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Atomic Physics:
 Astrophysics

* Plasma Physics

« Condensed Matter

* Atmospheric Physics
« Chemistry

* Biology

Technology

 Street lamps

* Lasers

» Magnetic Resonance Imaging
« Atomic Clocks

 Satellite navigation: GPS

* etc
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Lecture 1

* How we study atoms:
— emission and absorption of light
— spectral lines

« Atomic orders of magnitude

 Basic structure of atoms
— approximate electric field inside atoms
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YV,
Atomic radiation /\

P(t)

V,

\V(t) =y, TV,

~

Y(t+1)

P ()12

W (t + 1)

Oscillating charge cloud: Electric dipole
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Spectral Line Broadening

Homogeneous e.d.

Lifetime (Natural)
Collisional (Pressure)

Inhomogeneous e.q.

Doppler (Atomic motion)

Crystal Fields
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Lifetime (natural) broadening

N ()
E(1)

Number of excited atoms
Electric field amplitude

Fourier
Transform

l(®)

Intensity spectrum

LS

Time, t

Exponential decay

frequency, o

Lorentzian lineshape
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Lifetime (natural) broadening

Number of excited atoms Intensity spectrum
Electric field amplitude
N(t) l(w)
E(1)
T~ 108 =——
Time, t frequency, o
Exponential decay Lorentzian lineshape
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Collision (pressure) broadening

Number of uncollided atoms Intensity spectrum
N(t) 1(a)
Time, t frequency, o
Exponential decay Lorentzian lineshape
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Collision (pressure) broadening

Number of uncollided atoms Intensity spectrum

N(t) ()

Time, t frequency, o

Exponential decay Lorentzian lineshape
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Doppler (atomic motion) broadening

Distribution of atomic speed Doppler broadening
N(V) 1(a)
atomic speed, v frequency, o
Maxwell-Boltzmann Gaussian lineshape
distribution

Typical Av~ 10° Hz
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Atomic orders of magnitude

Atomic energy: 1019 —» ~2 eV
Thermal energy: Y, eV
lonization energy, H: 13.6 eV

= Rydberg Constant 109,737 cm-l
Atomic size, Bohr radius: 5.3 x 10*m
Fine structure constant, o« =v/c: 1/137
Bohr magneton, u;:  9.27 x 1024 JT
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The
Central }
Field

U(r)

Potential
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region

~7 : Important

Radial position, r
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Lecture 2

* The Central Field Approximation:
— physics of wave functions (Hydrogen)

« Many-electron atoms
— atomic structures and the Periodic Table

* Energy levels
— deviations from hydrogen-like energy levels
— finding the energy levels; the quantum defect
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Schrodinger Equation (1-electron atom)

2
_ in,l/} _

2m

7 e?
dregr

) = B

Hamiltionian for many-electron atom:

N
A h2 7 2 o2
H = V7 —

— ( 2m ' 47T60fr¢> * Z dmeoris

1= 1>

_— 1

Individual electron potential| | Electron-electron interaction
in field of nucleus

This prevents separation into
Individual electron equations




Central potential in Hydrogen:
V(r)~1/r,

separation of iy into radial and angular functions:

y =R(NY"(0,9)x(My)

Therefore we seek a potential for multi-electron atom
that allows separation into
iIndividual electron wave-functions of this form
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Electron — Electron interaction term:

2

>
A4 €0

Treat this as composed of two contributions:
(a)a centrally directed part
(b)a non-central Residual Electrostatic part

~=
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Hamiltonian for Central Field Approximation

H = Hy+H @
A W2, Central Field
where HU — Z 2”1v + (]( ) Potential
_ 2 -,
. e A
al _1 H — — U r;
e g dmegr;; Z {471'(:01*3- +UG )}
1> 7

N\

H, = residual electrostatic interaction

Perturbation Theory Approximation:
Hl << Ho
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Zero order Schrodinger Equation:

Hy w=E, v

N
H, Is spherically symmetric so equation is separable -
solution for individual electrons:

’Zg'f:,?(n-? [,my, '?'?'2,-5) = I, [( )an (9 (D) (Tn's)

-~ t N\
Radial Angular Spin
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Central Field Approximation:

ﬁ | ]—3 ' L
where HEI _ Z { {)1” Tf -+ [ [-,‘r'.z' }}
. —Jr .
i

What form does U(r;) take?
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Hydrogen atom

Z
Q
Many-electron atom

Z protons+ (Z — 1) electrons Z protons

U(r) ~ 1/r U(r) ~ Zir




The
Central }
Field

U(r)

Potential
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region

~7 : Important

Radial position, r
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Finding the Central Field

* “Guess” form of U(r)

» Solve Schrodinger eqn. — Approx .

» Use approx y to find charge distribution

» Calculate U_(r) from this charge distribution
« Compare U_(r) with U(r)

» Iterate until U, (r) = U(r)
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£,

Energy eigenvalues for Hydrogen:
by = <U?LZJ?1 I H

Wi l.my >
Z%me*

(7€) 2h2n?
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l= 0 1 2
0 S P d
H Energy level
diagram
Energy X
En, = <r"-'.5'j?-;rz..£.m¢ H ‘ "f.i":"-;ra.,f.nz;>
B Z*me*
- (47eg)? 2h2n?2
Note degeneracy in|
-13.6 eV
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Revision of Hydrogen solutions:

Product wavetunction: "Z.-i"flf’?'z,-,[._m..;_ ("7‘, 0, ()) — -R-n._l (,.},)YZ"T?-E (9 ())
Spatial x Angular function

Normalization / R2 (r)r2dr = 1 / Y0, @) d0 - 1

n,l

Y™ (8, o). Eigenfunctions of angular momentum operators

~

lzyv[mf (9 ()) — [([ + l)hgylmf (9 ())
LY(0,0) = mhY™" (0. ¢)

Eigenvalues [=0,1,2...(n— 1) — [ <my <1
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Angular momentum orbitals

\ACE
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Angular momentum orbitals

shell

Spherically
charge clou

>
¢ 4

\ACE

ric
/lled
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Radial wavefunctions

2 4 1.03
14 0.5-
/ — L] ~ — - - _
T T T > \|/|_?_1—>
2 4 6 Zr/a, 2 4 6 8 7r/a 10
Ground state,n=1,1 =0 1st excited state,n=2,1= 0 ———
N=2[]=1 ==
A

n=31=1 = =—-
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Radial wavefunctions

| = O states do not vanishatr =0
[+ ( states vanish at r =0,
and peak at larger r as | increases
« Peak probability (size) ~ n?
| = 0 wavefunction has (n-1) nodes
* | =1 has (n-2) nodes etc.
* Maximum I=(n-1) has no nodes

Electrons arranged in “shells™ for each n
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The Periodic Table

Shells specified by n and | guantum numbers

H: s
He: 12 9 Electron

Li: 152 28>  configuration
Be: 1s? 2s%2p
C:  1s?  2s%2p?

1 .- a2 )
Ne: 1s* 2s22p°

4 s T ) ‘
Na: 1s? 2s?2p®  3s
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The Periodic Table

b 4 oy 3 .r . ;
K:  15%2s22p° 3523p°  4s

- . 2
Ca: 4s

The 3d shell now begins to fill

- 1 2 D B L 3 6 1.2
Sc: 1s%2s%2p® 3s23p®3d 4s

T § '_:}. 3 § " F 2
Va:  3s23p% 3d%4s
Cr: 3¢

/ P = )
Mn: 3d”4s=
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The Periodic Table
Rare gases

He: 152

Ne: 15225%2p°

Ar: 1522s22p®3s23p°
Kr: (...)4s%4p"

Xe: (.....)5s°5p°




The Periodic Table
Alkall metals

Li: 1s22s

Na: 15°25%2p°3s

Ca: 1522s22p®3s23pb4s
Rb: (...)4s°4p®5s

Cs: (.....)5s%5p%6s
etc.
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H Energy level
diagram

Energy:

E, = <?.-"'i"-;r1..£.:rn; H "3.—-'";’-;r1..£.:rn;>
Z?me*

(47€q)? 2h2n?2

Energy

-13.6 eV

Note degeneracy in|
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= 0 1 d2 ! Hydrogen
S P : .
Na Energy level Al o ey
diagram 5s O
4p -
4s 3 ' 3 1.51
Energy: 3p———
- R
= e
Note no degeneracy in|
nN*=n - 5| —
— Quantum defect
33 - 514
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Absorption spectroscopy

Atomic

Vapour Spectrograph

O

White
light
source

Absorption
spectrum
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Finding the Energy Levels

Hydrogen Binding Energy, Term Value Tn — B
N2

= R .
(n—&(1))*

Many electron atom, Tn

6(|) Is the Quantum Defect
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Finding the Quantum Defect

1. Measure wavelengthA of absorption lines

2. Calculate: v=1/Xx
3."Guess" ionization potential, T(n,) i.e. Series Limit
4. Calculate T(n,):
Vi=T(no) - T(n)
5. Calculate: n*or O(l)

T(ny= Rin-8()°

0 ++_,_ s Quantum defect plot
A() ) AT . A S
RS T
-+
+

T(n)
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Lecture 3

 Corrections to the Central Field

« Spin-Orbit interaction

* The physics of magnetic interactions

 Finding the S-O energy — Perturbation Theory
* The problem of degeneracy

* The Vector Model (DPT made easy)
 Calculating the Spin-Orbit energy

* Spin-Orbit splitting in Sodium as example
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The
Central }
Field

U(r)

Potential
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Corrections to the Central Field

* Residual electrostatic interaction:

- Z i)
lf‘[}f;; { ll’_[}f

« Magnetic spin-orbit interaction:

o=y

P>

N\

H2 — 'H-Eorbit
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Magnetic spin-orbit interaction

* Electron moves in Electric field of nucleus,
so sees a Magnetic field B,

* Electron spin precesses in B_,,;; with energy:
-1..B which is proportional to s.1

* Different orientations of s and | give different
total angular momentum =1 +s.

* Different values of j give different s.I so have
different energy:

The energy level is split for | + 1/2
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Larmor Precession

Magnetic field B exerts a
torgue on magnetic moment u
causing precession of u

and the associated

angular momentum vector A

The additional angular velocity
® changes the angular velocity
and hence energy of the
orbiting/spinning charge

AE =-uB
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Spin-Orbit interaction: Summary

x K 1 @ 3 — ! ‘E‘/
B 2 B = mr-zg s 7| = mc2 7| =
_ dolr) 10U(r)
E| = O E| = e O
1 1 0U(r),
B = 112 |"_‘ Or l E paraIIEI tO l
HB .
P =958 u parallel to s
U
— [, - B ~x E{ ( }_‘ [
r  Or
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. 1 L 151
Perturbation energy —u B = %wazﬁ’?}f
o 1 3 e
o L\ Z3
Radial integral 73T B3I 1/2)(+ 1)
Angular momentum operator s-l= 7

How to find <§.1> using perturbation theory?
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Perturbation theory with degenerate states

Perturbation Energy: AE = (4| H' |1;)
Change in wavefunction: o | B )
So won’t work if E; = E. A = L Y

T E; — E;

J7t

l.e. degenerate states.

We need a diagonal perturbation matrix, | E (i) = 0
. . |- ‘ *2 ;}. il
i.e. off-diagonal elements are zero A |

NeW . ¥1 \. @y T \I”".E - ‘:,_‘-’3’1‘ _FIJr ‘fj}g_} — ()
wavefunctions: Dy = D"y — a™ s
New

eignvalues: AE1 = (¢1| H' |61), AE = (do| H' |2)

L0 s
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The Vector Model

Angular momenta represented by vectors:
12, s?and j*> and |, s | and with magnitudes:

I(I+1), s(s+1) and j(j+1). and

ANI(1+1) As(s+1) and A/ j(j+1).

Projections of vectors:
l, s and j on z-axis

are m, m, and m

Constants of the Motion =) GoO0C

%ae Oxford Physics: 3rd Year, Atomic Physics
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Summary of Lecture 3: Spin-Orbit coupling

* Spin-Orbit energy 10U (7).
—p o Box———s-1
I 5 T (_)? .
* Radial integral sets size <1> 3 Z?*
of the effect. r3 /) n3adl(l+1/2)(1+1)

e Angular integral < S . | > needs Degenerate Perturbation Theory
* New basis eigenfunctions: (n,l,s,j,mjl|

* j andj, are constants of the motion

« Vector Model represents angular momenta as vectors
« These vectors can help identify constants of the motion

« These constants of the motion - represented by good quantum numbers
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(a) No spin-orbit
coupling

(b) Spin—orbit coupling
gives precession
around |

(c) Projection of | on z
IS not constant

(d) Projection of s on z
IS not constant

m, and m, are not good
guantum numbers

Replace by j and m;

‘ Oxford Physics: 3rd Year,
%=y Atomic Physics

Z

Fixed in

space

(c)

A




. " A 2 ~ ~
Vector model defines: 3= (1. + %) j. =1L +5

S
: . : 1 2 2
] Vector triangle =—> 5[ = E i -l =3 )
Magnitudes (;+l (1+1) s(s+1)

An, L, s, j m? =0 unless j=j and m; = 'nz.;-

ENIENENRUDE é{j(j+1]—[(l+l) —s(s+ 1)} B
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LOU(r) . -
— +B'“:~:‘.£{ '_.(I)“‘w’ ~ Bn,lx(1/2{12_12_§2})

—S r  or

|

Using basis states: |n, I,s, j, m, ) to find expectation value:

The spin-orbit energy Is:

AE = B, X (U2){i(+1) — 1(1+1) — s(s+1)}
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AE = S x (120 (+1) - 1(1+1) —s(s+1)}

Sodium
3s:n=3,1=0, no effect

3p:n=3, 1=1, s=%, -, j=% or 3
AE(Y2) = B3y x (- 1), AE()2) = By x (H2)

- J=32 12)+1=4

1/2

3p
(no spin-orbit)

J=12 |2j+1=2
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Lecture 4

* Two-electron atoms:
the residual electrostatic interaction
« Adding angular momenta: LS-coupling
« Symmetry and indistinguishabillity
* Orbital effects on electrostatic interaction
* Spin-orbit effects
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Coupling of |; and s to form L and S:
Electrostatic interaction dominates




Coupling of L and S to form J




Magnesium: “typical” 2-electron atom

Mg Configuration:
1522522p°3s?

Na Configuration:
1522522p°3s

|

Mg energy level structure is like Na
~but levels are more strongly bound

“Spectator” electron in Mg
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Residual electrostatic interaction

ﬁl Z deqr; + Z —l“'ﬂj?a - Z@ (-"T{:""'f:}

3s4s state in Mg: 11 (38)1ho(4s))
Zero-order wave functions

Perturbation energy:

AE; #F (1(3s)a(4s)| Hy 11 (38) o (4s)) P

3 Degenerate statesﬁ/
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Linear combination of zero-order wave-functions

b = \j‘) (1 (35)1ia(4s) + v (4)1bs (35))
by = — (1 (38)ba(4s) — 11 (48 )l (35))
V2

Off-diagonal matrix elements:

|
5” 1 (38)1ha(4s) 4+ 11 (4s)1h2(38)| V |11 (3s)iha(4s) — 11 (4s)1a(3s))

=

11 21 3] 41
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Off-diagonal matrix elements:

1 |
5 {_ "E;i’l (3 S )’i’;’f?g (—l‘-: ) + "E;i’l (—l% )’i’;’f?g ( 3 ‘-3) ‘ TLT ‘Il (3 S )’E;'j?g (—l‘%) — ’i.'l_-"f?l (—l‘% ) "i.'l,.-"')g (3 S )}

=

11 21 31 41

1 x3 = (¥1(3s)h2(4s)|V [11(3s)ia(4s)) = J
2 x4 — -’“-'t-"'*l(élq Yo (38)| V |1y (4s)1h9(3s))
2x3 = (P1(4s)ha(3s)|V |11(3s)he(4s)) = K

1 x 4 — (11 (38)1ho(4s)| V |11 (4s)1ho(35)) = —K

—J

Therefore @1V |¢2) =0 as required!
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Effect of Direct and Exchange integrals

Singlet
/ »

\ K
Triplet

_______ — 7 Energy level with no
electrostatic interaction
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Orbital orientation effect on electrostatic interaction

Overlap of electron
wavefunctions

depends on orientation

of orbital angular momentum:
SO electrostatic interaction
depends on L
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Residual Electrostatic
and

Spin-Orbit effects

In LS-coupling

LS Coupling

1

P_ Singlet

trlplet L Jp

Electrostatic
1

S
d
L
P—Singlet
S
3
P2
A triplet 2% E— —p,
x P
3P0
Electrostatic plus

Magnetic (spin-orbit)




Term diagram of Magnesium

Singlet terms Triplet terms |
1 1 1 I 3 3 3
S, P, D, S P D

I
I Y

ns
I

5s '
1

=——t—3s3d D,
4s 1 E—

1
- 3s3p Py

' 3
resonance line =7 3s3p Py

(strong) _ -

-
-
-

—~ ~  intercombination line
- (weak)

3s SO
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The story so far:
Hierarchy of interactions

Central Field configuration, nilinals. .. HO
Residual Electrostatic — Terms, L =S, P, D .. 'Hl
Spin-Orbit — Level, J=|L -S| —= L+ S H2

H,: Nuclear Effects on atomic energy

H3 << H2 << H1 << HO
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Lecture 5

* Nuclear effects on energy levels
— Nuclear spin

— addition of nuclear and electron angular
momenta

* How to find the nuclear spin

*|sotope effects:
— effects of finite nuclear mass
— effects of nuclear charge distribution

* Selection Rules



Nuclear effects In atoms

Corrections
Nucleus:

» stationary Nuclear spin — magnetic dipole
interacts with electrons

e infinite mass orbits centre of mass with
electrons

* point charge spread over
nuclear volume



Nuclear Spin interaction

Magnetic dipole ~ angular momentum
u = - yAh
W =-0 upl s = - QslpS
Ly = - gl

0,~1 Uy = Mg x M/ mMs ~ pg [ 2000

Perturbation energy:

AN

Hy=-p,. B

el




Fa

Hiﬂ — _ﬁ +£EE].

Magnetic field of electrons: Orbital and Spin

Closed shells: zero contribution
s orbitals: largest contribution — short range ~1/r3
| > 0, smaller contribution - neglect

Bej ~ %“’B <?1;>

o B )
_B-EE]. ~ 1o | 3 ™ 61
4 ag




e

H:ﬂ — _E +£Etl

B, = (scalar quantity) xJ

Usually dominated by spin contribution in s-states:

Fermi “contact interaction”.
Calculable only for Hydrogen in ground state, 1s



Coupling of | and J

00
N

Depends on I Depends on J

]

Hy= Ayl -.

Nuclear spin interaction energy:

AE =4 (I-1)

empirical Expectation value



Vector model of nuclear interaction

I and J precess around F




Hyperfine structure

Hfs interaction energy: AE = Aj <i | _}r>

Vector model result; [ -.J = 5 {F? - I* — J?}

i—

Hfs energy shift:
AE — %{F(Fwtl) I 41) = T+ 1))

Hfs interval rule:
AFEp = AE(F’) — AE(F’ — 1)~ A F’




Finding the nuclear spin, I

* Interval rule — finds F, then for known J — 1

 Number of spectral lines
2L+ 1) ford>1, (2d+1)forl>J

* Intensity
Depends on statistical weight (2F + 1)
finds F, then for known J — 1




|Isotope effects

‘, reduced mass
Z%etm, —

) n ™

2h2n?

Orbiting about
Fixed nucleus,
Infinite mass

Orbiting about
centre of mass




Lecture 6
e Selection Rules

« Atoms In magnetic fields

— basic physics; atoms with no spin
— atoms with spin: anomalous Zeeman Effect
— polarization of the radiation



7& Parity selection rule

_e'¢*nl (X,y,Z) [D( + .[y + KZ] ¢n /|/(X,y,Z)

Parity (-1)! must change




Configuration

(11 (1s)9(2p)| 7y + 1o |1 (3p)1a(3d))
= (Wi(1s)|ry [¥1(3p)) x (¥2(2p) |2 (3d)) + (V2(2p)| ry [102(3d)) x (11(1s)|v1(3p))
= 0

Only one electron “jumps’

An = anvthing

Al = =+1



Selection Rules:

Conservation of angular momentum




Atoms in magnetic fields
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Effect of B-field
on an atom
with no spin

Interaction energy -
Precession energy:

AE, = —u -B

EL " Pext
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n 2
1
A A 0
Normal Zeeman Effect X y Y ’
A A
-2

Level is split into equally
Spaced sub-levels (states)

Selection rules on M
give a spectrum of the v Y v
normal Lorentz Triplet ¥ ¥ — 0

Y 4 4 1
AM =1  AM=0  AM =+1

@ec’rmb—> ‘ ‘

((Do'A(D) Mg ((DOJ“A(D)
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Effect of B-field
on an atom
with spin-orbit coupling

Precession of L and S
around the resultant J
leads to variation of =
projections of L and S
on the field direction
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Projections of L and S on z axis vary
owing to precession around J.

m_and mg are no longer
good quantum numbers

¢ Oxford Physics: 3rd Year, Atomic Physics




Total magnetic moment
does not lie along axis
of J.

Effective magnetic moment
does lie along axis of J,
hence has constant
projection on B, axis

Hog — gJ;“-Bi




Perturbation Calculation of B,,, effect on spin-orbit level

Interaction energy Hmf"g — “Hatom 'ﬁext
Effective magnetic moment | / o = gJ[ BJ
Perturbation Theory: AErz = grup <_} ﬁm>
expectation value of energy
Energy shift of M level AEr7 = giipB M)
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Vector Model Calculation of B, effect on spin-orbit level

ext

A B

= ext

Projections of L and S
on J are given by

L-J|J
o = L
S JlJ
R 2
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Vector Model Calculation of B, effect on spin-orbit level

ext

ABaz = grpLlj- By +9sppSy - Ee:»ct

Perturbation Theory result AFE a7 g,,)fBB M
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Anomalous Zeeman Effect:

3p2P1l2

3s°S.,

. 1/2
A : /2
D, |
|
AL 10
\ A
\
\
\ 1/2
GTCITCG
L]
D1
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Polarization of
Anomalous Zeeman
components
associated with Am
selection rules

Light
polarization

Am =0
by = ¢o
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Lecture 7/

» Magnetic effects on fine structure
- Weak field
- Strong field

* Magnetic field effects on hyperfine structure:
- Weak field
- Strong field
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Summary of magnetic field
effects on atom with
spin-orbit interaction
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Total magnetic moment
does not lie along axis
of J.

Effective magnetic moment
does lie along axis of J,
hence has constant
projection on B, axis

Hog — gJ;“-Bi




Perturbation Calculation of B,,, effect on spin-orbit level

Interaction energy Hmf"g — “Hatom 'ﬁext
Effective magnetic moment | / o = gJ[ BJ
Perturbation Theory: AErz = grup <_} ﬁm>
expectation value of energy
Energy shift of M level AEr7 = giipB M)

What is g5 ?
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Vector Model Calculation of B, effect on spin-orbit level

ext

A B

= ext

Projections of L and S
on J are given by

L-J|J
o = L
S JlJ
R 2
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Vector Model Calculation of B, effect on spin-orbit level

ext

ABaz = grpLlj- By +9sppSy - Ee:»ct

Perturbation Theory result AFE a7 g,,)fBB M
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Landé 3J(J+1) —L(L+1)+S5(5+1)]

g-factor

Anomalous Zeeman Effect:

0;(°Py) = 2/3

0;(°Syp) =2
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2J(J +1
m;
, 1/2
3p2P1/2 <
W AL
1/2
| /
D, '
|
AL 1/2
/
3s°S,, Yy /|
\
\ 1/2
OTT O
|
1M
D1




Polarization of
Anomalous Zeeman
components
associated with Am
selection rules

Light
polarization

Am =0
by = ¢o
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Strong field effects on atoms
with spin-orbit coupling

Spin and Orbit magnetic moments couple
more strongly to B, than to each other.

ext
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Strong field effect on L and S.

A -ext ZA .Bext

m, and ms are
good quantum
numbers

L and S precess independently around B,
Spin-orbit coupling is relatively insignificant
$ Oxford Physics: 3rd Year, Atomic Physics




Splitting of level in strong field: Paschen-Back Effect

mL mS
- 1/2
1 P
< - 1/2
2 70 t ><
P.. ¢ - <~ > 1/2,-1/2
\ 1 DY
\ _ RN
<_ -1/2
~
> -1/2
N.B. Splitting like Spin splitting = 2 x Orbital
Normal Zeeman Effect gs=2xg
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HO + HSO + BWEAK + BSTRONG
Moo = J M. M
s
1/.2
1/2

4 1/2
\ 172
\ 2| 72
-1/2

s=0

4
ZS 1/2
~

-1/2

OnN TG O6O0NTGCO

]_lJ.I...lLLIJ...LI.I._I_I_I_‘_l

Os =20,

Fine structure  Anomalous Zeeman Paschen-Back
Effect Effect
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Magnetic field effects on
hyperfine structure
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Hyperfine structure in Magnetic Fields

Asl-J+ gippd - Beyy — gipnI - B

—eoxt

/ 1 N\

Hyperfine Electron/Field | | Nuc spm/Field
Interaction | | interaction Interag#o

Weak field Al-J >> gyupJ-B

= exXt

Strong field Al-J << gyupJ-B

= eXt
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Weak field effect on
hyperfine structure Bext

I and J precess
rapidly around F.

E precesses slowly
around B_,

I, J, Fand Mg
are good quantum
numbers

ft,, = —grpupk
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i AG
f. = —grpupkl

Only contribution to pic IS
component of p; along E

e =-Qiug J.FE xF
FF

] 1

magnitude direction

O =0, /\ Find this using

Vector Mode/
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1
[“=F2 +J2-2JF
= YA{F(F+1) + J(J+1) - I(I+1)}

PP+ D)+ JJ+1)—I(+1)
9F — 47 ?—F(F—I—l)

%ae® Oxford Physics: 3rd Year, Atomic Physics



AE= Ajl-J+ grupJ - By

AE =" +1)—JJ+1) =10+ 1)} + grupF - B

D) —eXt

Ap

Each hyperfine level is split by gr term

Ground level of Na: MZF
F=2 1
J=1/2;1=3/2; —o
2
F — 1 or 2 81/2 * -2
17,ugB

F=2:9-=% ; .

-1
= 1 - 1
P LG = F=1 -
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Sign inversionof g- forF=1and F = 2

J=1/2

F=2 J=-1/2

I=3/2 F=1|/1=3/2

J.F positive J.

| T

negative
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Strong field effect on hfs.
g1 AE= A ;l-J+ gjupJ - B

=Xt

J precesses rapidly around B, (z-axis)
I tries to precess around J but can follow only the
time averaged component along z-axis i.e. J,
So A;LJterm — A; MM,
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Strong field effect on hfs. Dominant term

/

Energy AEpa = AjM My +(g110BM jBext
My

— 1 3/2

Na ground state M, =" 10
1/2

2 T 3/2

S1/2
2ugB

l y 3/2

1/2
1 r
M, =-7 -3/2
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Strong field effect on hfs.

Energy: | AE=  A;l-J+ gjupJ B

—ext

J precesses around field B

ext

[ tries to precess around J

I precesses around what it can “see” of J:
The z-component of J: J,

AFpc = AyMM;j + g1 5 M jBog
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Magnetic field effects on hfs

Weak field: F, Mg are good quantum nos.
Resolve u; along E to get effective magnetic moment and g

AE(F,Mg) = grpsMeB

ext

“Zeeman” splitting of hfs levels

Strong field: M; and M, are good quantum nos.
J precesses rapidly around B_,;;

ext?

I precesses around z-component of J i.e. what it can “see” of J

.AE(MJ,MI) = gJMBMJBeXt + AJMIMJ

. — hfs of “Zeeman” split levels
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Lecture 8

» X-rays: excitation of “inner-shell” electrons

* High resolution laser spectroscopy
- The Doppler effect
- Laser spectroscopy
- “Doppler-free” spectroscopy
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X — Ray Spectra

" Oxford Physics: 3rd Year, Atomic Physics

Bremstrahlung
Py Maximum energy of
g incident electrons
)
=
4 Wavelength 01nm
Threshold energy
Characteristic X-rays
> \
‘w0
cC
9
£

4 Wavelength %1nm




Characteristic X-rays

- Wavelengths fit a simple series formula

* All lines of a series appear together
— when excitation exceeds threshold value

* Threshold energy just exceeds
energy of shortest wavelength X-rays

* Above a certain energy no new series appear.
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Generation of
characteristic X-rays
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Ejected electron

— VW

//\/\/\/\r>
X-ray

—o0

N

e




X-ray series

K
oy

n=4
M-series
n=3
o3y
L-series
n=2
o3y
K-series
n=1
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X-ray spectra for increasing electron impact energy

K-threshold L-threshold

|

X-ray Intensity

b1 1 i
E> E>E, Wavelength
Max voltage
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Binding energy for electron in hydrogen = R/n?
Binding energy for “hydrogen-like” system = RZ4/n?

Screening by other electrons in inner shells:
Z — (Z — o)

Binding energy of inner-shell electron:

E. =R(Z-c)2/n?

Transitions between inner-shells:

Ei = EJ: \_/ — R{(Z - GI)Z / n|2 = (Z - GJ)Z/ nJZ}
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( 1 3/2

Fine structure | | 1 /e
0 1/2
of X-rays

5.874

A = s

K 0 1/2
Al=+1 Aj=0,+1
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X-ray absorption spectra

Absorption
coefficient

Wavelength

% Oxford Physics: 3rd Year, Atomic Physics




_  Kinetic Energy (Ex-E|)-E_
€4 o
2

Auger effect

Potential Energy
(Ex - ED)

K —

X-ray absorption Second electron
electron emitted emitted
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High resolution laser spectroscopy
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Doppler broadening

Doppler Shift: V= 1o (1 n t_)
C
N()
Maxwell-Boltzmann distribution of
Atomic speeds o2 _ R
dN = Nope 2kT dov Atomic speed, v
Distribution of VAR
Intensity I(v) = 1(ry)exp [ g ( ” ﬂ) }
I(v) 1 | =
N Doppler 2v \2kT ‘ 1/2
width | 20 = o |37 1082

Frequency, v
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Crossed beam
Spectroscopy

Doppler-free
Spectrum " "

Photo-
multiplier

Fluorescence \oea‘“r

Metal vapour

) ) —_
V Fabry-Perot - W\

Tunable Interferometer Photo-
Laser multiplier

Frequency
calibration

Y
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Saturation effect on absorption

Absorption profile

N s
\\/ for weak probe

\
\/&
, \\ Absorption profile
for weak probe —
' - with strong pump

at ®q

A

(0)

Strong pump at o, reduces population of ground state for
atoms Doppler shifted by (o, — ®,).
Hence reduced absorption for this group of atoms.
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Saturation effect on absorption

Absorption of A Absorption of
weak probe 7/ strong pump
oN W

— <=

Probe and pump laser at same frequency (O

But propagating in opposite directions

Probe Doppler shifted down = Pump Doppler shifted up.
Hence probe and pump “see” different atoms.
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Saturation of “zero velocity” group at og

A -

o)

™, ®

O

Counter-propagating pump and probe
“see” same atoms at o, = og
l.e. atoms moving with zero velocity relative to light

Probe transmission increases at a,
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Saturation spectroscopy

Tunable
rLaser

Fabry-Perot
Interferometer

Phot.o_ Photo-
v UIRpIEE Strong multlpller
Pump Beam  Atomic Weak |
Vapour Probe Beam
Sl
Frequency Doppler-free
calibration Spectrum
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Saturation spectrum
of Sodium D, line

Doppler broadening
of hyperfine lines

)—-—.—
N
i

(b)

SIGNAL (ARBITRARY&S\

(c)

I | S R
-1000 0 1000 2000
Av (MHz) —=
FIG. 3. (a) Saturation spectrum of the Na D, line

without delay. (b) Like (a), but with a probe delay of
700 nsec. (c) D, hyperfine transitions.




Theoretical
spactrum

—= .I

8] 5 10 GHz  Aw

Hydrogen fine structure and hyperfine
structure for the Nn=3 = 2 transition.

First saturation spectroscopy of atomic Hydrogen
T W Hansch et al 1971



Principle of Doppler-free two-photon absorption

meaaanlp- < EEEE——
~ ~—

E=hv(l+v/c)+ hv(l —v/c)=2hv

Photon Doppler shifted up + Photon Doppler shifted down
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Two-photon absorption spectroscopy

ics)g;[;ctg:' Atomic Vapour
Tunable Cell Curved
Laser @ \ Lens mirror
Fabry-Perot ——
interferometer —— <
v Fluorescence
Photomultiplier Photomultiplier
Frequency " Doppler-free
calibration Spectrum
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Hydrogen 15-25

P F=1 243 nm
'c

3
- J F=0
e
I P NUUUIR Lﬂ , .
=
a b2 130 Te,
—
o
“‘“’ 12 486 nm
o
C
o
n

T r T [ T l’
0 1 2 3 GHz

laser frequency detuning (486 nm)

FIG. 2. Doppler-free two-photon spectrum of the hydro-
gen 15-2S transition with simultaneously recorded satura-
tion spectrum of *°Te,. The tellurium reference spectrum

appears shifted towards lower frequencies by 60 MHz as a
result of the acousto-optic modulator.



hydrogen signal
1S-25 F=1

signal (arbitrary units)

optical heterodyne signal

l L | 1 ! 1 L
=25 -15 -5 5 15 25 35

laser frequency detuning (MHz at 243 nm)

Doppler-free Two-photon spectrum of Hydrogen 1S — 2S transition
Tests QED calculation of electron interaction with proton
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Doppler-free spectrum of OH molecule in a flame

6 I o signal
— fit

) : ;
S 4r o ] 8
e ) 1 o
LU/ | 8
S
7
@
£ 2r

oL

L l 1 I 1 l 1 I 1 1 l 1 l
612.8 613.0 613.2 613.4 613.6 614.0 614.2

Dye laser wavelength / nm
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THE END
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