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Atomic Physics: 

• Astrophysics 

• Plasma Physics 

• Condensed Matter 

• Atmospheric Physics 

• Chemistry 

• Biology 

 

Technology 

• Street lamps  

• Lasers 

• Magnetic Resonance Imaging 

• Atomic Clocks 

• Satellite navigation: GPS 

• etc  



Astrophysics 



Condensed 

Matter 

Zircon mineral crystal 

C60 Fullerene 



Snow crystal 



Lasers 



Biology 

DNA strand 
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• How we study atoms: 

– emission and absorption of light 

– spectral lines 

• Atomic orders of magnitude 

• Basic structure of atoms 

– approximate electric field inside atoms 

 

Lecture 1 
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Spectral Line Broadening 
 

Homogeneous  e.g. 

 

   Lifetime (Natural) 

 

   Collisional (Pressure) 

 

Inhomogeneous  e.g. 

 

   Doppler (Atomic motion) 

 

   Crystal Fields 
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Lifetime (natural) broadening 

N( )t I( )w

Time, t frequency  , w

Intensity spectrumNumber of excited atoms

Exponential decay Lorentzian lineshape

Electric field amplitude 

Fourier  
Transform 

E(t) 
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Lifetime (natural) broadening 

N( )t I( )w

Time, t frequency  , w

Intensity spectrumNumber of excited atoms

Exponential decay Lorentzian lineshape

Electric field amplitude 

E(t) 
`t ~ 10-8s `Dn ~ 108 Hz 
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Collision (pressure) broadening 

N( )t I( )w

Time, t frequency  , w

Intensity spectrumNumber of uncollided  atoms

Exponential decay Lorentzian lineshape
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Collision (pressure) broadening 

N( )t I( )w

Time, t frequency  , w

Intensity spectrumNumber of uncollided  atoms

Exponential decay Lorentzian lineshape

`tc ~ 10-10s `Dn ~ 1010 Hz 
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N(v) I( )w

atomic speed, v frequency  , w

Doppler broadeningDistribution of atomic speed

Maxwell-Boltzmann
distribution

Gaussian lineshape

Doppler (atomic motion) broadening 

` Typical Dn ~ 109 Hz 
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Atomic orders of magnitude 

Atomic energy:    10-19 J → ~2 eV 
 

Thermal energy:                        1/40 eV 
 

Ionization energy, H:       13.6 eV  

           109,737 cm-1 
 

Atomic size, Bohr radius:   5.3 x 10-11m 
 

Fine structure constant, a = v/c:  1/137 
 

Bohr magneton, mB:     9.27 x 10-24 JT-1

   

= Rydberg Constant 
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r

U(r)

1/r

~Z/r

“Actual” 
Potential

The  

Central  

Field 



Oxford Physics: 3rd Year, Atomic  Physics 

~Z

Zeff

1

Radial position, r

Important 

region 



 



Lecture 2 

• The Central Field Approximation: 

– physics of wave functions (Hydrogen) 

 

• Many-electron atoms 

– atomic structures and the Periodic Table 

 

• Energy levels 

– deviations from hydrogen-like energy levels 

– finding the energy levels; the quantum defect 
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Schrödinger Equation (1-electron atom) 

Hamiltionian for many-electron atom: 

Individual electron potential 
in field of nucleus 

Electron-electron interaction 

This prevents separation into 

Individual electron equations 
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Central potential in Hydrogen:  

 

       V(r)~1/r, 

 

separation of y into radial and angular functions: 

 

   y  = R(r)Ym
l(q,f)c(ms) 

Therefore we seek a potential for multi-electron atom  

that allows separation into  

individual electron wave-functions of this form 
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Electron – Electron interaction term: 

Treat this as composed of two contributions: 

(a)a centrally directed part 

(b)a non-central Residual Electrostatic part 

+ 

e- e- 
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Hamiltonian for Central Field Approximation 

H1 = residual electrostatic interaction 

Perturbation Theory Approximation: 

H1 << Ho 

^ ^ 

^ 

Central Field 
    Potential 
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Zero order Schrödinger Equation:  
 

H0 y = E0 y 
 

H0 is spherically symmetric so equation is separable -  

solution for individual electrons: 

^ 

^ 

Radial    Angular   Spin 
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Central Field Approximation: 
 

What form does U(ri) take? 



+

-

Hydrogen atom
Z+

--

-
-

-

-
-

Many-electron atom

Z+

-

Z+

-

Z protons+ (Z – 1) electrons 

 

     U(r) ~ 1/r 

      Z protons 

 

     U(r) ~ Z/r 
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r

U(r)

1/r

~Z/r

“Actual” 
Potential

The  

Central  

Field 
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~Z

Zeff

1

Radial position, r

Important 

region 
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Finding the Central Field 

 
• “Guess” form of U(r) 

     

• Solve Schrödinger eqn. → Approx y. 
 

• Use approx y to find charge distribution 
 

• Calculate Uc(r) from this charge distribution 
 

• Compare Uc(r) with U(r)  
 

• Iterate until Uc(r) = U(r) 
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Energy eigenvalues for Hydrogen: 
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1

2

3

4

n

Energy

-13.6 eV

0

l =  0                 1                     2
s                  p                     d

H Energy level  

diagram 

Note degeneracy in l 
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Revision of Hydrogen solutions: 

Product wavefunction: 

Spatial x Angular function 

Normalization 

: Eigenfunctions of angular momentum operators 

Eigenvalues 
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|Y1

+
( )|q,f

2

|Y1

0
( )|q,f

2

Angular momentum orbitals 
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|Y1

+
( )|q,f

2

|Y1

0
( )|q,f

2

Angular momentum orbitals 

Spherically symmetric 
charge cloud with filled 
shell 
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2           4           6 2           4           6           8          10
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2 1.0

1 0.5

0.4

Radial wavefunctions 
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Radial wavefunctions 

• l = 0 states do not vanish at r = 0 

• l ≠ 0 states vanish at r = 0, 

    and peak at larger r as l increases 

• Peak probability (size) ~ n2 

• l = 0 wavefunction has (n-1) nodes 

• l = 1 has (n-2) nodes etc. 

• Maximum l=(n-1) has no nodes 

Electrons arranged in “shells” for each n 



Oxford Physics: 3rd Year, Atomic  Physics 

The Periodic Table 

Shells specified by n and l quantum numbers 

Electron  
configuration 
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The Periodic Table 
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The Periodic Table 
Rare gases 

He: 1s2 

Ne: 1s22s22p6 

Ar: 1s22s22p63s23p6 

Kr: (…) 4s24p6 

Xe: (…..)5s25p6 

Rn: (……)6s26p6 
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The Periodic Table 
Alkali metals 

Li: 1s22s 

Na: 1s22s22p63s 

Ca: 1s22s22p63s23p64s 

Rb: (…) 4s24p65s 

Cs: (…..)5s25p66s 

etc. 
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1

2

3

4

n

Energy

-13.6 eV

0

l =  0                 1                     2
s                  p                     d

H Energy level  

diagram 

Note degeneracy in l 

Energy: 

    - R 

n2 
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Na Energy level  

diagram 

Note no degeneracy in l 

3s 

l  =      0          1            2 

           s           p           d 
n 

5 
4 

3 3d 

3p 

4p 

4s 

5s 

Hydrogen 

5.14 

1.51 

0.0 eV 

Energy: 

 

En = 
n*2 

R 

n* = n - dl 

Quantum defect 
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White
light
source

Atomic
Vapour Spectrograph

Absorption
spectrum

Absorption spectroscopy 
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Finding the Energy Levels 

Hydrogen Binding Energy, Term Value     Tn = R 

                                                           n2 

 

Many electron atom,                   Tn =       R      . 

                                                     (n – d(l))2 

 

                 d(l) is the Quantum Defect 
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Finding the Quantum Defect 

1. Measure wavelength  of absorption lines

2. Calculate:   = 1/

3. "Guess" ionization potential, T(n ) i.e. Series Limit

4.  Calculate T(n ):  

      = T(n ) - T(n )

5.  Calculate:  n* or 

      T(n ) =      R /(n - )

 l

n

o

i

i o i

i

n

d(l)

2

 l

d(l)

D(l)

T(n )i

Quantum defect plot
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Lecture 3 

• Corrections to the Central Field 
 

• Spin-Orbit interaction 
 

• The physics of magnetic interactions 
 

• Finding the S-O energy – Perturbation Theory 
 

• The problem of degeneracy 
 

• The Vector Model (DPT made easy) 

• Calculating the Spin-Orbit energy 
 

• Spin-Orbit splitting in Sodium as example 
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r

U(r)

1/r

~Z/r

“Actual” 
Potential

The  

Central  

Field 
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Corrections to the Central Field 

• Residual electrostatic interaction: 

 

 

 

 

• Magnetic spin-orbit interaction: 

  
 

 

 
H2 = -m.Borbit 

^ 
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Magnetic spin-orbit interaction 

^ 

• Electron moves in Electric field of nucleus, 

  so sees a Magnetic field Borbit 
 

• Electron spin precesses in Borbit with energy: 
 

 -m.B  which is proportional to s.l 
 

• Different orientations of s and l give different 

  total angular momentum j = l + s. 
 

• Different values of j give different s.l so have  

  different energy: 
  

 The energy level is split for l + 1/2 
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Larmor Precession 

Magnetic field B exerts a 

torque on magnetic moment m 

causing precession of m  

and the associated  

angular momentum vector l 

 

The additional angular velocity 

w’ changes the angular velocity 

and hence energy of the 

orbiting/spinning charge 

DE = - m.B 
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B parallel to l 

m parallel to s 

Spin-Orbit interaction: Summary 
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? 

Perturbation energy 

Radial integral 

Angular momentum operator 

How to find < s . l > using perturbation theory? 
^ ^ 
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Perturbation theory with degenerate states 

Perturbation Energy: 

Change in wavefunction: 

So won’t work if Ei = Ej 

i.e. degenerate states. 

We need a diagonal perturbation matrix,  

i.e. off-diagonal elements are zero 

New  

wavefunctions: 

New  

eignvalues: 
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The Vector Model 

Angular momenta represented by vectors: 

l2, s2 and  j2, and l, s j and with magnitudes: 

l(l+1), s(s+1) and j(j+1). and  

 l(l+1),  s(s+1) and    j(j+1).  

Projections of vectors:  

l, s and  j on z-axis 

are ml, ms and  mj 

Constants of the Motion         Good quantum numbers  

lh mlh 

z 
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Summary of Lecture 3: Spin-Orbit coupling 

• Spin-Orbit energy 

• Radial integral sets size 

  of the effect. 

• Angular integral < s . l > needs Degenerate Perturbation Theory 

• New basis eigenfunctions: 

• j and jz are constants of the motion 

•  Vector Model represents angular momenta as vectors 
 

•  These vectors can help identify constants of the motion 
 

•  These constants of the motion - represented by good quantum numbers 

j 
l 

s 
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Atomic  Physics 

(a) No spin-orbit 

     coupling 

(b) Spin–orbit coupling 

      gives precession  

      around j  

(c) Projection of l on z 

     is not constant 

(d) Projection of s on z 

     is not constant 

 

ml and ms are not good  

quantum numbers 
 

Replace by j and mj 

Fixed in 
space 
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Vector model defines: 

j 
l 

s 

Vector triangle 

Magnitudes 
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Using basis states:  | n, l, s, j, mj › to find expectation value: 

 

The spin-orbit energy is:  

DE = bn,l x (1/2){j(j+1) – l(l+1) – s(s+1)} 

~  bn,l x ‹ ½ { j2 – l2 – s2 } › 
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DE = bn,l x (1/2){j(j+1) – l(l+1) – s(s+1)} 

Sodium 

3s: n = 3, l = 0,  no effect 
 

3p: n = 3,  l = 1,  s = ½, -½,  j = ½  or  3/2 

 

DE(1/2) = b3p x ( - 1);     DE(3/2) = b3p x (1/2) 

j = 3/2 

j = 1/2 

3p  

(no spin-orbit) 

2j + 1 = 4 

2j + 1 = 2 

1/2 

-1 
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•  Two-electron atoms: 

  the residual electrostatic interaction 

•  Adding angular momenta: LS-coupling 

•  Symmetry and indistinguishability 

•  Orbital effects on electrostatic interaction 

•  Spin-orbit effects  

 

Lecture 4 
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Coupling of li and s to form L and S: 

Electrostatic interaction dominates 

l1
is1

l2 s2

L S

L =   +  l l1 2
S =   +  s s1 2
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L = 1

S = 1

S = 1

S = 1

L = 1 L = 1

J = 2                   J = 1                J = 0

Coupling of L and S to form J 



Na Configuration: 

    1s22s22p63s 

Oxford Physics: 3rd Year, Atomic  Physics 

Magnesium: “typical” 2-electron atom 

Mg Configuration: 

    1s22s22p63s2 

“Spectator” electron in Mg 

Mg energy level structure is like Na  

but levels are more strongly bound 
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Residual electrostatic interaction 

3s4s state in Mg: 

Zero-order wave functions 

Perturbation energy: 

? 

Degenerate states 
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Linear combination of zero-order wave-functions 

Off-diagonal matrix elements: 
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Off-diagonal matrix elements: 

Therefore as required! 
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Energy level with no 
electrostatic interaction

J

+K

-K

Singlet

Triplet

Effect of Direct and Exchange integrals 
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l2

l1

Orbital orientation effect on electrostatic interaction 

Overlap of electron 

wavefunctions  

depends on orientation 

of orbital angular momentum: 

so electrostatic interaction  

depends on L 

l1

l2

L

L =   +  l l1 2
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Residual Electrostatic  

and  

Spin-Orbit effects  

in LS-coupling 
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1 1 1 3 3 3
S P D S P Do 21

3s  S
2 1

0

3s3p P
1

1

3s3p P
3

2,1,0

3s3d D
1

2
4s

5s

ns
3p

2

3pnl

intercombination line
(weak)

resonance line
(strong)

Term diagram of Magnesium

Singlet terms                             Triplet terms
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HO 
H1 

H2 

H3: Nuclear Effects on atomic energy 
 

H3 << H2 << H1 << HO 

 

The story so far: 

Hierarchy of interactions 



Lecture 5 

• Nuclear effects on energy levels 

– Nuclear spin 

– addition of nuclear and electron angular  

momenta 

• How to find the nuclear spin 

•Isotope effects: 

– effects of finite nuclear mass 

– effects of nuclear charge distribution 

 
• Selection Rules 



Nuclear effects in atoms 

Nucleus: 

• stationary 

 

• infinite mass 

 

• point 

Corrections 
 

Nuclear spin → magnetic dipole 
interacts with electrons 
 

 

orbits centre of mass with 
electrons 
 

 

charge spread over  

nuclear volume 



Nuclear Spin interaction 

Magnetic dipole ~ angular momentum 

m = - glħ 

ml = - gl mBl                     ms = - gsmBs 

mI = - gImNI 

 

gI ~ 1  mN = mB x me/mP ~ mB / 2000 
 

Perturbation energy: 
 

H3 = - mI . Bel 
^ 



Magnetic field of electrons: Orbital and Spin 

Closed shells: zero contribution 

s orbitals: largest contribution – short range ~1/r3 

l > 0, smaller contribution - neglect 

Bel 



Bel = (scalar quantity) x J 

 

Usually dominated by spin contribution in s-states: 
 

Fermi “contact interaction”.  

Calculable only for Hydrogen in ground state, 1s 



Coupling of I and J 

Depends on I Depends on J 

Nuclear spin interaction energy: 

empirical Expectation value 



Vector model of nuclear interaction 

F

F

F

I

I

I

JJJ

I and J precess around F F = I + J 



Hyperfine structure 

Hfs interaction energy: 

Vector model result: 

Hfs energy shift: 

Hfs interval rule: 



Finding the nuclear spin, I 

• Interval rule – finds F, then for known J → I 
 

• Number of spectral lines  

 (2I + 1) for J > I,   (2J + 1) for I > J 
 

• Intensity 

 Depends on statistical weight (2F + 1) 

 finds F, then for known J → I 

 



Isotope effects 

reduced mass 

Orbiting about 

centre of mass 

Orbiting about 

Fixed nucleus,  

infinite mass 

+ 



Lecture 6 

• Selection Rules  
 

• Atoms in magnetic fields 
 

– basic physics; atoms with no spin 

– atoms with spin: anomalous Zeeman Effect 

– polarization of the radiation 



Parity selection rule 

Parity (-1)l must change 

 

Dl = + 1 

-r 

r 

-e•f 
*
nl (x,y,z) [ix + jy + kz] fn’ l’ (x,y,z) ˆ ˆ ˆ 



Configuration 

Only one electron “jumps” 



Selection Rules: 
Conservation of angular momentum 

h

h

J1 J1

J2 = J1 
J2 = J1 

DL = 0, + 1 

DS = 0 

DMJ = 0, + 1 
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Atoms in magnetic fields 
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Effect of B-field 

on an atom  

with no spin 

Interaction energy -  

Precession energy: 
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Normal Zeeman Effect 

 

Level is split into equally 

Spaced sub-levels (states) 

 

Selection rules on ML 

give a spectrum of the 

normal Lorentz Triplet 

Spectrum 
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Effect of B-field 

on an atom  

with spin-orbit coupling 

Precession of L and S  

around the resultant J 

leads to variation of  

projections of L and S 

on the field direction 
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Total magnetic moment 

does not lie along axis  

of J. 

Effective magnetic moment 

does lie along axis of J, 

hence has constant  

projection on Bext axis 
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Interaction energy 

Effective magnetic moment 

Perturbation Theory: 

expectation value of energy 

Energy shift of MJ level 

Perturbation Calculation of Bext effect on spin-orbit level 
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Projections of L and S 

on J are given by 

Vector Model Calculation of Bext effect on spin-orbit level 
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Vector Model Calculation of Bext effect on spin-orbit level 

Perturbation Theory result 
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Anomalous Zeeman Effect: 

 

3s2S1/2 – 3p2P1/2 in Na 
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Polarization of  

Anomalous Zeeman  

components 

associated with Dm 

selection rules 
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Lecture 7 

• Magnetic effects on fine structure  

 - Weak field  

 - Strong field  
 

• Magnetic field effects on hyperfine structure: 

 - Weak field 

 - Strong field 
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Summary of magnetic field  

effects on atom with  

spin-orbit interaction 
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Total magnetic moment 

does not lie along axis  

of J. 

Effective magnetic moment 

does lie along axis of J, 

hence has constant  

projection on Bext axis 
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Interaction energy 

Effective magnetic moment 

Perturbation Theory: 

expectation value of energy 

Energy shift of MJ level 

Perturbation Calculation of Bext effect on spin-orbit level 

What is gJ ? 
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Projections of L and S 

on J are given by 

Vector Model Calculation of Bext effect on spin-orbit level 
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Vector Model Calculation of Bext effect on spin-orbit level 

Perturbation Theory result 
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Anomalous Zeeman Effect: 

 

3s2S1/2 – 3p2P1/2 in Na 

gJ(
2P1/2) = 2/3 

gJ(
2S1/2) = 2 

Landé  

g-factor 
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Polarization of  

Anomalous Zeeman  

components 

associated with Dm 

selection rules 
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Strong field effects on atoms  

with spin-orbit coupling 

Spin and Orbit magnetic moments couple  

more strongly to Bext than to each other. 
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Strong field effect on L and S.  

L and S precess independently around Bext 

Spin-orbit coupling is relatively insignificant 

mL and mS are  
good quantum 
numbers 
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Splitting of level in strong field: Paschen-Back Effect 

N.B. Splitting like  
Normal Zeeman Effect 

Spin splitting = 2 x Orbital  
              gS = 2 x gL 
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gS = 2gL 
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Magnetic field effects on  

hyperfine structure  
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Hyperfine structure in Magnetic Fields 

Hyperfine  

interaction 

Electron/Field 

interaction 

Nuclear spin/Field 

interaction  
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Weak field effect on 

hyperfine structure 

I and J precess  

rapidly around F. 

F precesses slowly 

around Bext 

 

I, J, F and MF  

are good quantum  

numbers 

mF 
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Only contribution to mF is  

component of mJ along F 

mF = -gJmB J.F  x F 

F F 

magnitude     direction 

gF = gJ x J.F 

F2 

Find this using  
Vector Model 
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gF = gJ x J.F 

F2 F I 

J F = I + J 
 

I2 = F2  + J2 – 2J.F 
 

J.F = ½{F(F+1) + J(J+1) – I(I+1)} 
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DE =  

Each hyperfine level is split by gF term 

Ground level of Na: 
 

J = 1/2 ; I = 3/2 ;  

F = 1 or 2 
 

F = 2: gF = ½  ;   

F = 1: gF = -½  
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Sign inversion of gF for F = 1 and F = 2 

I = 3/2 

J = 1/2 

F = 2 

I = 3/2 

J = -1/2 

F = 1 

J.F  positive J.F  negative 
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Strong field effect on hfs. 

J precesses rapidly around Bext (z-axis) 

I tries to precess around J but can follow only the  

time averaged component along z-axis i.e. Jz 
 

So AJ I.J term → AJ MIMJ 

DE =  



Oxford Physics: 3rd Year, Atomic  Physics 

Strong field effect on hfs. 

Na ground state 

Energy 

Dominant term 
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DE =  

Strong field effect on hfs. 

Energy: 

J precesses around field Bext 
 

I tries to precess around J 
 

I precesses around what it can “see” of J: 

The z-component of J: JZ 
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  Magnetic field effects on hfs 
 

Weak field: F, MF are good quantum nos. 

Resolve mJ along F to get effective magnetic moment and gF 
 

  DE(F,MF) = gFmBMFBext 

 

    →   “Zeeman” splitting of hfs levels 
 

 

Strong field: MI and MJ are good quantum nos. 

J precesses rapidly around Bext;  

I precesses around z-component of J i.e. what it can “see” of J 
 

DE(MJ,MI) = gJmBMJBext + AJMIMJ 
 

    → hfs of “Zeeman” split levels 
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Lecture 8 

• X-rays: excitation of “inner-shell” electrons  
 

• High resolution laser spectroscopy 

 - The Doppler effect 

 - Laser spectroscopy 

 - “Doppler-free” spectroscopy 
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X – Ray Spectra 
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• Wavelengths fit a simple series formula 

 

• All lines of a series appear together  

 – when excitation exceeds threshold value 

 

• Threshold energy just exceeds  

   energy of shortest wavelength X-rays 

 

• Above a certain energy no new series appear. 

Characteristic X-rays 
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Generation of  

characteristic X-rays 

Ejected electron 

X-ray 

e- 

e- 
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X-ray series 
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Wavelength 

X
-r

a
y
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te

n
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y
 

X-ray spectra for increasing electron impact energy 

L-threshold K-threshold 

Max voltage 

E1 E2> E3> 



Oxford Physics: 3rd Year, Atomic  Physics 

Binding energy for electron in hydrogen = R/n2 

Binding energy for “hydrogen-like” system = RZ2/n2 

Screening by other electrons in inner shells: 

Z → (Z – s) 

Binding energy of inner-shell electron: 
 

  En = R(Z – s)2 / n2 

Transitions between inner-shells: 
 

 Ei - Ej= n = R{(Z – si)
2 / ni

2  - (Z – sj)
2 / nj

2} 

 



Oxford Physics: 3rd Year, Atomic  Physics 

Fine structure  

of X-rays 
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X-ray absorption spectra 
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Auger effect 
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High resolution laser spectroscopy 
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Doppler broadening 

Doppler Shift: 

Maxwell-Boltzmann distribution of 

Atomic speeds 

Distribution of  

Intensity 

Doppler  

width 

Notes error 
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Crossed beam 

Spectroscopy 
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Absorption profile  

for weak probe 

Absorption profile  

for weak probe – 

with strong pump 

at wo 

Strong pump at wL reduces population of ground state for  

atoms Doppler shifted by (wL – wo). 

Hence reduced absorption for this group of atoms. 

Saturation effect on absorption 
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Absorption of  

weak probe  

wL 

Probe and pump laser at same frequency wL  

But propagating in opposite directions 

Probe Doppler shifted down = Pump Doppler shifted up. 

Hence probe and pump “see” different atoms. 

Saturation effect on absorption 

Absorption of  

strong pump 

wL 
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Saturation of “zero velocity” group at wO  

Counter-propagating pump and probe  

“see” same atoms at wL = wO 

i.e. atoms moving with zero velocity relative to light 

    Probe transmission increases at wO 
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Saturation spectroscopy 



Doppler broadening 

of hyperfine lines 

Saturation spectrum  

of Sodium D2 line 



First saturation spectroscopy of atomic Hydrogen 

T W Hansch et al 1971 
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{ { 

Photon Doppler shifted up + Photon Doppler shifted down 

Principle of Doppler-free two-photon absorption 
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Two-photon absorption spectroscopy 





Doppler-free Two-photon spectrum of Hydrogen 1S – 2S transition 

Tests QED calculation of electron interaction with proton 
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Doppler-free spectrum of OH molecule in a flame 



Oxford Physics: 3rd Year, Atomic  Physics 

THE END 


