io  where Io is the total intensity at x = 0 and the Second term is a 

sum of individual interferograms. 

 

Replacing components with discrete wavenumbers by a continuous spectral distribution, 

I(x) becomes:  
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where )(S  is the power spectrum of the source. 

Now 0)( S  for  ,0   so second term may be written: 
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 F(x) is the cosine Fourier Transform of  S  
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Apart from a constant of proportionality the Fourier transform of the interferogram yields 

the Intensity or Power Spectrum of the source. See Figure 6.2. 

 

The Michelson interferometer effectively compares a wavetrain with a delayed replica of 

itself. The maximum path difference that the device can introduce, xmax, is therefore the 

limit on the length of the wavetrain that can be sampled. The longer the length measured 

the lower the uncertainty in the value of the wavenumber obtained from the Fourier 

transform. Distance x and wavenumber   are Fourier pairs or conjugate variables.[see 

equation (7.9)] This explains why the limit on the uncertainty of wavenumber (or 

wavelength) measurement  Inst  is just the inverse of  xmax.  In essence this explains the 

general rule for all interferometers including diffraction grating instruments that:  

 

  
beams ginterferinbetween  differencepath  Maximum

1
 Inst  (6.10) 

 

6.4 The Wiener-Khinchine Theorem 
Note: this topic is NOT on the syllabus but is included here as an interesting theoretical 

digression. 

The recorded intensity I(x) is the product of two fields, E(t) and its delayed replica        

E(t + )   integrated over many cycles. (The delay  x/c. ) The interferogram as a 

function of the delay may be written:  

    ttEtE d)()()(        (6.11) 

 

Taking the integral from   to   we define the Autocorrelation Function of the field 

to be  

    ttEtE d)()()(   
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The Autocorrelation Theorem states that if a function E(t)  has a Fourier Transform F(   
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Note the similarity between the Autocorrelation theorem and the Convolution Theorem. 

The physical analogue of the Autocorrelation theorem is the Wiener-Kinchine Theorem. 

 

  “The Fourier Transform of the autocorrelation of a signal is the spectral power 

density of the signal” 

 

The Michelson interferogram is just the autocorrelation of the light wave (signal).  

Note that  and  are related by a factor 2c where c is the speed of light. 

 

6.5 Fringe visibility. 

 
6.5.1 Fringe visibility and relative intensities 

 

Figure 6.3 shows an interferogram made up of two independent sources of different 

wavelengths. The contrast in individual fringes of the pattern varies and we define the 

“visibility” of the fringes by  
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 The fringe visibility “comes and goes” periodically as the two patterns get into and out 

of step. The example shown consisted of two sources of equal intensity. The visibility 

varies between 1 and 0. If however the two components had different intensity  )( 11 I   

and  )( 22 I  then the envelope function of the interferogram does not go to zero. The 

contrast of the fringes varies from  )( 11 I  + )( 22 I   at zero path difference (or time delay) 

to a minimum value of  )( 11 I  - )( 22 I  . Denoting the intensities simply by 1I   and 2I . 
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Measuring the ratio of the minimum to maximum fringe visibility Vmin / Vmax allows the 

ratio of the two intensities to be determined. 

 

 

 



6.5.1 Fringe visibility, coherence and correlation 

 

When the source contains a continuous distribution of wavelengths/wavenumbers the 

visibility decreases to zero with increasing path difference x and never recovers. The two 

parts of each of the Fourier components (individual frequencies) in each arm of the 

interferometer are in phase at zero path difference (zero time delay). At large path 

differences there will be a continuous distribution of interferograms with a range of phase 

differences that “average” to zero and no steady state fringes are visible. The path 

difference xo introduced that brings the visibility to zero is a measure of the wavenumber 

difference L  across the width of the spectrum of the source.  

    
o

L
x

1
       (6.16) 

L  is the spectral linewidth of the source. 

 

A source having a finite spectral linewidth i.e. every light source (!) may be thought of as 

emitting wavetrains of a finite average length. When these wavetrains are split in the 

Michelson, and recombined after a delay, interference will occur only if some parts of the 

wavetrains overlap. Once the path difference x exceeds the average length of wavetrains 

no further interference is possible. The two parts of the divided wavetrain are no longer 

“coherent”. The Michelson interferogram thus gives us a measure of the degree of 

coherence in the source. A perfectly monochromatic source (if it existed!) would give an 

infinitely long wavetrain and the visibility would be unity for all values of x.  The two 

parts of the divided wavetrain in this case remain perfectly correlated after any delay is 

introduced. If the wavetrain has random jumps in phase separated in time on average by 

say c then when the two parts are recombined after a delay d < c only part of the 

wavetrains will still be correlated. The wavetrains from the source stay correlated with a 

delayed replica only for the time c which is known as the coherence time. Thus we see 

that the Michelson interferogram provides us with the autocorrelation function or self-

correlation along the length of the electromagnetic wave emitted by the source. (see 

section 4.3) In other words the Michelson provides a measure of the “longitudinal 

coherence” of the source. 

 

 

  

[Note. Light sources may also be characterised by their “transverse coherence”. This is a 

measure of the degree of phase correlation the waves exhibit in a plane transverse to the 

direction of propagation. Monochromatic light emanating from a “point” source will give 

spherical wavefronts i.e. every point on a sphere centred on the source will have the same 

phase. Similarly a plane wave is defined as a wave originating effectively from a point source at 

infinity. Such a source will provide Young’s Slit interference no matter how large the separation 

of the slits. (The fringe width, of course, will get very tiny for large separations.) If the slits are 

illuminated by two separate point sources, with the same monochromatic wavelength but with a 

small displacement, then two sets of independent fringes are produced. The displacement of the 

sources gives a displacement of the two patterns. For small slit separation this may be 

insignificant and fringes will be visible. When, however, the slit separation is increased the 

“peaks” of one pattern overlap the “troughs” of the other pattern and uniform illumination 

results. The separation of the slits in this case therefore indicates the extent of the spatial 

correlation in the phase of the two monochromatic sources i.e. this measures the extent of the 

transverse coherence in the light from the extended source.] 

 



7. The Fabry-Perot interferometer 
 

This instrument uses multiple beam interference by division of amplitude. Figure 7.1 

shows a beam from a point on an extended source incident on two reflecting surfaces 

separated by a distance d. Note that this distance is the optical distance i.e. the product of 

refractive index n and physical length. For convenience we will omit n from the 

equations that follow but it needs to be included when the space between the reflectors is 

not a vacuum. An instrument with a fixed d is called an etalon. Multiple beams are 

generated by partial reflection at each surface resulting in a set of parallel beams having a 

relative phase shift  introduced by the extra path 2dcos between successive reflections 

which depends on the angle  of the beams relative to the axis. (See section 4.2.2 (b)). 

Interference therefore occurs at infinity – the fringes are of equal inclination and 

localized at infinity. In practice a lens is used and the fringes observed in the focal plane 

where they appear as a pattern of concentric circular rings. 

 

7.1 The Fabry-Perot interference pattern 
This is done in all the text books (consult for details). The basic idea is as follows: 

 

 
 

Figure 7.1 Multiple beam interference of beams reflected and transmitted by parallel 

surfaces with amplitude reflection and transmission coefficients ri, ti  respectively. 

 

Amplitude reflection and transmission coefficients for the surfaces are r1, t1 and r2, t2, 

respectively. The phase difference between successive beams is:  
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An incident wave  Eoe
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  is transmitted as a sum of waves with amplitude and phase 

given by:  
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 and multiplying by the complex conjugate to find the transmitted Intensity: 
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writing  
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If there is no absorption in the reflecting surfaces )1( RT   then defining  
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This is known as the Airy Function. See figure 7.2 

 

 
 

Figure 7.2 The Airy function showing fringes of order m, m+1 as function of   . 

 

7.2 Observing Fabry-Perot fringes 
The Airy function describes the shape of the interference fringes. Figure 7.2 shows the 

intensity as a function of phase shift . The fringes occur each time  is a multiple of . 
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m is an integer, the order of the fringe. The fringes of the Airy pattern may be observed 

by a system to vary d, , or   A system for viewing many whole fringes is shown in 

m2 (m+1)2 

I( )



figure 7.3. An extended source of monochromatic light is used with a lens to form the 

fringes on a screen. Light from any point on the source passes through the F.P. at a range 

of angles illuminating a number of fringes. The fringe pattern is formed in the focal plane 

of the lens. 

 
 

Figure 7.3. Schematic diagram of arrangement to view Fabry-Perot fringes. Parallel 

light from the Fabry-Perot is focussed on the screen. 

 

From equation (7.5) the m
th

 fringe is at an angle m  

d

m
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2
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The angular separation of the m
th

  and (m  + 1)
th

 fringe is  m  is small so m ≈ m+1=

For small angles mm  coscos 1  leads to: 
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Therefore the fringes get closer together towards the outside of the pattern. The radius of 

the fringe at m  is  









 

d

m
ff m

2
cos)( 1 

     (7.7) 

 

An alternative method to view fringes is “Centre spot scanning”. A point source or 

collimated beam may be used as the source and imaged on a “pinhole”. Light transmitted 

through the pinhole is monitored as a function of  d or   Fringes are produced of order 

m linearly proportional to d or  , (1/. This also has the advantage that all the available 

light is put into the detected fringe on axis. 

 

7.3 Finesse 
The separation of the fringes is 2 in -space, and the width of each fringe is defined by 

the half-intensity point of the Airy function i.e.  2/1/ 0 II t   when  
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The value of  at this half-intensity point is  
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differs from an integer multiple of 2 by a small angle so we have: 
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The full width at half maximum FWHM is then  
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The sharpness of the fringes may be defined as the ratio of the separation of fringes to the 

halfwidth FWHM and is denoted by the Finesse F 
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So the sharpness of the fringes is determined by the reflectivity of the mirror surfaces. 

[Note: .~
)1(

3
R

F


 checks that the quadratic equation for R has been solved correctly!] 

 

7.4 The Instrument width 
The width of a fringe formed in monochromatic light is the instrumental width:  
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 Inst is the instrument width in terms of the apparent spread in wavenumber produced 

by the instrument for monochromatic light. For on-axis fringes (cos: 
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7.5 Free Spectral Range, FSR 

Figure 7.4 shows two successive orders for light having different wavenumbers,    and  

( )  . Orders are separated by a change in  of 2  The  thm )1(    order of 

wavenumber     may overlap the
thm  order of  ( )    i.e. changing the wavenumber 

by   moves a fringe to the position of the next order of the original wavenumber  . 
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This wavenumber span is called the Free Spectral Range, FSR:  
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Figure 7.4 Fabry-Perot fringes for wavenumber   and  ( )   observed in centre-

spot scanning mode. The m
th

 -order fringe of   and ( )   appear at a slightly 

different values of the interferometer spacing d. When the wavenumber difference   

increases so that the m
th

  order fringe of  ( )   overlaps the (m+1) th   order of    

the wavenumber difference equals the Free Spectral Range, FSR 

 

In figure 7.4 the different orders for each wavelength (wavenumber) are made visible by 

changing the plate separation d. (Because changing d will change ). The phase  can be 

varied by changing  d,   or .  See equation (7.5). In figure 7.3 the different orders for a 

given wavelength are made visible by the range of values of  . If the source emits 

different wavelengths, fringes of the same order will appear with different radius on the 

screen. 

 

7.6 Resolving Power 
The instrumental width may now be expressed as: 
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Two monochromatic spectral lines differing in wavenumber by R  are just resolved if 

their fringes are separated by the instrumental width:  InstR     

 

 
 

Figure 7.5 Resolution criterion: light of two wavenumbers  , R   is resolved 

when the separation of fringes for    and  R   is equal to the instrument width 

Inst . 

  

As in Figure 7.4 the fringes of the same order for each spectral line separated in 

wavenumber by R   could be recorded by varying d or 

The Resolving Power is then given by:  
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Note, F defines the effective number of interfering beams and m is the order of 

interference. 

Alternatively, F determines the maximum effective path difference:  

 

Maximum path difference = (2dcos) × F     and    (2dcosm) 

 

So  

mF


differencepath  Maximum
 

i.e. the Resolving Power is the number of wavelengths in the maximum path difference. 

 



7.7 Practical matters 

 
7.7.1 Designing a Fabry-Perot 

(a) FSR: The FSR is small so F.P.s are used mostly to determine small wavelength 

differences. Suppose a source emits spectral components of width C  over a small 

range S . We will require  .SFSR    This determines the spacing  d  :  Sd
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2
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(b) Finesse (Reflectivity of mirrors). This determines the sharpness of the fringes i.e. the 

instrument width. We require 
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The required reflectivity R is then found from  
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7.7.2 Centre spot scanning 

The pin-hole admitting the centre spot must be chosen to optimize resolution and light 

throughput. Too large and we lose resolution; too small and we waste light and reduce 

signal-to-noise ratio. We need to calculate the radius of the first fringe away from the 

central fringe:  
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 fringe is the central fringe, 0m   and so dm 2 .  The next fringe has angular 

radius:  









 


d

m
2

1cos 1

1


  

The fringe radius in focal plane of lens of focal length f: 11   mm f   

This sets the maximum radius of the pinhole to be used. 

 

 

7.7.3 Limitations on Finesse 

The sharpness of the fringes is affected if the plates are not perfectly flat. A “bump” of 

  in height is visited effectively 10 times if the reflectivity finesse is 10 and thus the 

path difference is altered by   If the flatness is x  it is not worthwhile making the 

reflectivity finesse > .2/x   

 



 

We assumed  )1( RT    i.e. no absorption. In practice, however:  
 

1 ATR  
 

where A is the absorption coefficient of the coatings. The coefficient in equation (8.2) 

modifies the transmitted intensity: 
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Increasing  %100R   means  AR  )1(   and the coefficient in the Airy function:  

0
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T
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i.e. the intensity transmitted to the fringes tends to zero. 

 

  
Instrument function and instrument width 

 

The instrument function is the "mathematical" function that describes the shape of the spectrum produced in 

response to a delta-function or monochromatic input. For example, in the case of a diffraction grating 

spectrometer this is a function made up from a ratio of sine functions: sin
2
(N/2)/sin

2
(/2). This function 

describes the “shape” of the interference pattern i.e. a spectral line.  
   

The instrument width is the “width” of this function defined in some (arbitrary!) way e.g. in the case of the 

diffraction grating we choose the separation of the minima on either side of the peak of each order. The pattern 

produced by a diffraction grating spectrograph consists of lines, sometimes known as spectral lines, that are 

simply images of the entrance slit formed by light of different wavelengths. 

   

 In the case of the Michelson interferometer the instrument does not produce a "spectral line" directly. Rather 

the spectral line has to be calculated by finding the Fourier Transform (F.T.) of the interferogram. For a 

monochromatic input wave the interferogram would be a sine wave going on to infinity! The F.T. and hence the 

instrument function would then be a delta function. In practice however there is a limit to how long the 

interferogram can be - set by the maximum displacement of the mirror. So the interferogram is a sine wave of 

finite length. The instrument function would then be the F.T. of this finite sine wave, - broader than a delta 

function and having some finite width. This function however is rarely used. Instead we usually focus on the 

effective spectral width that the instrument produces for a monochromatic wave -  “the instrument width” - and 

this is found from the inverse of the maximum path difference - in units of reciprocal metres. 

   

So because different instruments produce different shapes of "spectral lines" from their interference patterns 

their instrument functions are different - so it's hard to compare them. Instead we usually refer to the instrument 

width of each type of device - Grating, Michleson or Fabry-Perot etc... as this allows a more practical way of 

comparing their usefulness for resolving spectral lines. 

 



8. Reflection at dielectric surfaces and boundaries 
 

8.1 Electromagnetic waves at dielectric boundaries 
Maxwell's equations lead to a wave equation for electric and magnetic fields  HE,  :  
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Solutions are of the form:  
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 From Maxwell's equations we also have:  
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where n is the refractive index of the medium and  
o

o




 is the impedance of free space. 

The constants r and r characterise the response of the medium to the incident electric 

field. In general they are represented by complex tensors. This is because they affect the 

amplitude and phase of the light wave in the medium and the tensor nature reflects their 

dependence on the vector nature of the fields and the symmetry of the medium in which 

they propagate. For the time being we will consider only linear isotropic homogeneous 

(LIH) media and use scalar quantities for the relative permeability r and permittivity r. 

In these cases the refractive index is then also a scalar quantity. 

 

8.1.1 Reflection and transmission at normal incidence 
When a wave is incident on a boundary between two different media the change in 

electrical and magnetic response amounts to a change in impedance to the travelling 

wave. At such impedance boundaries some of the wave energy is reflected and the rest 

transmitted. We consider first normal incidence i.e. the angle between the propagation 

direction k and the normal to the surface separating the two media is 0
o
. In this case there 

is symmetry with respect to the axis of propagation: the response will be the same no 

matter what the direction of the electric field E (the magnetic field H is orthogonal to 

both E and k.) Thus the vector nature of the fields may be ignored in this case. When, 

however, the wave is incident obliquely at a boundary, the symmetry is broken and the 

direction of the E and H fields must be considered i.e. we must take account of the vector 

nature of the fields and we will deal with this case later.  

 

At any boundary the fields must satisfy boundary conditions that are determined by 

conservation laws for the electro-magnetic fields. The case of normal incidence at the 

interface of two media of different refractive index n1 and n2 is illustrated in figure 8.1. 



 
 

Figure 8.1 Reflection of an electromagnetic wave incident normally from medium of 

refractive index n1  on a medium of index n2 

 

Boundary conditions demand that the perpendicular component of D is continuous and 

the tangential components of  E and  H are continuous. Incident and reflected electric 

field amplitudes are E1 and '

1E  respectively. Considering the boundary conditions for 

both E and H allows us to calculate the ratio of the incident and reflected amplitudes: 
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The intensity reflection coefficient is therefore:  
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For an air/glass interface ( 5.12 n ), R ~ 4%. 

 

8.2 Reflection properties of dielectric layers. 
The reflection at a dielectric boundary may be thought of as arising from an impedance 

mis-match. The larger the mis-match the larger the reflected proportion of the incident 

energy. The possibility arises of using two boundaries with intermediate mis-matches to 

generate two reflected waves. If the mis-matches can be arranged to give approximately 

equal amplitude reflected waves it may be possible to arrange their relative phases to 

produce destructive interference for the backward travelling waves i.e. an anti-reflection 

device.  

 

8.2.1 Reflection properties of a single dielectric layer. 
Consider a wave incident from air, refractive index no , on a dielectric layer of index n1 

deposited on a substrate of refractive index nT . See figure 8.2. Eo, Ho  are incident 

electric and magnetic wave amplitudes respectively in the air, and '' , oo HE  the reflected 

amplitudes; 11 , HE  and '

1

'

1 , HE  are incident and reflected amplitudes in the dielectric 

layer and ET is the amplitude transmitted to substrate. The wave vectors are ki. 
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Figure 8.2 Reflected and transmitted waves for a wave incident normally from medium 

of index no on a dielectric layer of thickness  , index n1 on a substrate of index nT. 
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At boundary (b), E1 has acquired a phase shift owing to propagating across the thickness 

 of the layer:  
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Eliminating E1 and '

1E  from (8.2), (8.4), (8.5) and (8.6): 
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We find:  

n2

Eo

ET

E1

Eo E1

.no
.n1

..nT

ko
.k1

.k1
ko

.kT



(a) (b)



TToo

TToo

o

o

DnCnBnAn

DnCnBnAn
r

E

E








   (8.10) 

and  

TToo

o

o

T

DnCnBnAn

n
t

E

E




2
   (8.11) 

 

Now consider the case when 4/ , a quarter-wave layer;  2/1 k : 
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For  2/   a half-wave layer;  :1 k  
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Note that for a half-wave layer the refractive index of the layer does not appear in the 

reflectivity and the result is the same as for an uncoated surface. (This effect is similar to 

that of a half-wave section of a transmission line.) 

 

An anti-reflection (AR) coating can be made i.e. one that minimizes the reflection by 

selecting a dielectric material such that 02

1  nnn To
 from equation (8.12). This requires 

2
1 Tonnn   . For an air/glass boundary this is not possible, the closest we can do is to 

have n1 as low as possible e.g. MgF2  has  n1 = 1.38 giving R ~ 1%.  Improved AR 

coatings are made using multiple layers. Coatings may also be made to enhance the 

reflectivity i.e high reflectance mirrors. 

 

 

 

 

Figure 8.3 Anti-reflection 

dielectric coatings. A single 4/
layer can reduce reflection from 

4% to ~1%. Further reduction 

at specific wavelength regions is 

achieved by additional layers at 

the expense of increased 

reflectivity elsewhere. This 

enhanced reflection at the blue 

and red end of the visible is 

responsible for the purple-ish 

hue or blooming on camera or 

spectacle lenses. 
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8.2.2 Multiple dielectric layers: matrix method. 
Write equations (8.7) and (8.8) in terms of r, i.e. 

oo EE '  and t, i.e. 
oT EE    
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or in matrix form:  
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The characteristic matrix is    
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The characteristic matrix for a   layer of index nm  is  
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A stack of N layers has a characteristic matrix:  

 

NStack MMMMM .......321     (8.17) 
 

 
 

Figure 8.4 Multiple quarter-wave stack 

 

8.2.3 High reflectance mirrors 
A stack of 2 dielectric layers of alternate high and low index nH, nL, respectively has the 

matrix:  
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N such pairs has a 22   matrix, N

HLM  from which we find the values of  A, B, C and D.   
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Hence from equation (8.10) we find the reflectivity of the composite stack: 
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8.2.4 Interference Filters 
A Fabry-Perot etalon structure may be constructed from two high reflectance stacks 

separated by a layer that is  or an integer multiple of   The half-wave layer(s) acts 

as a spacer to determine the Free Spectral Range, FSR. The FSR will therefore be very 

large such that only one transmission peak may lie in the visible region of the spectrum. 

This is an interference filter. Narrower range filters may be made by increasing the spacer 

distance and increasing the reflectance. Extra peaks may be eliminated using a broad 

band high or low pass filter. 

 

 
 

Figure 8.5 Interference filter constructed using multiple dielectric layers consisting of 

two high-reflectance stacks separated by a  layer which acts as a spacer in the 

Fabry-Perot type interference device. The spacer may be made in integer multiples of 

2/  to alter the FSR.  

 

8.3 Reflection and transmission at oblique incidence 
We now consider the more general case of a light wave striking a dielectric boundary at 

an angle of incidence  that is not 90
o
. We define the plane of incidence as that plane 

containing the wave propagation vector k and the normal to the dielectric boundary. This 

is illustrated in figure 8.6. The incident wave has the form: )/(

0

cnrtieE  , where r is the 

distance along the propagation axis OP. In general the electric field vector E can lie at 

any angle around the wave vector k. However we can always resolve this vector into two 

components: one lying in (i.e. parallel to) the the plane of incidence, EP, and one 

perpendicular to this plane, ES. [A light wave with its E-vector parallel to the plane of 

incidence is known as p-polarized light. When the E-vector is perpendicular to this plane 

it is s-polarized, from the German senkrecht meaning perpendicular.] The H-vectors will 

be perpendicular to the respective E-vectors in each case.  

 

.nT.nH.nH
nL .nH

nL nL
.nH

.nH
.nHnL nL





 
 

Figure 8.6 Wave with electric field E incident at oblique angle of incidence   from 

dielectric with refractive index n1 to dielectric with index n2. The electric field E has a 

component EP parallel to the plane of incidence and ES perpendicular to the plane of 

incidence. 

 

8.3.1 Reflection and transmission of p-polarized light 
We consider first the case of p-polarized light. This is represented in figure 8.7 in which 

the plane of incidence (the x-z plane) is the plane of the paper. The incident, reflected and 

transmitted E-fields all lie in this plane and are denoted PPP EEE 211  and  ,


respectively, lying 

respectively at angles  2 and  to the normal or z-axis.  

 

              Figure 8.7 

 

The boundary conditions require: 
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and the H-field components out of the paper are: 
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Since these conditions are obeyed at all times the exponential terms must be identical. 

Hence, 

 

  21  

    sinsin 21 nn  ,                                (8.22) 

 

i.e this is Snell’s law for reflection and refraction. 

 

From section 8.1 we can write nEH  and the boundary conditions then become, 
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From this we find, using Snell’s law (8.22), 
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8.3.2 Reflection and transmission of s-polarized light 
When the light is polarized such that the E-vector is perpendicular to the plane of 

incidence the H-fields will lie in this plane as shown in figure 8.8.  

 

 

    

 

 

 

 

 

 

 

 

 

    Figure 8.8. The E-vectors are out of the 

plane  

    of the figure 

 

 

 

Following the same procedure, using the boundary conditions on E and H we find the 

following relationships between the incident, reflected and transmitted amplitudes, 
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Equations (8.23), (8.24), (8.25) and (8.26), are the Fresnel Equations. [non-examinable] 

They allow us to predict the reflection and transmission coefficients for light of various 

polarizations incident on a dielectric surface i.e. a boundary between two different 

dielectric media such as air and glass. 

 

 

 

Figure 8.9 Intensity reflection coefficients for s-polarized and p-polarized light as 

function of incidence angle from air to glass. The dashed line is the average and 

represents the behaviour for unpolarized light. 

 

The Fresnel equations show that the reflection coefficients for both s- and p-polarized 

light vary with angle of incidence as shown in figure 8.9 

 

8.4 Deductions from Fresnel’s equations 

8.4.1 Brewsters’ Angle 

The amplitude reflection coefficient, r, is given for p-polarized light by equation (8.24), 
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We can see that as )(  

 

approaches /2, r will tend to zero [  )tan(  ]. In the 

limit 2)(   , then  sincos  . The angle of incidence at which this condition is 

satisfied is known as Brewster’s angle B  and, from (8.22), 
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Thus for p-polarized light incident at angle B  there will be no reflected wave.  

Another consequence of this is that unpolarized light, which consists, as we will see later, 

of waves with E-vectors varying randomly in all possible orientations, will become plane 

polarized with its E-vector perpendicular to the plane of incidence. This is because any E-

vector may be composed of s- and p-polarizations and only the s-polarization will be 

reflected. An important application of Brewster’s angle is in enabling p-polarized light to 

suffer no reflection losses when passing through a glass window. This is very useful for 

minimizing reflection losses at window surfaces for intense laser light.  

  

8.4.2 Phase changes on reflection 

We first consider the predictions of the Fresnel equations for normal incidence. For  = 0, 

using (8.22) we find,
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Similarly we find,        (8.24a)                                                  
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There appears to be a discrepancy between the equations for the reflected light polarized 

in orthogonal planes, (8.24a) and (8.26a) since, at normal incidence, the two planes are 

indistinguishable, yet they have opposite signs! The sign discrepancy arises because we 

have taken the incident and reflected fields, , and 11

PP EE


to be in the opposite directions 

(see figure 8.7). Assuming  2n > 1n and since the ratio PP EE


11 / is positive, our theory 

predicts that there is a phase shift of  in the reflected E-vector relative to the incident 

wave. Note that as the incident and reflected H-vectors are in the same direction there is 

no phase shift of the H-field. In the case of the s-polarized E-vectors in figure 8.8, they 

are both perpendicular to the plane of the paper but in opposite directions i.e. 

corresponding to a -phase shift. 

In the case  2n <  1n  there is no phase shift in E but a -phase shift occurs in the H-

vector. In both cases there is no phase shift in the transmitted wave. 

 

8.4.3 Total (internal) reflection and evanescent waves 

When a wave is incident from a medium of index  2n obliquely on a less dense medium, 

index  ,1n as shown in figure 8.10, we know that if the angle of incidence exceeds a 

critical value ,crit given by  ,sin 21

1

crit nn then the wave is totally reflected. In this 

case the angle  in the less dense medium is an imaginary quantity, leading to phase 

shifts that lie between 0 and  and are different for E and its corresponding H. The 

analysis is tedious and off-syllabus (thankfully!) but leads to the following predictions. 

1. The amplitude of the reflected beam and incident beams are equal – total reflection. 

2. There is a transmitted beam with the following characteristics: 

(a) its wave velocity is v1/sin  

(b) it travels parallel to the interface 

(c) its amplitude decays exponentially with distance perpendicular to the surface  

(d) it is neither a plane nor a transverse wave – it has a component along the surface 

(e) its Poynting vector is zero. 

 

 

 

 

 

 

 

Figure 8.10 Internal reflection, the 

evanescent wave is shown as dotted lines 

 



 

When a wave is incident from a medium of index  2n obliquely on a less dense medium, 

index  ,1n as shown in figure 8.10, we know that if the angle of incidence exceeds a This, 

slightly mysterious, transmitted wave is known as an evanescent wave. Its presence can 

be detected by bringing another dielectric, say of index also ,2n close to the surface as 

shown in figure 8.11.

  

      Figure 8.11Frustrated internal reflection 

 

When a wave is incident from a medium of index 2n obliquely on a less dense medium, 

index  ,1n As the gap between the two dielectrics of index 2n gets smaller (of the order of 

a few wavelengths) a transmitted wave appears simultaneously with a weakening of the 

reflected wave. This effect arises because there is a reflection from the second 21 / nn

boundary which destructively intereferes with the reflected wave from the first boundary. 

This effect – optical tunnelling – is the wave equivalent of quantum mechanical 

tunnelling of particles through a potential barrier. The effect, known as frustrated total 

internal reflection, finds application in a type of microscopy in which the surface layer of 

biological samples are excited by evanescent waves. Since these penetrate only a short 

distance, of the order of 100 nm, fluorescence is induced only in those molecules lying in 

this thin layer. The fluorescence image is then no longer swamped by the fluorescence 

from the bulk of the sample that would otherwise overwhelm the signal from the surface 

layer.

  

    

 

 

 

 

 

 



9. Polarized light 
 

The polarization of light refers to the direction of the electric field vector E of the wave. 

There are three options for E in the case of polarized light: 

 

(1) its direction and amplitude remains fixed in space - linear polarization, 

(2) its direction rotates at angular frequency  about the direction of propagation and the 

amplitude remains constant - circular polarization 

(3) its direction rotates at angular frequency   and its amplitude varies between a 

maximum and minimum during each complete rotation - elliptical polarization. 

 

For propagation in the x- direction the vector E may be resolved into two orthogonal 

components Ey and Ez.  Each of the three polarization states is thus characterised by a 

fixed phase relationship between these components. If the phase is randomly varying the 

light is said to be unpolarized. 

 

9.1 Polarization states 
An electromagnetic wave travelling in the positive x direction has an electric field E with 

components Ey and Ez. 
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where  is a relative phase. The light is polarized when  is a constant. 

 

 
Figure 9.1 Electric field vector in light wave has components Eoz  and Eoy  in plane 

orthogonal to propagation direction along x-axis 

 

Case 1: Linearly polarized light, 
  The components are in phase. The resultant is a vector EP : 
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Case 2: Circularly polarized light,  2/   

  Consider 2/   and 
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Figure 9.2 Right circularly polarized light propagating in the positive x-direction. 

 

The tip of the  E-vector rotates at angular frequency  at any position x on the axis, and 

rotates by 2  for every distance  along the  x-axis. What is the direction of rotation? 

Consider position oxx   and time t = 0. 

)sin(

)cos(

0

0

kxEE

kxEE

oz

oy




 

The vector is at some angle 

At position oxx   and time /okxt  : 
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As viewed back towards the source the E-vector has rotated clockwise.  See figure 9.3. 

This is Right Circularly Polarized light (). Right circularly polarized light 

advances like a Left-handed screw! 
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Figure 9.3 Direction of circular polarization is determined by looking back towards the 

source. (a) and (b) show E-vector at a point  x = xo  at time t = 0,  and a later time 

/okxt  .  In this case the E-vector has rotated clockwise and is denoted Right 

Circularly Polarized. 

 

Conversely, 2/   is Left Circularly Polarized light: viewed towards the source the 

E-vector rotates anti-clockwise. Thus the E-vector for right and left circular polarization 

is written: 
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Note that a linear superposition of ER and EL and gives linear or plane polarized light.  
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Figure 9.4 Plane polarized light is a superposition of a right- and a left-circularly 

polarized component. 
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If the components are of unequal amplitude then the resultant traces out an ellipse i.e the 

light is elliptically polarized.   

 
 

Figure 9.5 A superposition of right- and left-circularly polarized components of 

unequal magnitude gives elliptically polarized light. 

 

Case 3: Elliptically polarized light. 

  In general there is a relative phase  between y and z components. From (9.1):  
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Writing  
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Substitute in (9.8) using  
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So for 2/   
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This is the equation for an ellipse with  
ozoy EE ,   as the major/minor axes, i.e. the ellipse 

is disposed symmetrically about the y / z axes. 

For 2/   the axes of symmetry of the ellipse are rotated relative to the y / z axes by  

an angle see box below for derivation]: 

 cos22tan
22

ozoy

ozoy

EE

EE


     (9.11)

  

EL

ER



  
Equation of ellipse describing E-vector for polarized light:          0sincos
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Where  is the phase shift of 
ozE  relative to 

oyE .  
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we can represent this ellipse graphically in the figure:                   

 

The ellipse is at an angle  to the z-axis and 
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when the point R on the ellipse is at the major axis. 

We find the the major axis by finding the maximum value of 222 REE zy  . Differentiating this equation and 

setting the result equal to zero for maximum: 
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Comparing coefficients in equations (2) and (3):  
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Figure 9.6 Elliptically polarized light (a) axes aligned with y, z  axes, (b) with axes at 

angle   relative to y,z  axes. 
 

As  varies from 20   the polarization varies from linear to elliptical and back to 

linear. Thus we may transform the state of polarization between linear and elliptical or 

vice-versa by altering the relative phase of the two components. This can be done using a 

material that has different refractive index for two different directions of polarization i.e. 

a birefringent material. 

 

 
 

Figure 9.7 General elliptical state of polarization for different values of relative phase 

 between the components. 

 

9.2 Optics of anisotropic media; birefringence. 
Firstly; some background information that is not specifically on the syllabus, but is 

interesting/useful to know about. The optical properties of a material are determined by 

how the electric field D inside the medium is related to an electric field E incident “from 

outside”.  

ED ro  

The permittivity r  is a tensor: the components of D and E are related by: 
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   (9.12) 

 

The permittivity r  of the medium is equal to the square of the refractive index, n
2
  [Note 

that the permittivity tensor matrix has been diagonalized here for simplicity i.e. we have 

chosen to represent it by components YX  ,  and Z  specifying its value along the axes 

of symmetry.] 
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An isotropic medium is represented by  

)(    2nZYX    

A particular type of anisotropic medium is represented by  

ZYX    

Hence there are, in this type of material, different values of refractive index for light with 

its E vectors along different axes:  
222

ZYX nnn   

Now begins the stuff you need to know! 

 

We will be concerned only with uniaxial, anisotropic materials i.e. crystals that have two 

characteristic values of refractive index i.e. birefringent. We identify 3 orthogonal axes in 

a crystal: x, y and z. If a ray of light is polarized such that the E-vector lies in the xy-plane 

it experiences a refractive index no.  [i.e. oYX nnn  ] . Note that the ray may propagate 

in any direction and, provided its E-vector lies in the  x,y-plane, it will “see” the 

refractive index no.  Such a ray is called an ordinary ray or o-ray.  no is the ordinary 

index. 

If the ray is polarized with the E-vector parallel to the z-axis (i.e. it propagates in the x,y-

plane) it experiences a refractive index ne, the extra-ordinary index and is the 

extraordinary ray or e-ray. 

Note that if a ray propagates along the z-axis, its E-vector must lie in the  x,y-plane and it 

will be an  o-ray. In this case the direction of the E-vector, i.e. its polarization direction, 

makes no difference to the refractive index. Thus the z-axis is the axis of symmetry and is 

called the  

Optic Axis. This is the only axis of symmetry and the crystal is uniaxial. 

 

uniaxial negative           uniaxial positive    oeoe nnnn   

 
Figure 9.8 (a) positive and (b) negative uniaxial birefringent crystals. 

 

The difference in refractive indices characterizes the degree of birefringence.  
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The wave front of an  o-ray is spherical whereas the wave front of an  e-ray is elliptical.   
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9.3 Production and manipulation of polarized light 
At the end of section 9.1 it was noted that the polarization state of a wave may be 

modified by changing the phase factor This can be done using a crystal cut with 

parallel faces normal to the  x-axis i.e. such that the y,z- plane lies in the faces. A linearly 

polarized wave travelling in the  x-direction in general will have components Ey, Ez  along 

y, z axes which experience refractive  

indices no and ne respectively. After traversing a length  of the crystal a relative phase 

shift between the two components will be introduced:  
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For a given birefringent material the value of   will be determined by the length  .  

 

Input polarization: Ey, Ez in phase: Linear 

Output polarization: phase shift, :  Elliptical 

 

The form of elliptical polarization created from a linearly polarized input depends on the 

value of  and angle of input polarization direction relative to the optic axis (z-axis) 

 

Angle of linearly 

polarized input 

Phase shift introduced 

by birefringent plate 
Output polarization 
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2

/     (Quarter-wave,   

plate) 
Left/Right Circular 

 

o45    ( )zy EE   
2

/     (Quarter-wave,    

plate) 

Left/Right Elliptical 
 

o45    ( )zy EE     /   (Half-wave,    plate) 

Linear, plane rotated by 

2
 

Note: a quarter-wave plate may be used to convert linear to elliptical or vice versa. 

Note: Hecht section 8.4.2 Birefringent Crystals (3
rd

 Ed. p 342, 2
nd

 Ed. p 288), defines what he means by 

positive and negative uniaxial crystals. 

n = (ne –no) 

 

This will be negative if ne < no and positive if ne > no. This is exactly the same as the definition used here  

 

Note that figure 9.8 of the notes is not showing the same thing as Hecht’s figure 8.24 (8.28 in 2
nd

 Ed). 

These notes show the “refractive index surfaces,” Hecht is showing the wavefront of the ordinary and extra-

ordinary waves. 

 

In the paragraph above figure 9.8 we are talking about the direction of the E-vector. When the E-vector lies 

in the x,y plane it is an ordinary ray. The refractive index is given by the distance from the origin to the 

surface. For the o-ray this will be no and will be the same irrespective of the direction of the wave 

propagation.  

If the E-vector lies along the z-axis the refractive index for this ray (the e-ray) is given by the distance from 

the origin to the intercept of the z-axis with the elliptical surface and will be ne.  

Note that if the E-vector lies at an angle to the z-axis the distance to the surface giving the refractive index 

is nex as shown in the figure 9.8(a). You can see that nex will take a value lying between ne and no.  

 

 



 

 

 
 

Figure 9.9 Action of a -plate with axis at   to E-vector of plane polarized light 

shifts phase of one component; Ey  by   relative to original phase resulting in a 

rotation by 2  of the resultant E-vector.  
 

Polarized light may be produced from unpolarized light using: 

 

(a) Fresnel reflection at Brewster's angle. 

(b) “Polaroid-type” material: crystals (tourmaline) in a plastic matrix absorb one 

component. 

(c) Birefringent prism: o-rays and  e-rays have different refractive indices so different 

angle of refraction and different critical angles c  . Prism may be cut so that beam strikes 

angled face at incidence angle i  where ci    for o-ray and ci    for e-ray (or vice 

versa.) Deviation may be compensated by use of a second prism. 

 

 
Figure 9.10 Prism polarizers 
                                        

9.4 Analysis of polarized light 
The general state of light polarization is elliptical. Linear and circular polarizations are 

special cases of elliptical; 0   and 2   (with  Eoy = Eoz = Eo) respectively. 

Linear polarization is also a linear superposition of right and left circularly polarized 

components of equal amplitude. The state of polarization is specified by two parameters: 

the ratio of  Eoy / Eoz, or tan,  and the phase angle . (see figure 9.6) The following 

method may be used to specify the state by determination of these parameters. 
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(i) Pass the light through a linear polarizer. Rotate linear polarizer to determine 

approximately the orientation of the major/minor axes of ellipse – this will be 

the angle at which a maximum and minimum transmission is obtained. 

 

(ii) Set linear polarizer for maximum transmission. Remember that if the 

coordinate axes are chosen to coincide with the principal axes of the ellipse 

there is then a phase difference of 2/   between the components. 

 

(iii) Insert a -plate before the linear polarizer. (The axes of the -plate will be 

known.) Align axis of -plate with approximate ellipse axis. If it is exactly 

along the axis then linearly polarized light will result. 

 

(iv) Rotate linear polarizer to check for complete extinction. 

 

(v)  Iterate orientation of -plate and linear polarizer to obtain total extinction. 

The -plate is now at angle  to reference axes. The position of total 

extinction specifies the orientation of the linearly polarized E-vector. The 

angle between this vector and the axis of the -plate is  The ratio of the 

E-vector components is tan 
 

 

Thus the ratio Eoy/Eoz  and the orientation of the ellipse is determined, the components of 

the E-vector relative to the axes y’, z’ at this orientation have a relative phase, 2/  . 

 

 
Figure 9.11 (a) Elliptically polarized light with axes at arbitrary angle. (b) Linearly 

polarized light produced from (a) using  - plate aligned with  y’, z’  axes. Ellipticity 

is found from tan. 

 

Any given state of elliptically polarized light may be converted to any desired state of 

elliptical polarization using a sequence of 4/ -plate,  2/ -plate,  4/ -plate. 

First 4/ -plate is adjusted to give linear polarization at angle set by original elliptical 

axes. Axis of 2/ -plate set at  relative to E-vector to rotate it by 2  (  is chosen to 

produce the desired orientation of linear polarized light). Second 4/ -plate is rotated 

relative to E-vector of the linearly polarized light to achieve elliptical polarization. 
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9.5 Interference of polarized light.   
(a) Orthogonally polarized waves do not interfere. The basic idea of wave interference is 

that waves interfere with themselves not with each other. A dipole source e.g., an atom, 

cannot emit simultaneously two orthogonally polarized waves. Thus two orthogonally 

polarized waves cannot have come from the same source, are not in phase and so cannot 

interfere. A linearly polarized wave from an atom may be resolved into two orthogonal 

components that are in phase and so may interfere if their planes of polarization are made 

to be the same e.g. one component is rotated by a  2/  -plate to be parallel to the other.  

 

(b) Unpolarized light has randomly varying plane of polarization. Interference occurs, for 

example in a Michelson, because each wave train (photon!) is split into a pair at the beam 

splitter. Each one of the pair has orthogonal components say  Eoy and  Eoz. The y-

component of one of the pair interferes with the  y-component of the other one of the pair. 

Likewise the  z-components of the split wave interfere to give the composite interference 

pattern. Thus uncorrelated randomly polarized waves from uncorrelated atoms still 

produce an interference pattern. 
 

 
 

Figure 9.12 Interference of polarized light in a two-beam (Michelson) interferometer A 

and B are linear polarizers i.e. pass only light polarized in directions shown. 

Unpolarized light from the source is split at the beam splitter. 

(a) Light in paths A and B are orthogonally polarized; no interference.  

(b) Linear Polarizer C at 45
o
 produces phase-correlated components passed by A and 

B. The components are however orthogonally polarized and so do not interfere. 

(c) Linear polarizer D at 45
o
 transmits phase correlated components from polarizer C 

that are parallel and so interference is produced. 
 

Note that unpolarized light cannot be fully coherent and so cannot be perfectly 

monochromatic. Random variation in the plane of polarization results in random variation 

of amplitude along a given axis. This amplitude modulated wave contains extra Fourier 

components (frequencies) and so is therefore not monochromatic or fully coherent. 

 

These effects are also observed at very low intensities corresponding to a stream of 

isolated single photons. The wave function for the photons may give probabilities for 

their being in superpositions of orthogonal states. These, and similar effects form the 

basis of Quantum Optics … but that is another story. 
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