# **Atomic Physics**

3<sup>rd</sup> year B1

P. Ewart

Lecture notes

Lecture slides

Problem sets

All available on Physics web site:

http://www.physics.ox.ac.uk/users/ewart/index.htm

#### **Atomic Physics:**

- Astrophysics
- Plasma Physics
- Condensed Matter
- Atmospheric Physics
- Chemistry
- Biology

#### **Technology**

- Street lamps
- Lasers
- Magnetic Resonance Imaging
- Atomic Clocks
- Satellite navigation: GPS
- etc

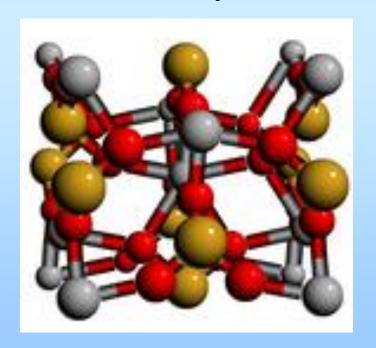


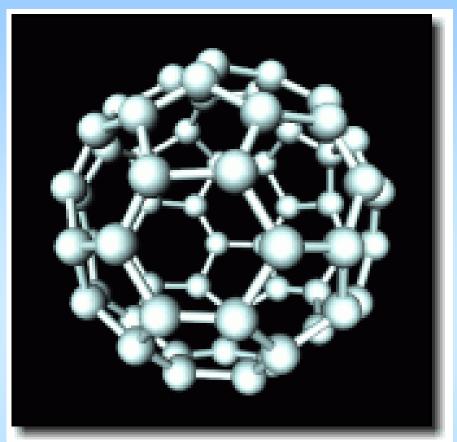
# Astrophysics



# Condensed Matter

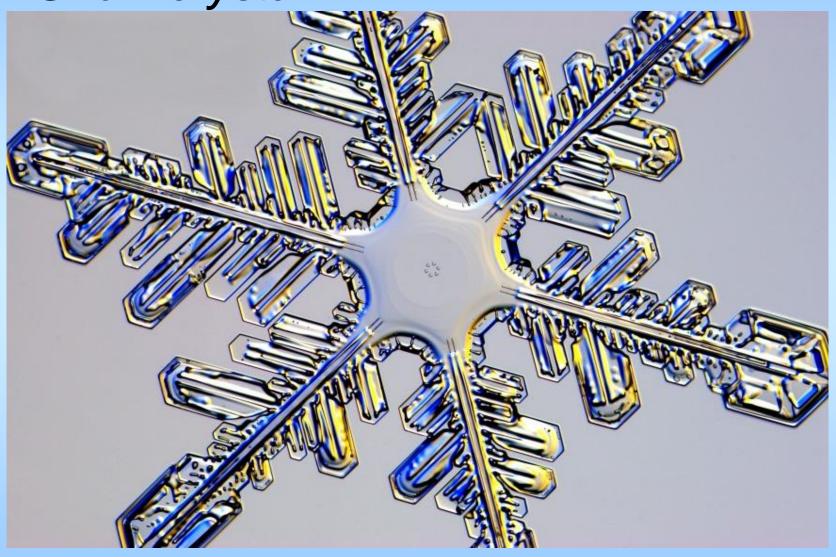
Zircon mineral crystal

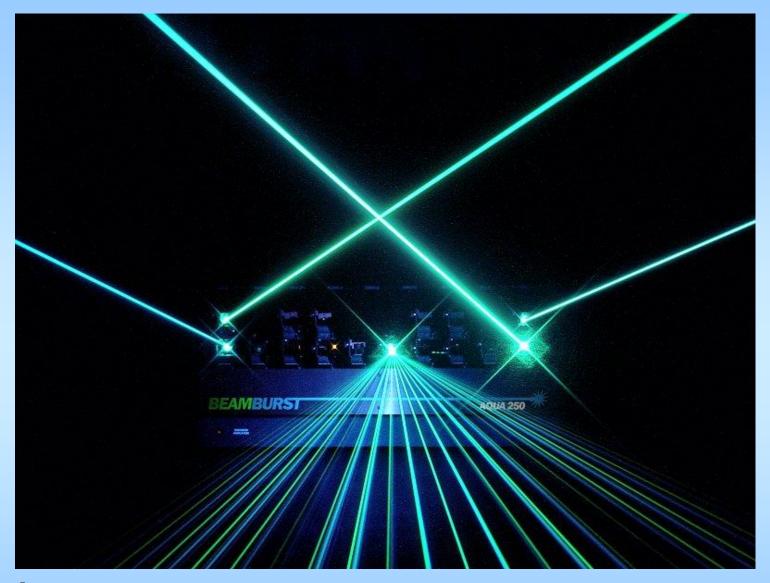




C<sub>60</sub> Fullerene

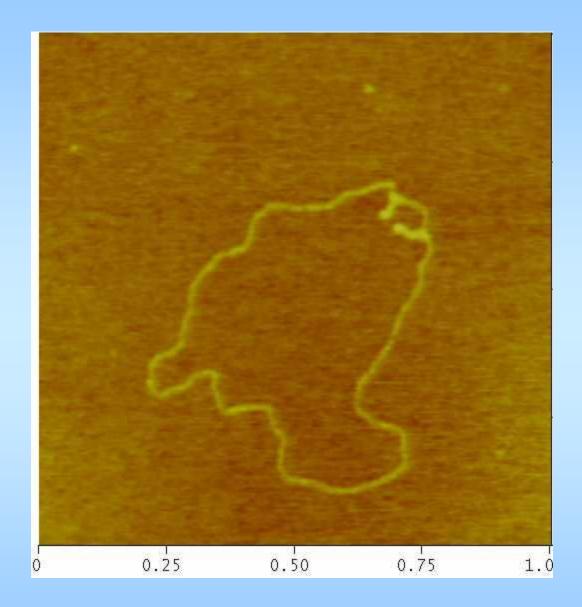
Snow crystal





Lasers

# Biology

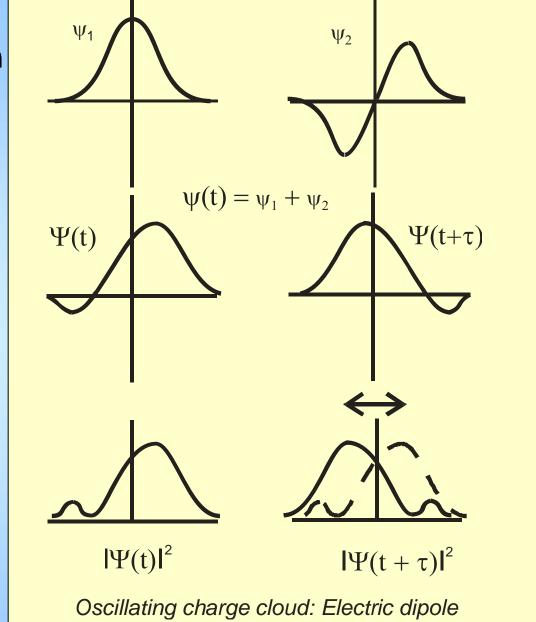


**DNA** strand

## Lecture 1

- How we study atoms:
  - emission and absorption of light
  - spectral lines
- Atomic orders of magnitude
- Basic structure of atoms
  - approximate electric field inside atoms

#### **Atomic radiation**





Oxford Physics: 3rd Year, Atomic Physics

# **Spectral Line Broadening**

Homogeneous e.g.

Lifetime (Natural)

**Collisional (Pressure)** 

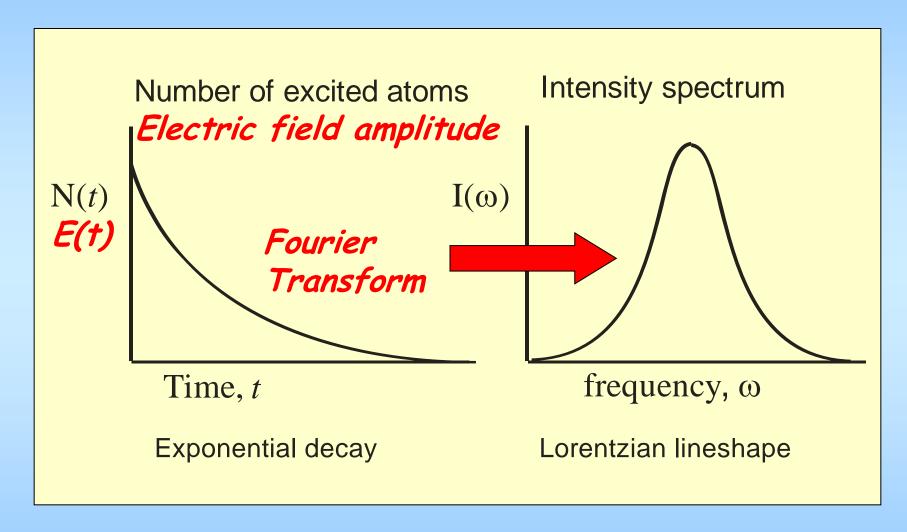
Inhomogeneous e.g.

**Doppler (Atomic motion)** 

**Crystal Fields** 

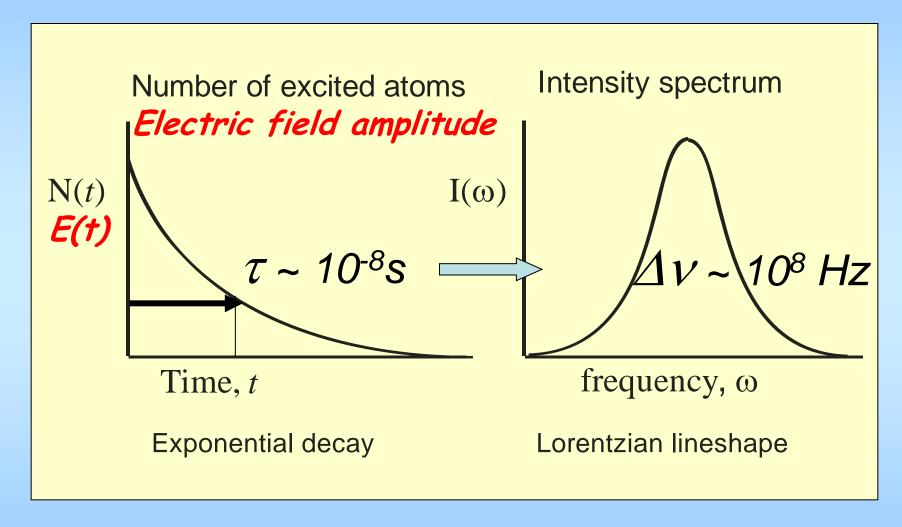


#### Lifetime (natural) broadening



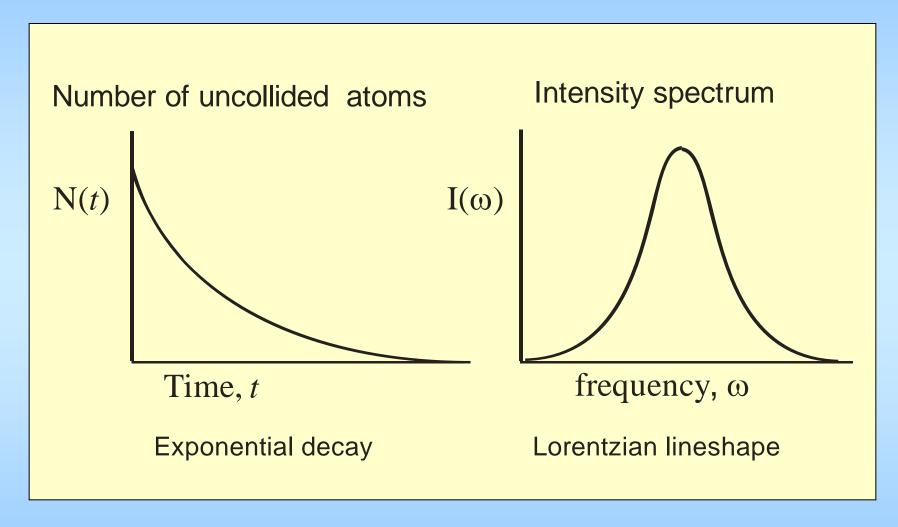


#### Lifetime (natural) broadening



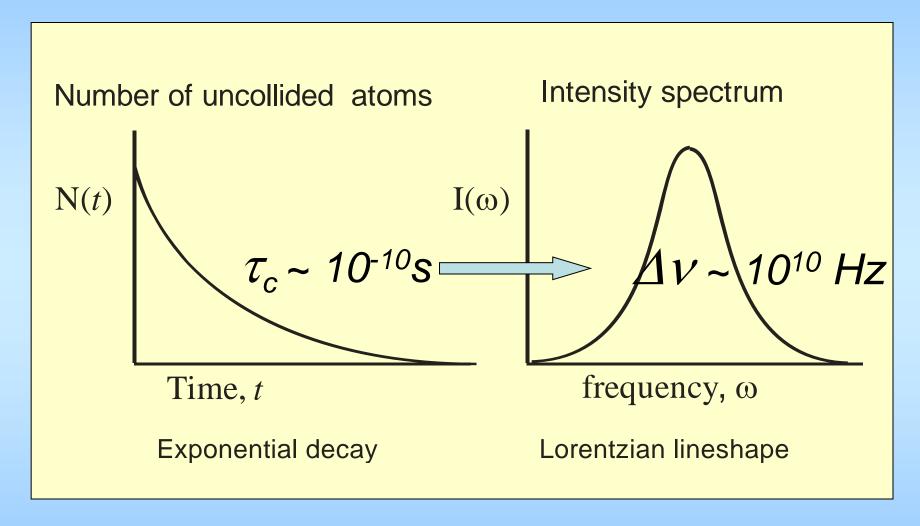


#### Collision (pressure) broadening



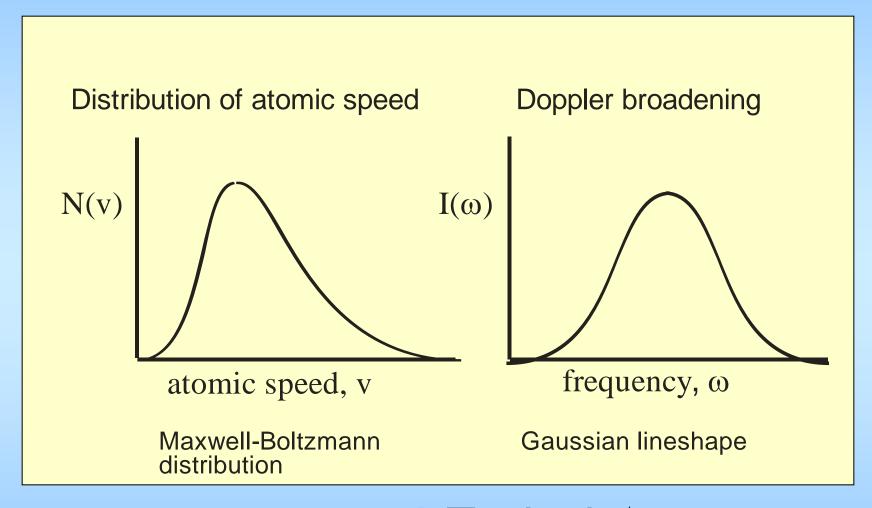


#### Collision (pressure) broadening





#### Doppler (atomic motion) broadening





Typical  $\Delta v \sim 10^9 \text{ Hz}$ 

## **Atomic orders of magnitude**

Atomic energy:  $10^{-19} \text{ J} \rightarrow \sim 2 \text{ eV}$ 

Thermal energy:  $^{1}/_{40}$  eV

Ionization energy, H: 13.6 eV

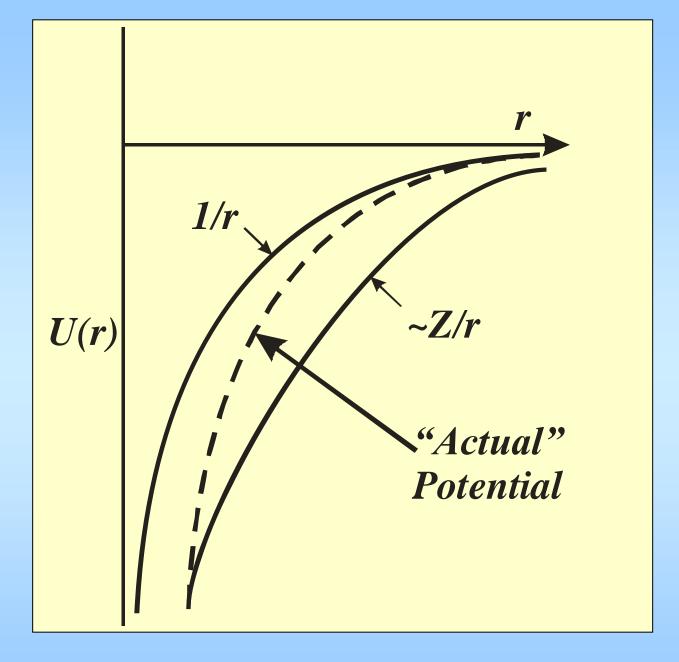
= Rydberg Constant 109,737 cm<sup>-1</sup>

Atomic size, Bohr radius: 5.3 x 10<sup>-11</sup>m

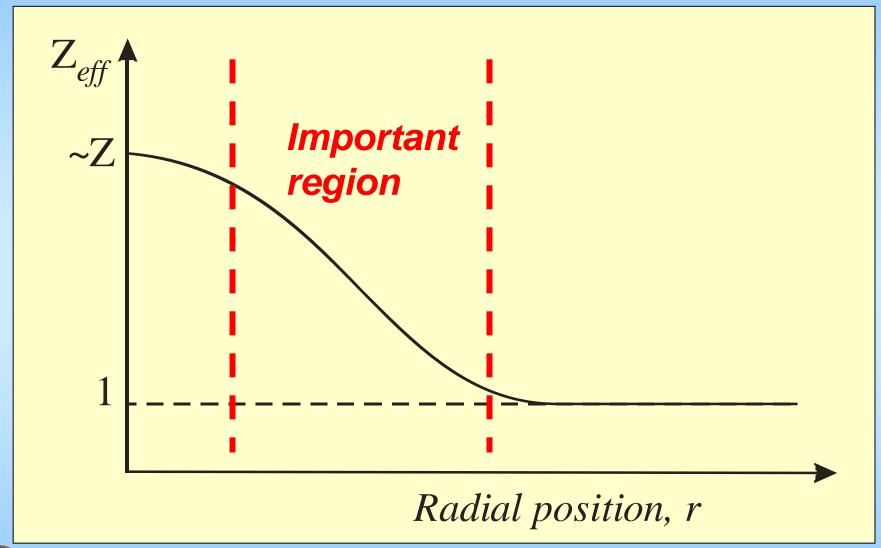
Fine structure constant,  $\alpha = v/c$ : 1/137

Bohr magneton,  $\mu_{\rm B}$ : 9.27 x 10<sup>-24</sup> JT<sup>-1</sup>

# The Central Field











## Lecture 2

- The Central Field Approximation:
  - physics of wave functions (Hydrogen)
- Many-electron atoms
  - atomic structures and the Periodic Table
- Energy levels
  - deviations from hydrogen-like energy levels
  - finding the energy levels; the quantum defect

#### Schrödinger Equation (1-electron atom)

$$-\frac{\hbar^2}{2m}\nabla^2\psi - \frac{Ze^2}{4\pi\epsilon_0 r}\psi = E\psi$$

#### Hamiltionian for many-electron atom:

$$\hat{H} = \sum_{i=1}^{N} \left( -\frac{\hbar^2}{2m} \nabla_i^2 - \frac{Ze^2}{4\pi\epsilon_0 r_i} \right) + \sum_{i>j} \frac{e^2}{4\pi\epsilon_0 r_{ij}}$$

Individual electron potential in field of nucleus

Electron-electron interaction



This prevents separation into Individual electron equations

#### Central potential in Hydrogen:

$$V(r)\sim 1/r$$

separation of  $\psi$  into radial and angular functions:

$$\psi = R(r)Y^{m}_{l}(\theta,\phi)\chi(m_{s})$$

Therefore we seek a potential for multi-electron atom that allows separation into individual electron wave-functions of this form

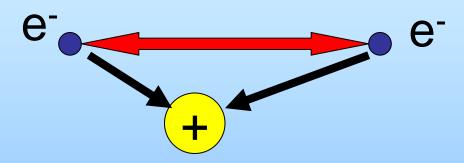
#### Electron – Electron interaction term:

$$\sum_{i>j} \frac{e^2}{4\pi\epsilon_0 r_{ij}}$$

Treat this as composed of two contributions:

(a)a centrally directed part

(b)a non-central *Residual Electrostatic* part



#### Hamiltonian for Central Field Approximation

$$\hat{H} = \hat{H}_0 + \hat{H}_1$$
where  $\hat{H}_0 = \sum_{i} \left\{ -\frac{\hbar^2}{2m} \nabla_i^2 + U(r_i) \right\}$ 
Central Field Potential
and  $\hat{H}_1 = \sum_{i>j} \frac{e^2}{4\pi\epsilon_0 r_{ij}} - \sum_{i} \left\{ \frac{Ze^2}{4\pi\epsilon_0 r_i} + U(r_i) \right\}$ 

 $\hat{H}_1$  = residual electrostatic interaction

Perturbation Theory Approximation:  $\hat{H}_1 << \hat{H}_o$ 



## Zero order Schrödinger Equation:

$$\hat{H}_0 \psi = E_0 \psi$$

 $\overset{\wedge}{H_0}$  is spherically symmetric so equation is separable - solution for individual electrons:

$$\psi(n, l, m_l, m_s) = R'_{n,l}(r)Y_l^m(\theta, \phi)\chi(m_s)$$



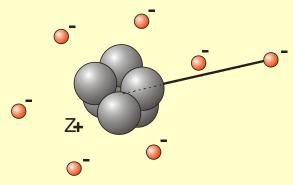
## Central Field Approximation:

$$\hat{H} = \hat{H}_0 + \hat{H}_1$$
where 
$$\hat{H}_0 = \sum_i \left\{ -\frac{\hbar^2}{2m} \nabla_i^2 + U(r_i) \right\}$$

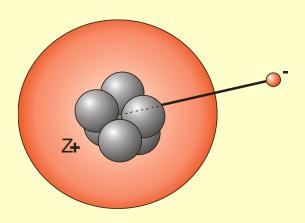
What form does  $U(r_i)$  take?



Hydrogen atom

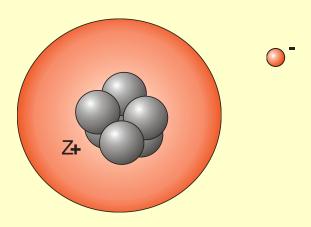


Many-electron atom



Z protons+ (Z - 1) electrons

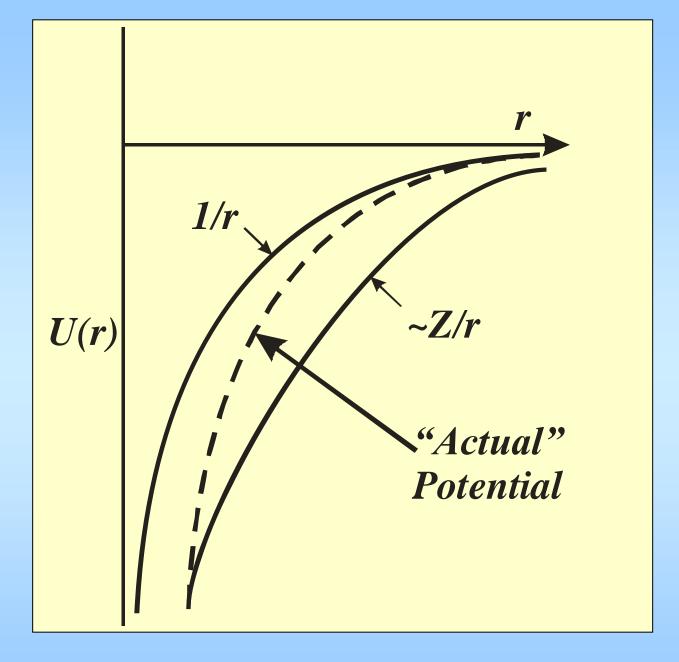
$$U(r) \sim 1/r$$



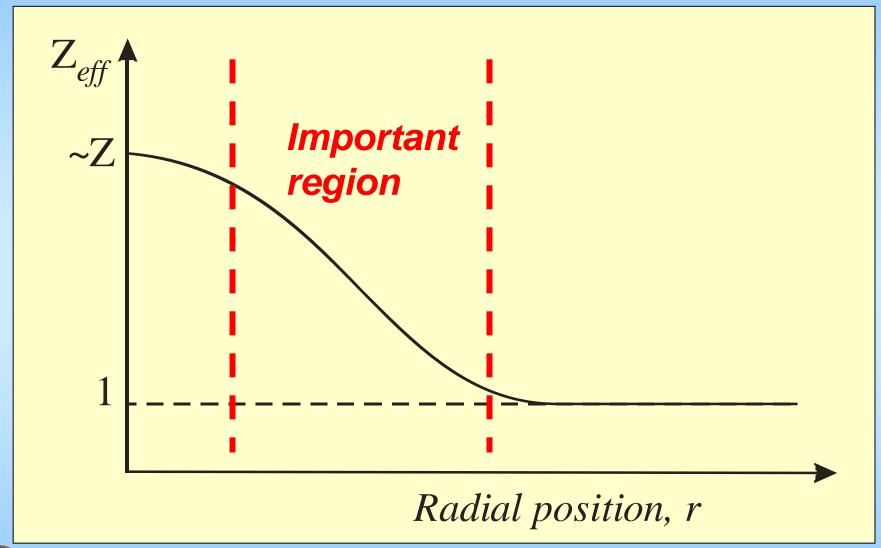
Z protons

$$U(r) \sim Z/r$$

# The Central Field









# Finding the Central Field

- "Guess" form of U(r)
- Solve Schrödinger eqn.  $\rightarrow$  Approx  $\psi$ .
- Use approx  $\psi$  to find charge distribution
- Calculate U<sub>c</sub>(r) from this charge distribution
- Compare U<sub>c</sub>(r) with U(r)
- Iterate until  $U_c(r) = U(r)$



## Energy eigenvalues for Hydrogen:

$$E_{n} = \left\langle \psi_{n,l,m_{l}} \middle| \hat{H} \middle| \psi_{n,l,m_{l}} \right\rangle$$
$$= -\frac{Z^{2} m e^{4}}{(4\pi\epsilon_{0})^{2} 2\hbar^{2} n^{2}}$$

# H Energy level diagram

Energy

$$E_n = \left\langle \psi_{n,l,m_l} \left| \hat{H} \right| \psi_{n,l,m_l} \right\rangle$$
$$= -\frac{Z^2 m e^4}{(4\pi\epsilon_0)^2 2\hbar^2 n^2}$$

Note degeneracy in l

-13.6 eV \_\_\_\_\_

1



#### Revision of Hydrogen solutions:

Product wavefunction: Spatial x Angular function

$$\psi_{n,l,m_l}(r,\theta,\phi) = R_{n,l}(r)Y_l^{m_l}(\theta,\phi)$$

Normalization

$$\int R_{n,l}^2(r)r^2dr = 1 \qquad \int |Y_l^{m_l}(\theta,\phi)|^2 d\Omega = 1$$

 $Y_l^{m_l}(\theta,\phi)$ : Eigenfunctions of angular momentum operators

$$\hat{l}^2 Y_l^{m_l}(\theta, \phi) = l(l+1)\hbar^2 Y_l^{m_l}(\theta, \phi)$$

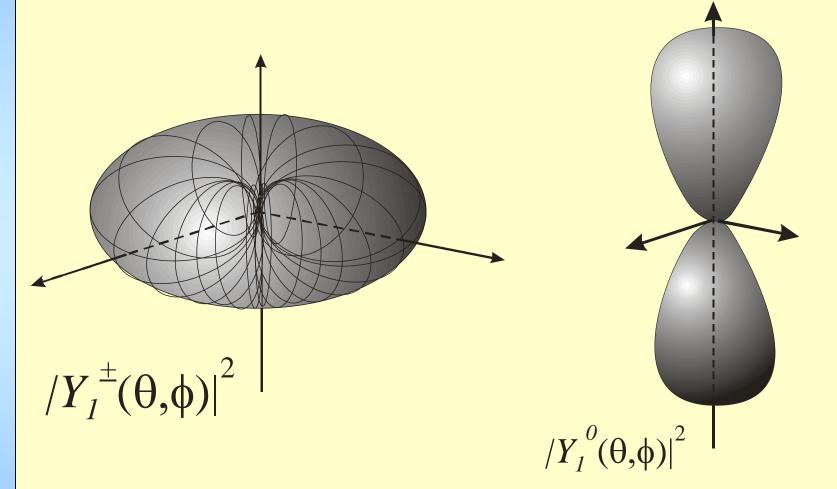
$$\hat{l}_z Y_l^{m_l}(\theta, \phi) = m_l \hbar Y_l^{m_l}(\theta, \phi)$$

Eigenvalues

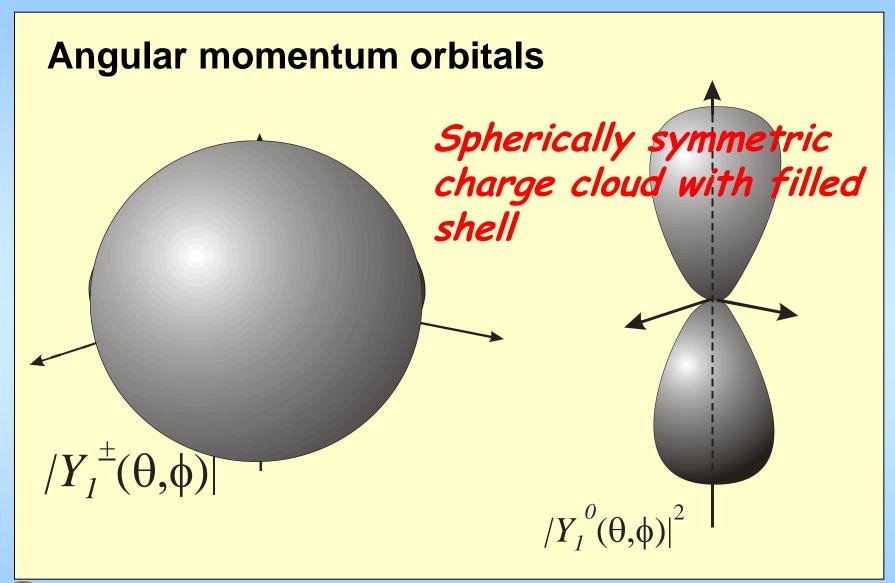
$$l = 0, 1, 2...(n-1)$$
  $-l \le m_l \le l$ 



#### **Angular momentum orbitals**

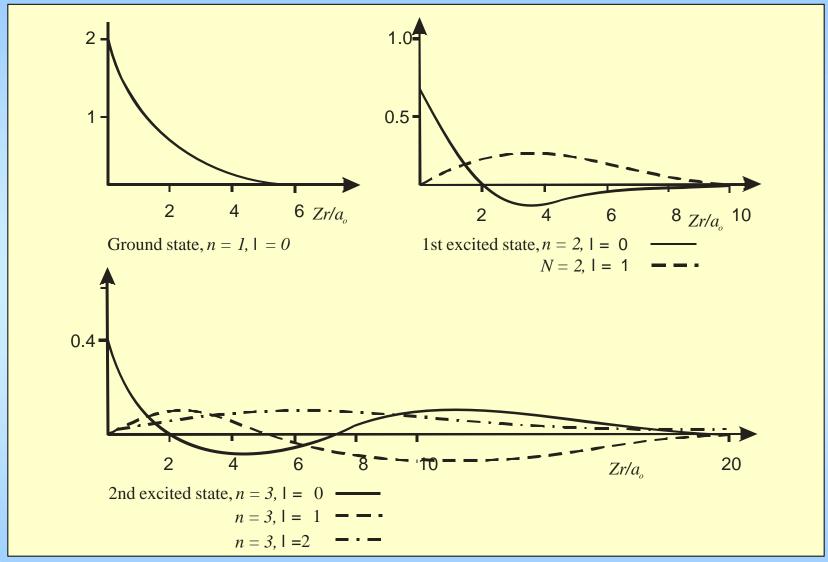








## Radial wavefunctions





#### Radial wavefunctions

- l = 0 states do not vanish at r = 0
- $l \neq 0$  states vanish at r = 0, and peak at larger r as l increases
- Peak probability (size)  $\sim n^2$
- l = 0 wavefunction has (n-1) nodes
- l = 1 has (n-2) nodes etc.
- Maximum l=(n-1) has no nodes

# Electrons arranged in "shells" for each n



#### The Periodic Table

Shells specified by *n* and *l* quantum numbers

Electron

H: 1s

He:  $1s^2$  2s

Li:  $1s^2$   $2s^2$  configuration
Be:  $1s^2$   $2s^22p$ C:  $1s^2$   $2s^22p^2$ 

Ne:  $1s^2 2s^22p^6$ Na:  $1s^2 2s^22p^6$  3s



#### The Periodic Table

K:  $1s^2 2s^2 2p^6 3s^2 3p^6 4s$ 

Ca:  $4s^2$ 

The 3d shell now begins to fill

Sc:  $1s^22s^22p^6 3s^23p^63d 4s^2$ 

Va:  $3s^23p^6 3d^34s^2$ 

Cr:  $3d^54s$ 

Mn:  $3d^54s^2$ 



# The Periodic Table Rare gases

```
He: 1s^2
```

Ne:  $1s^22s^22p^6$ 

Ar:  $1s^22s^22p^63s^23p^6$ 

Kr:  $(...)4s^24p^6$ 

Xe:  $(.....)5s^25p^6$ 

Rn:  $(.....)6s^26p^6$ 

# The Periodic Table Alkali metals

```
Li: 1s^2 2s
```

Na:  $1s^22s^22p^63s$ 

Ca:  $1s^22s^22p^63s^23p^64s$ 

Rb:  $(...)4s^24p^65s$ 

Cs:  $(....)5s^25p^66s$ 

etc.

# H Energy level diagram

#### Energy:

$$E_n = \left\langle \psi_{n,l,m_l} \left| \hat{H} \right| \psi_{n,l,m_l} \right\rangle$$
$$= -\frac{Z^2 m e^4}{(4\pi\epsilon_0)^2 2\hbar^2 n^2}$$

$$E_n = \frac{-R}{n^2}$$

Energy

Note degeneracy in l

-13.6 eV \_\_\_\_\_

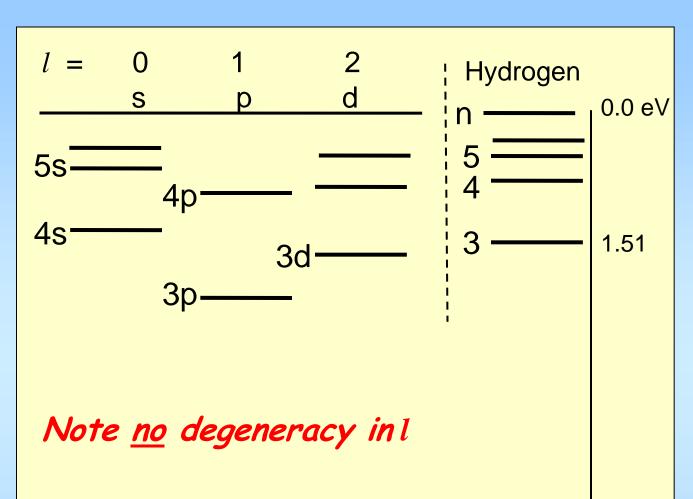
1

# Na Energy level diagram

#### **Energy:**

$$E_n = \frac{R}{n^{*2}}$$

$$n^* = n - \delta_l$$



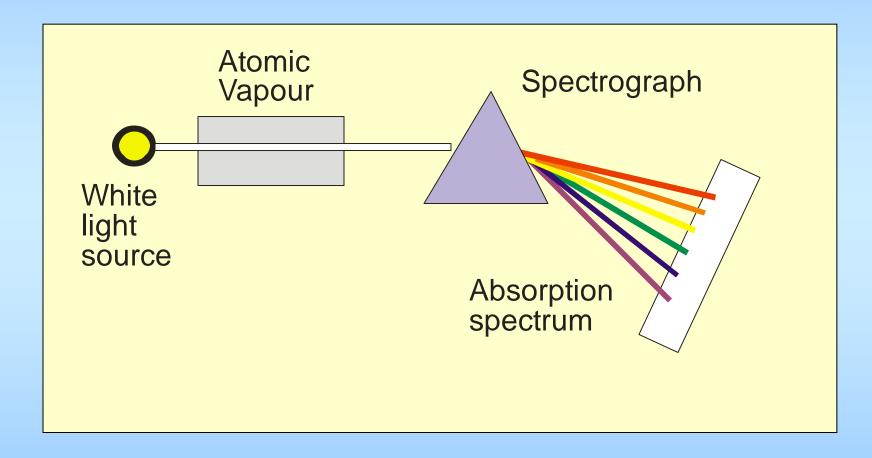
Quantum defect

3s —

5.14



# Absorption spectroscopy



# Finding the Energy Levels

Hydrogen Binding Energy, Term Value

$$T_n = \underline{R}_n$$

Many electron atom,

$$T_{n} = \underline{R} .$$

$$(n - \delta(l))^{2}$$

 $\delta(l)$  is the Quantum Defect

## **Finding the Quantum Defect**

- 1. Measure wavelength  $\lambda$  of absorption lines
- 2. Calculate:  $\overline{v} = 1/\lambda$
- 3. "Guess" ionization potential, T(n<sub>o</sub>) i.e. Series Limit
- 4. Calculate T(n<sub>i</sub>):

$$\overline{V}_i = T(n_o) - T(n_i)$$

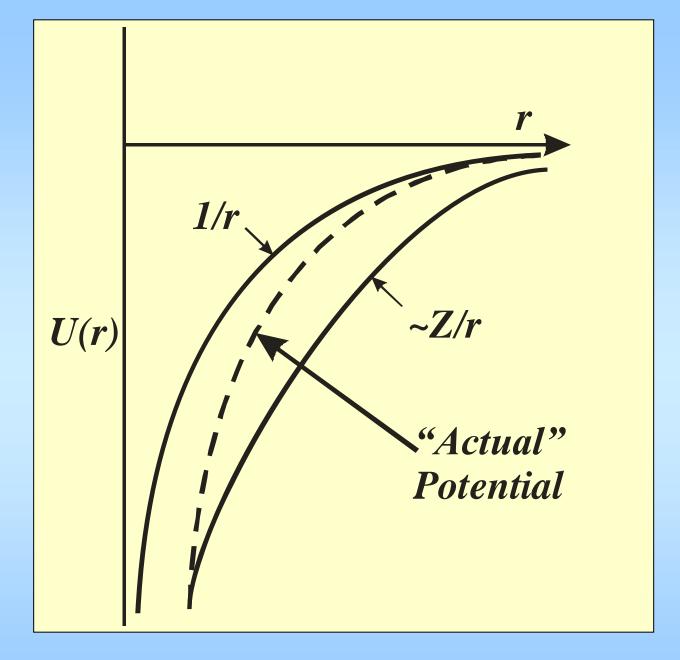
5. Calculate:  $n^*$  or  $\delta(1)$ 



# Lecture 3

- Corrections to the Central Field
- Spin-Orbit interaction
- The physics of magnetic interactions
- Finding the S-O energy Perturbation Theory
- The problem of degeneracy
- The Vector Model (DPT made easy)
- Calculating the Spin-Orbit energy
- Spin-Orbit splitting in Sodium as example

# The Central Field





#### Corrections to the Central Field

Residual electrostatic interaction:

$$\hat{H}_1 \quad = \quad \sum_{i>j} \frac{e^2}{4\pi\epsilon_0 r_{ij}} - \sum_i \left\{ \frac{Ze^2}{4\pi\epsilon_0 r_i} + U(r_i) \right\}$$

• Magnetic spin-orbit interaction:

$$\hat{H}_2 = -\underline{\mu} \cdot \underline{B}_{\text{orbit}}$$

# Magnetic spin-orbit interaction

- Electron moves in Electric field of nucleus, so sees a Magnetic field B<sub>orbit</sub>
- Electron spin precesses in B<sub>orbit</sub> with energy:
   -μ.B which is proportional to <u>s.l</u>
- Different orientations of  $\underline{s}$  and  $\underline{l}$  give different total angular momentum  $\underline{j} = \underline{l} + \underline{s}$ .
- Different values of j give different s.l so have different energy:

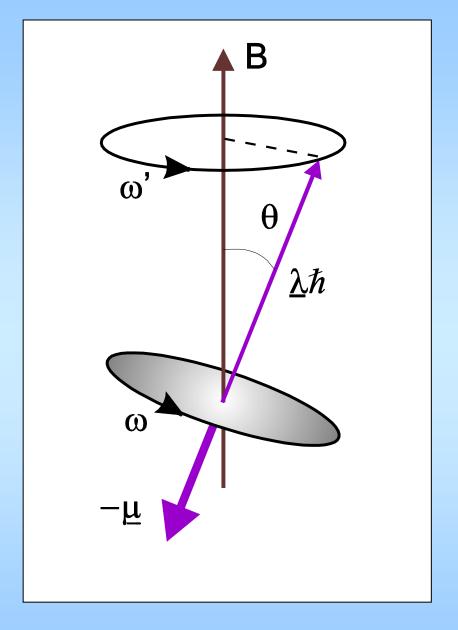
The energy level is split for  $l \pm 1/2$ 

#### **Larmor Precession**

Magnetic field B exerts a torque on magnetic moment  $\underline{\mu}$  causing precession of  $\underline{\mu}$  and the associated angular momentum vector  $\underline{\lambda}$ 

The additional angular velocity ω' changes the angular velocity and hence energy of the orbiting/spinning charge

$$\Delta E = - \underline{\mu} \cdot \underline{B}$$





# Spin-Orbit interaction: Summary

$$\underline{B} = -\frac{\underline{v} \times \underline{E}}{c^2}$$

$$\underline{B} = -\frac{\underline{v} \times \underline{E}}{c^2} \qquad \underline{B} = -\frac{1}{mc^2} \underline{p} \times \underline{r} \frac{|\underline{E}|}{|\underline{r}|} \qquad \underline{B} = \frac{1}{mc^2} \frac{|\underline{E}|}{|\underline{r}|} \hat{\underline{l}}$$

$$\underline{B} = \frac{1}{mc^2} \frac{|\underline{E}|}{|\underline{r}|} \hat{\underline{l}}$$

$$|\underline{E}| = -\frac{\partial \phi(r)}{\partial r}$$
  $|\underline{E}| = -\frac{1}{e} \frac{\partial U(r)}{\partial r}$ 

$$|\underline{E}| = -\frac{1}{e} \frac{\partial U(r)}{\partial r}$$

$$\underline{B} = \frac{1}{emc^2} \frac{1}{|\underline{r}|} \frac{\partial U(r)}{\partial r} \hat{\underline{l}} \qquad \underline{\underline{B}} \text{ parallel to } \underline{\underline{l}}$$

$$\underline{\mu}_s = -g_s \frac{\mu_B}{\hbar} \hat{\underline{s}}$$

 $\mu$  parallel to s

$$-\underline{\mu}_{s} \cdot \underline{B} \propto \frac{1}{r} \frac{\partial U(r)}{\partial r} \hat{\underline{s}} \cdot \hat{\underline{l}}$$



Perturbation energy

$$-\underline{\mu}_s \cdot \underline{B} = \frac{\mu_0}{4\pi} Z g_s \mu_B^2 \frac{1}{r^3} \frac{\hat{\underline{s}} \cdot \underline{l}}{\hbar^3}$$

Radial integral

$$\left\langle \frac{1}{r^3} \right\rangle = \frac{Z^3}{n^3 a_0^3 l(l+1/2)(l+1)}$$

Angular momentum operator

$$\underline{\hat{s}} \cdot \underline{\hat{l}} = ?$$

How to find  $\langle \hat{\underline{s}} | \hat{\underline{l}} \rangle$  using perturbation theory?

## Perturbation theory with degenerate states

Perturbation Energy:

$$\Delta E = \langle \psi_i | \hat{H}' | \psi_i \rangle$$

Change in wavefunction: So won't work if  $E_i = E_j$ i.e. degenerate states.

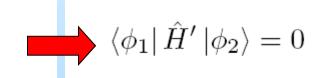
$$\Delta \psi_i = \sum_{j \neq i} \frac{\langle \psi_j | \hat{H}' | \psi_i \rangle}{E_i - E_j} \psi_j$$

We need a diagonal perturbation matrix, i.e. off-diagonal elements are zero

$$\langle \psi_1 | \hat{H}' | \psi_2 \rangle = 0$$

New wavefunctions:

$$\phi_1 = a\psi_1 + b\psi_2$$
$$\phi_2 = b^*\psi_1 - a^*\psi_2$$



New eignvalues:

$$\Delta E_1 = \langle \phi_1 | \hat{H}' | \phi_1 \rangle, \ \Delta E_2 = \langle \phi_2 | \hat{H}' | \phi_2 \rangle$$



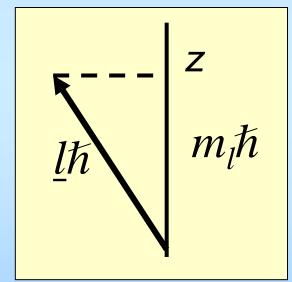
#### The Vector Model

Angular momenta represented by vectors:

 $\underline{l}^2$ ,  $\underline{s}^2$  and  $\underline{j}^{2}$ , and  $\underline{l}$ ,  $\underline{s}\underline{j}$  and with magnitudes:

l(l+1), s(s+1) and j(j+1). and  $\sqrt{l(l+1)}$ ,  $\sqrt{s(s+1)}$  and  $\sqrt{j(j+1)}$ .

Projections of vectors:  $\underline{l}$ ,  $\underline{s}$  and  $\underline{j}$  on z-axis are  $\underline{m}_l$ ,  $\underline{m}_s$  and  $\underline{m}_j$ 



Constants of the Motion —— Good quantum numbers

# Summary of Lecture 3: Spin-Orbit coupling

Spin-Orbit energy

$$-\underline{\mu}_s \cdot \underline{B} \propto \frac{1}{r} \frac{\partial U(r)}{\partial r} \underline{\hat{s}} \cdot \underline{\hat{l}}$$

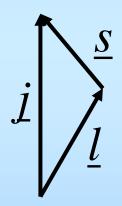
 Radial integral sets size of the effect.

$$\left<\frac{1}{r^3}\right> = \frac{Z^3}{n^3 a_0^3 l(l+1/2)(l+1)}$$

- Angular integral  $< \underline{s}$ .  $\underline{l}>$  needs Degenerate Perturbation Theory
- New basis eigenfunctions:

$$\langle n, l, s, j, m_j |$$

•  $\underline{j}$  and  $\underline{j}_z$  are constants of the motion



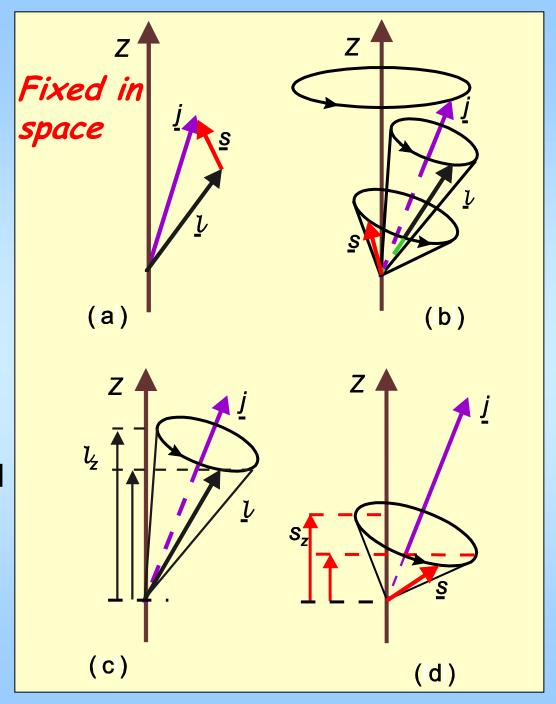
- Vector Model represents angular momenta as vectors
- · These vectors can help identify constants of the motion
- These constants of the motion represented by good quantum numbers



- (a) No spin-orbit coupling
- (b) Spin-orbit coupling gives precession around *j*
- (c) Projection of <u>l</u> on z is not constant
- (d) Projection of <u>s</u> on z is not constant

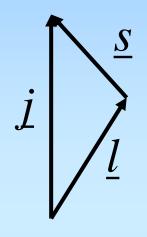
 $m_l$  and  $m_s$  are not good quantum numbers Replace by j and  $m_i$ 





Vector model defines:

$$\underline{\hat{j}}^2 = \left(\underline{\hat{l}} + \underline{\hat{s}}\right)^2 \qquad \underline{\hat{j}}_z = \underline{\hat{l}}_z + \underline{\hat{s}}_z$$



Vector triangle -

Magnitudes

$$\hat{\underline{s}} \cdot \hat{\underline{l}} = \frac{1}{2} \left( \hat{\underline{j}}^2 - \hat{\underline{l}}^2 - \hat{\underline{s}}^2 \right)$$

$$j(j+1) \quad l(l+1) \quad s(s+1)$$

$$\langle n, l, s, j, m_j | \underline{\hat{s}} \cdot \underline{\hat{l}} | n, l, s, j, m'_j \rangle = 0$$
 unless  $j = j'$  and  $m_j = m'_j$ 

$$\langle n, l, s, j, m_j | \underline{\hat{s}} \cdot \underline{\hat{l}} | n, l, s, j, m_j \rangle = \frac{1}{2} \{ j(j+1) - l(l+1) - s(s+1) \} \hbar^2$$



$$-\,\underline{\mu}_s\cdot\underline{B}\propto\frac{1}{r}\frac{\partial U(r)}{\partial r}\underline{\hat{s}}\cdot\hat{\underline{l}}\qquad \boldsymbol{\sim} \;\;\beta_{n,l}\,\,\mathrm{x}\,\,\boldsymbol{\zeta}\,\,\,\mathbf{1/\!2}\,\,\{\,\,\underline{\boldsymbol{j}}^2-\underline{\boldsymbol{l}}^2-\underline{\boldsymbol{s}}^2\,\,\}\,\,\boldsymbol{\rangle}$$

Using basis states:  $| n, l, s, j, m_j \rangle$  to find expectation value:

The spin-orbit energy is:

$$\Delta E = \beta_{n,l} \times (1/2) \{ j(j+1) - l(l+1) - s(s+1) \}$$



$$\Delta E = \beta_{n,l} \times (1/2) \{ j(j+1) - l(l+1) - s(s+1) \}$$

#### Sodium

3s: 
$$n = 3$$
,  $l = 0$ , no effect

3p: 
$$n = 3$$
,  $l = 1$ ,  $s = \frac{1}{2}$ ,  $-\frac{1}{2}$ ,  $j = \frac{1}{2}$  or  $\frac{3}{2}$ 

$$\Delta E(1/2) = \beta_{3p} \mathbf{x} (-1); \quad \Delta E(3/2) = \beta_{3p} \mathbf{x} (1/2)$$

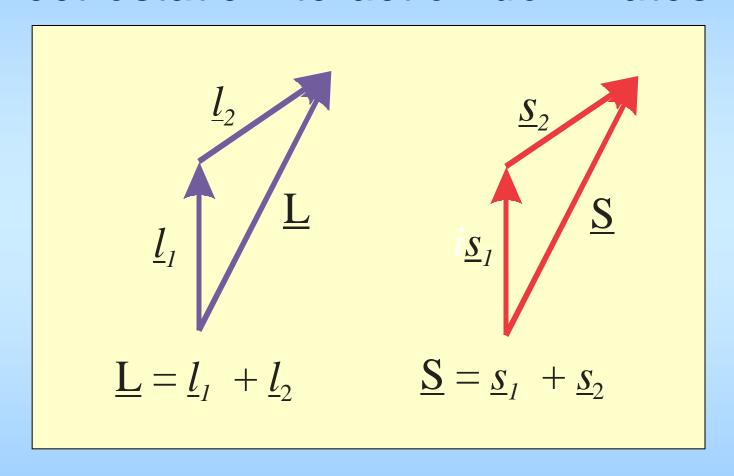
(no spin-orbit) 
$$j = 1/2$$
  $2j + 1 = 2$  -1



# Lecture 4

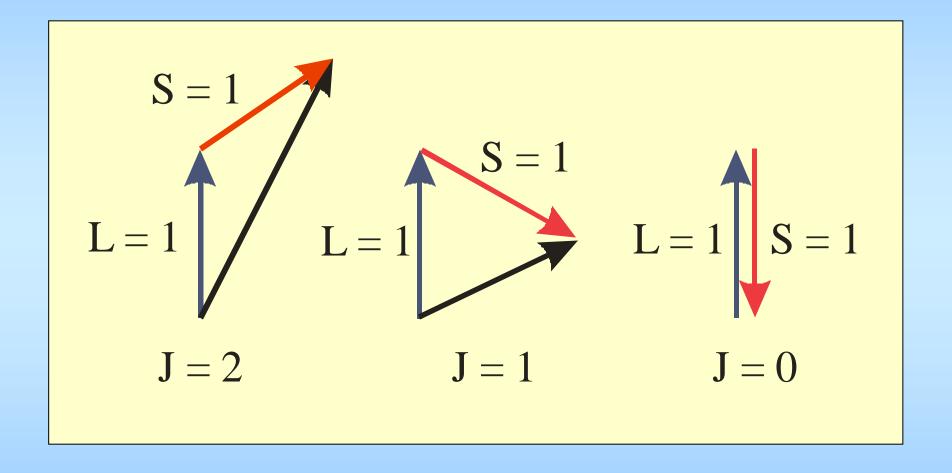
- Two-electron atoms:
   the residual electrostatic interaction
- Adding angular momenta: LS-coupling
- Symmetry and indistinguishability
- Orbital effects on electrostatic interaction
- Spin-orbit effects

# Coupling of $\underline{l}_{\underline{i}}$ and $\underline{s}$ to form $\underline{L}$ and $\underline{S}$ : Electrostatic interaction dominates





# Coupling of L and S to form J



# Magnesium: "typical" 2-electron atom

Mg Configuration:

 $1s^22s^22p^63s^2$ 

Na Configuration:

 $1s^22s^22p^63s$ 

"Spectator" electron in Mg

Mg energy level structure is like Na but levels are more strongly bound

#### Residual electrostatic interaction

$$\hat{H}_1 = -\sum_{i} \frac{Ze^2}{4\pi\epsilon_0 r_i} + \sum_{i>j} \frac{e^2}{4\pi\epsilon_0 r_{ij}} - \sum_{i} U(r_i)$$

3s4s state in Mg: Zero-order wave functions

$$|\psi_1(3s)\psi_2(4s)\rangle$$

Perturbation energy:

$$\Delta E_1 \neq \langle \psi_1(3s)\psi_2(4s)| \hat{H}_1 | \psi_1(3s)\psi_2(4s) \rangle$$

?

Degenerate states



#### Linear combination of zero-order wave-functions

$$\phi_1 = \frac{1}{\sqrt{2}} \left( \psi_1(3s) \psi_2(4s) + \psi_1(4s) \psi_2(3s) \right)$$

$$\phi_2 = \frac{1}{\sqrt{2}} \left( \psi_1(3s) \psi_2(4s) - \psi_1(4s) \psi_2(3s) \right)$$

#### Off-diagonal matrix elements:

$$\frac{1}{2} \langle \psi_1(3s)\psi_2(4s) + \psi_1(4s)\psi_2(3s) | V | \psi_1(3s)\psi_2(4s) - \psi_1(4s)\psi_2(3s) \rangle$$

$$1 \uparrow \qquad 2 \uparrow \qquad 3 \uparrow \qquad 4 \uparrow$$



#### Off-diagonal matrix elements:

$$\frac{1}{2} \langle \psi_1(3s)\psi_2(4s) + \psi_1(4s)\psi_2(3s) | V | \psi_1(3s)\psi_2(4s) - \psi_1(4s)\psi_2(3s) \rangle$$

$$1 \uparrow \qquad \qquad 2 \uparrow \qquad \qquad 3 \uparrow \qquad \qquad 4 \uparrow$$

$$\begin{array}{rcl} 1 \times 3 & = & \langle \psi_1(3s)\psi_2(4s) | \, V \, | \psi_1(3s)\psi_2(4s) \rangle = \mathrm{J} \\ 2 \times 4 & = & -\langle \psi_1(4s)\psi_2(3s) | \, V \, | \psi_1(4s)\psi_2(3s) \rangle = -\mathrm{J} \\ 2 \times 3 & = & \langle \psi_1(4s)\psi_2(3s) | \, V \, | \psi_1(3s)\psi_2(4s) \rangle = \mathrm{K} \\ 1 \times 4 & = & -\langle \psi_1(3s)\psi_2(4s) | \, V \, | \psi_1(4s)\psi_2(3s) \rangle = -\mathrm{K} \end{array}$$

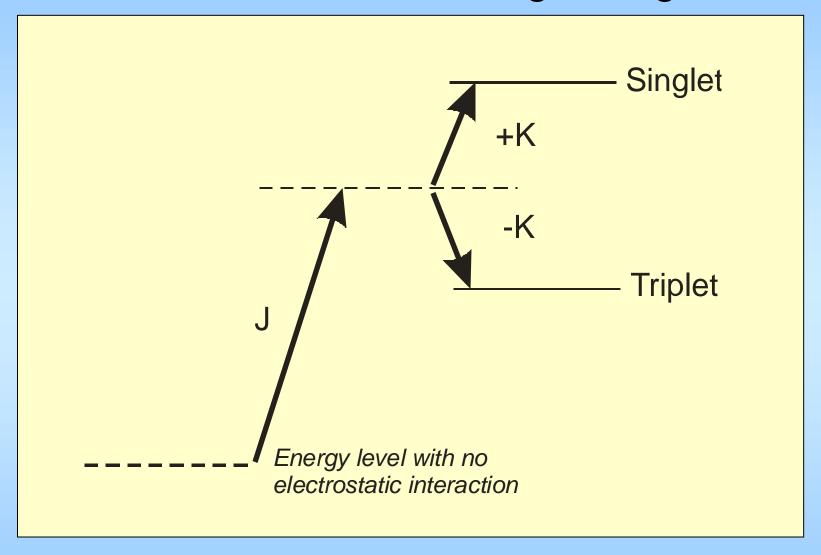
**Therefore** 

$$\langle \phi_1 | V | \phi_2 \rangle = 0$$

as required!

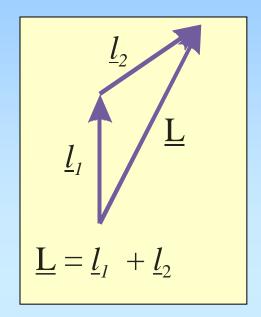


## Effect of Direct and Exchange integrals

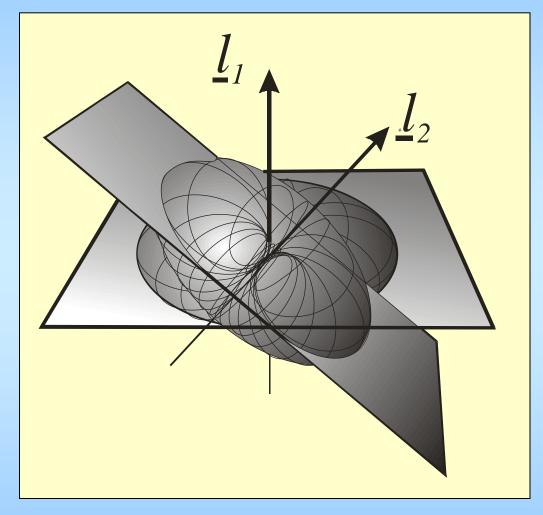




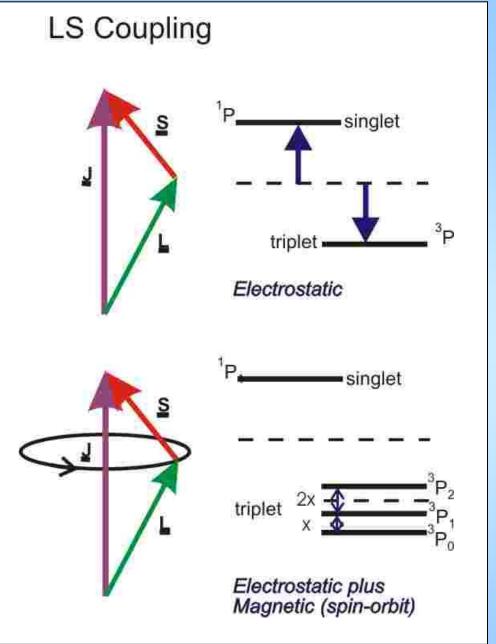
#### Orbital orientation effect on electrostatic interaction



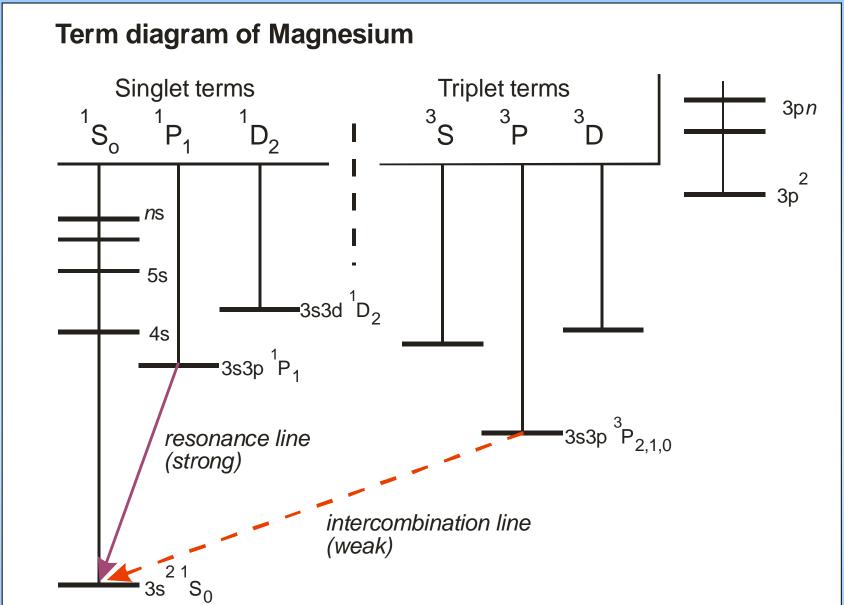
Overlap of electron wavefunctions depends on orientation of orbital angular momentum: so electrostatic interaction depends on <u>L</u>



Residual Electrostatic and Spin-Orbit effects in LS-coupling









Oxford Physics: 3rd Year, Atomic Physics

## The story so far: Hierarchy of interactions

Central Field configuration, 
$$n_1l_1n_2l_2...$$
  
Residual Electrostatic  $\rightarrow$  Terms,  $L = S, P, D...$   
Spin-Orbit  $\rightarrow$  Level,  $J = |L - S| \rightarrow L + S$ 

# $H_3$ : Nuclear Effects on atomic energy $H_3 << H_2 << H_1 << H_0$



### Lecture 5

- Nuclear effects on energy levels
  - Nuclear spin
  - addition of nuclear and electron angular momenta
- How to find the nuclear spin
- •Isotope effects:
  - effects of finite nuclear mass
  - effects of nuclear charge distribution
  - Selection Rules

### Nuclear effects in atoms

### **Nucleus:**

• stationary

Corrections

Nuclear spin → magnetic dipole interacts with electrons

infinite mass orbits centre of mass with electrons

point charge spread over nuclear volume

### **Nuclear Spin interaction**

Magnetic dipole ~ angular momentum

$$\underline{\mu} = -\gamma \underline{\lambda} \hbar$$

$$\underline{\mu}_{l} = -g_{l} \mu_{B} \underline{l}$$

$$\underline{\mu}_{l} = -g_{I} \mu_{N} \underline{I}$$

$$\underline{\mu}_{l} = -g_{I} \mu_{N} \underline{I}$$

$$g_I \sim 1$$
  $\mu_N = \mu_B \times m_e / m_P \sim \mu_B / 2000$ 

Perturbation energy:

$$\hat{H}_3 = -\underline{\mu}_I \cdot \underline{B}_{el}$$

$$\hat{H}_3 = -\underline{\hat{\mu}}_I \cdot \underline{\hat{B}}_{el}$$

### Magnetic field of electrons: Orbital and Spin

Closed shells: zero contribution

s orbitals: largest contribution – short range ~1/r<sup>3</sup>

l > 0, smaller contribution - neglect

$$B_{\rm el} \sim \frac{\mu_0}{4\pi} \mu_B \left\langle \frac{1}{r^3} \right\rangle.$$

$$B_{\rm el} \sim \frac{\mu_0}{4\pi} \frac{\mu_B}{a_0^3} \sim 6 \mathrm{T}$$

$$\hat{H}_3 = -\underline{\hat{\mu}}_I \cdot \underline{\hat{B}}_{el}$$

$$\underline{B}_{el} = (scalar\ quantity) \times \underline{J}$$

Usually dominated by spin contribution in s-states:

Fermi "contact interaction".

Calculable only for Hydrogen in ground state, 1s

# Coupling of *I* and *J*

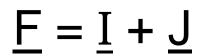
$$\hat{H}_3 = + \hat{\underline{\mu}}_I \hat{\underline{B}}_{\rm el}$$
 Depends on  $I$  Depends on  $J$ 

$$\hat{H}_3 = A_J \underline{I} \cdot \underline{J}$$

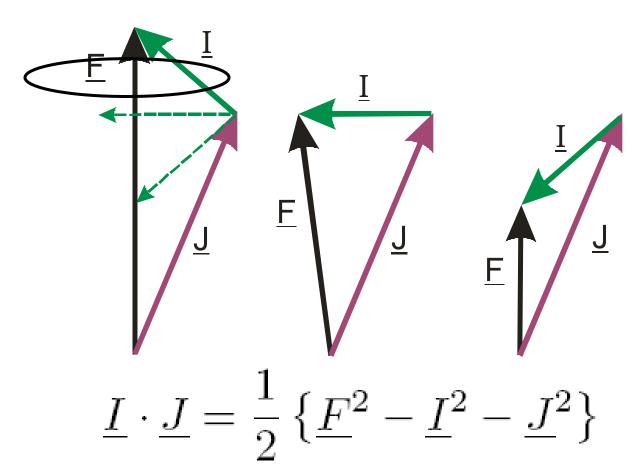
Nuclear spin interaction energy:

$$\Delta E = A_J \left\langle \hat{\underline{I}} \cdot \hat{\underline{J}} \right
angle$$
empirical Expectation value

### Vector model of nuclear interaction



I and J precess around F



### Hyperfine structure

Hfs interaction energy:

$$\Delta E = A_J \left\langle \underline{\hat{I}} \cdot \underline{\hat{J}} \right\rangle$$

Vector model result:  $\underline{I} \cdot \underline{J} = \frac{1}{2} \left\{ \underline{F}^2 - \underline{I}^2 - \underline{J}^2 \right\}$ 

Hfs energy shift:

$$\Delta E = \frac{A_J}{2} \left\{ F(F+1) - I(I+1) - J(J+1) \right\}$$

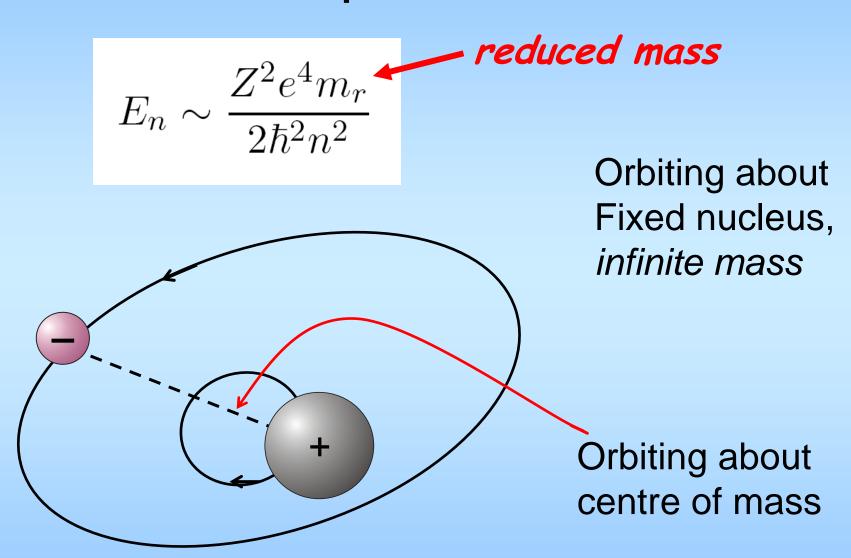
Hfs interval rule:

$$\Delta E_{F'} = \Delta E(F') - \Delta E(F' - 1) \sim A_J F'$$

## Finding the nuclear spin, I

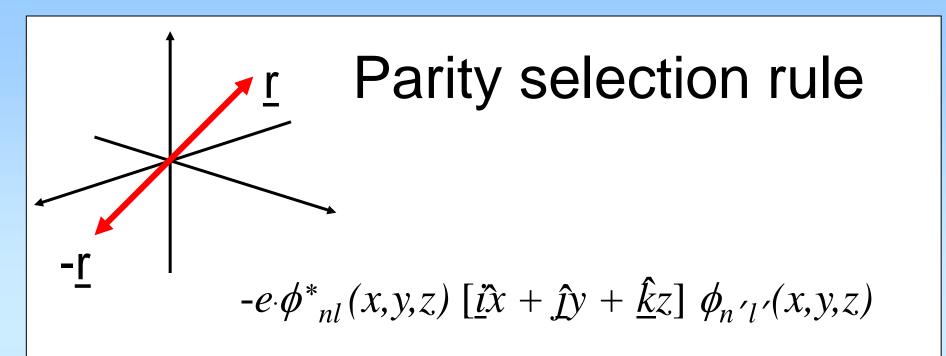
- Interval rule finds F, then for known  $J \rightarrow I$
- Number of spectral lines
   (2I + 1) for J > I, (2J + 1) for I > J
- Intensity
   Depends on statistical weight (2F + 1)
   finds F, then for known J → I

# Isotope effects



### Lecture 6

- Selection Rules
- Atoms in magnetic fields
  - basic physics; atoms with no spin
  - atoms with spin: anomalous Zeeman Effect
  - polarization of the radiation



Parity  $(-1)^l$  must change

$$\Delta l = \pm 1$$

# Configuration

```
\begin{split} &\langle \psi_1(1s)\psi_2(2p)|\,\underline{r}_1+\underline{r}_2\,|\psi_1(3p)\psi_2(3d)\rangle\\ =&\  \, \langle \psi_1(1s)|\,\underline{r}_1\,|\psi_1(3p)\rangle\times\langle \psi_2(2p)|\psi_2(3d)\rangle+\langle \psi_2(2p)|\,\underline{r}_2\,|\psi_2(3d)\rangle\times\langle \psi_1(1s)|\psi_1(3p)\rangle\\ =&\  \, 0 \end{split}
```

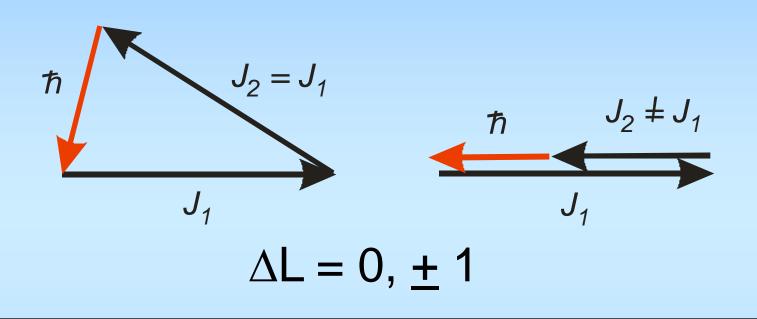
### Only one electron "jumps"

$$\Delta n = \text{anything}$$

$$\Delta l = \pm 1$$

### Selection Rules:

### Conservation of angular momentum



$$\Delta S = 0$$

$$\Delta M_J = 0, \pm 1$$

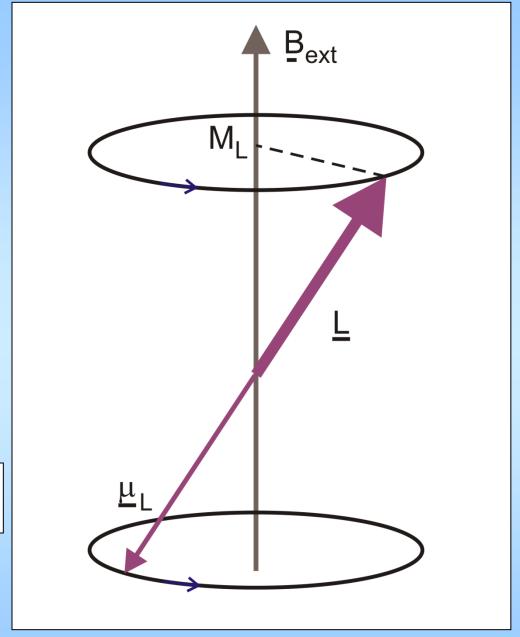
### Atoms in magnetic fields



# Effect of B-field on an atom with no spin

Interaction energy - Precession energy:

$$\Delta E_{\rm Z} = -\underline{\mu}_L \cdot \underline{B}_{\rm ext}$$



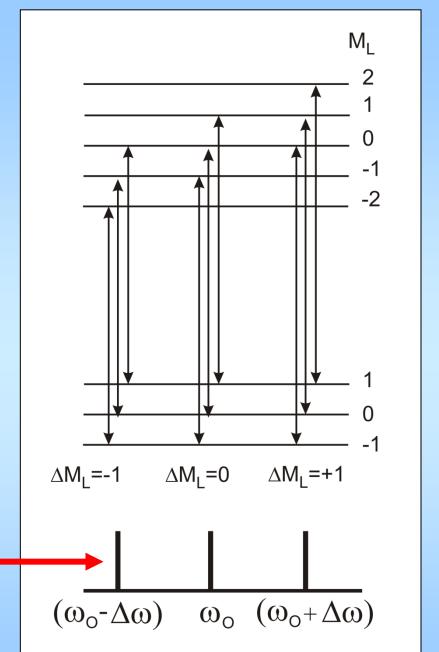


Oxford Physics: 3rd Year, Atomic Physics

#### **Normal Zeeman Effect**

Level is split into equally Spaced sub-levels (states)

Selection rules on M<sub>L</sub> give a spectrum of the normal Lorentz Triplet

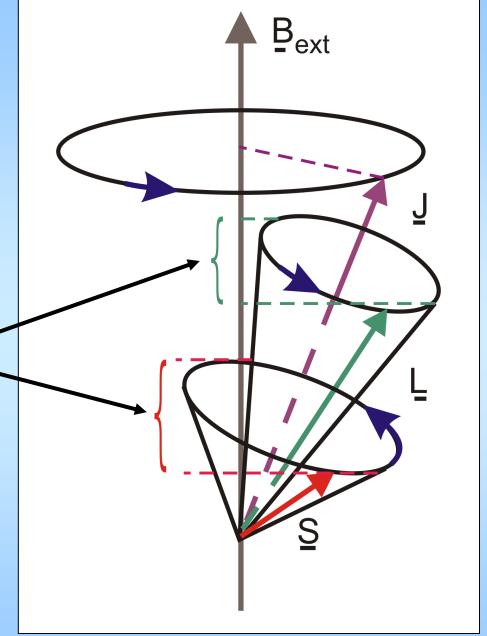






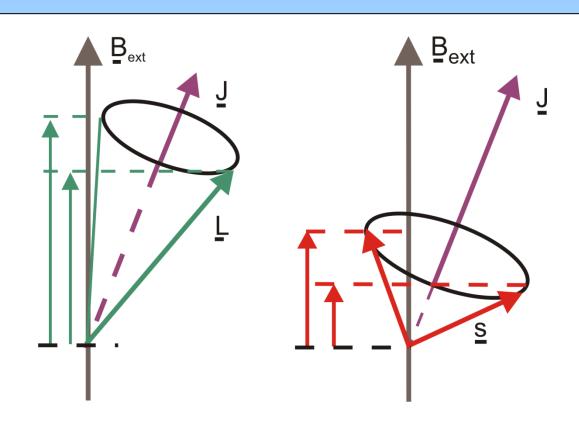
Effect of B-field on an atom with spin-orbit coupling

Precession of <u>L</u> and <u>S</u> around the resultant <u>J</u> leads to variation of <u>S</u> projections of <u>L</u> and <u>S</u> on the field direction





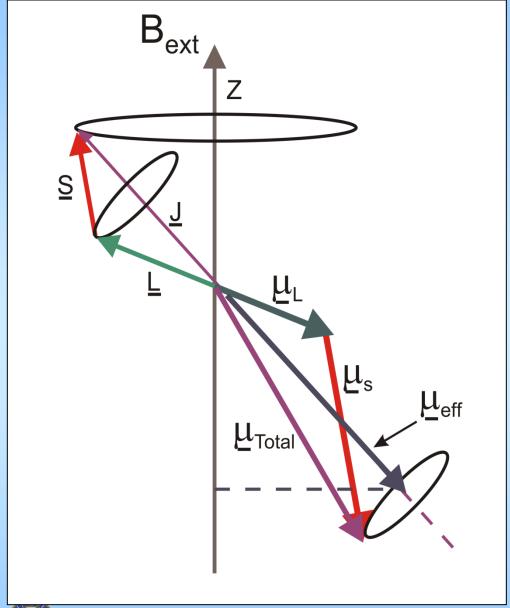
Oxford Physics: 3rd Year, Atomic Physics



Projections of L and S on z axis vary owing to precession around J.

m<sub>L</sub> and m<sub>s</sub> are no longer good quantum numbers





Total magnetic moment does not lie along axis of <u>J</u>.

Effective magnetic moment does lie along axis of <u>J</u>, hence has constant projection on B<sub>ext</sub> axis

$$\underline{\mu}_{\text{eff}} = g_J \mu_B \underline{J}$$

### Perturbation Calculation of Bext effect on spin-orbit level

Interaction energy

$$\hat{H}_{\rm mag} = -\underline{\mu}_{\rm atom} \cdot \underline{B}_{\rm ext}$$

Effective magnetic moment

$$\underline{\mu}_{\text{eff}} = g_J \mu_B \underline{J}$$

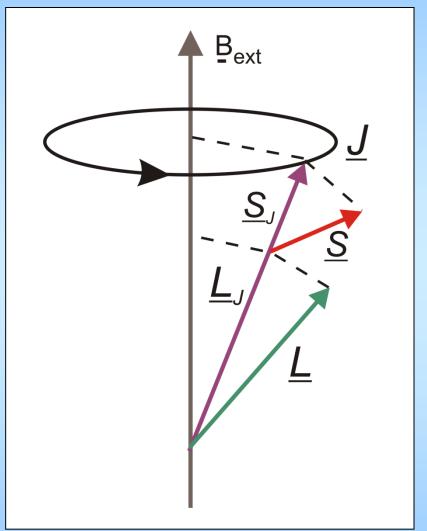
Perturbation Theory: expectation value of energy

$$\Delta E_{\rm AZ} = g_J \mu_B \left\langle \underline{\hat{J}} \cdot \underline{\hat{B}}_{\rm ext} \right\rangle$$

Energy shift of M<sub>J</sub> level

$$\Delta E_{\rm AZ} = g_J \mu_B \underline{B}_{\rm ext} M_J$$

### Vector Model Calculation of Bext effect on spin-orbit level



Projections of  $\underline{L}$  and  $\underline{S}$  on  $\underline{J}$  are given by

$$\frac{|\underline{L}\cdot\underline{J}|\underline{J}}{|\underline{J}|^2} = \underline{L}_J$$

$$\frac{|\underline{S} \cdot \underline{J}|\underline{J}}{|\underline{J}|^2} = \underline{S}_J$$

### Vector Model Calculation of Bext effect on spin-orbit level

$$\Delta E_{\text{AZ}} = g_L \mu_B \underline{L}_J \cdot \underline{B}_{\text{ext}} + g_S \mu_B \underline{S}_J \cdot \underline{B}_{\text{ext}}$$

$$= g_L \mu_B \frac{|\underline{L} \cdot \underline{J}|}{|\underline{J}|^2} \underline{J} \cdot \underline{B}_{\text{ext}} + g_S \mu_B \frac{|\underline{S} \cdot \underline{J}|}{|\underline{J}|^2} \underline{J} \cdot \underline{B}_{\text{ext}}$$

$$\Delta E_{\rm AZ} = \mu_B \frac{\left[3\underline{J}^2 - \underline{L}^2 + \underline{S}^2\right]}{2|\underline{J}|^2} J_z B_{\rm ext}$$

$$\Delta E_{\rm AZ} = \underbrace{\frac{[3J(J+1) - L(L+1) + S(S+1)]}{2J(J+1)}} \mu_B B_{\rm ext} M_J$$

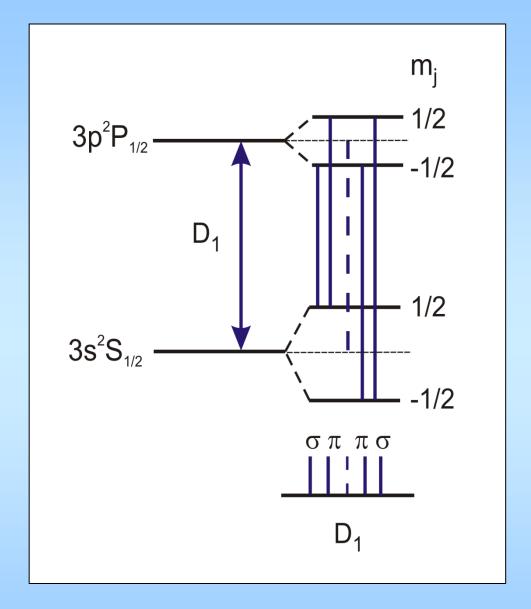
Perturbation Theory result

$$\Delta E_{\rm AZ} = g_J \mu_B \underline{B}_{\rm ext} M_J$$

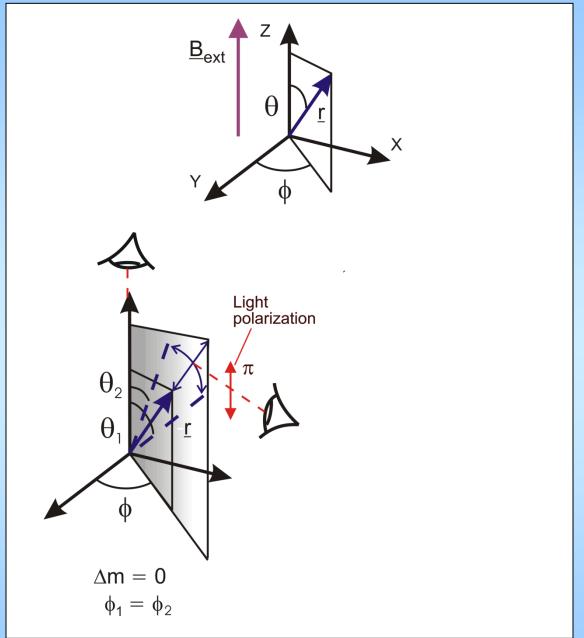


#### **Anomalous Zeeman Effect:**

 $3s^2S_{1/2} - 3p^2P_{1/2}$  in Na



Polarization of Anomalous Zeeman components associated with  $\Delta m$  selection rules



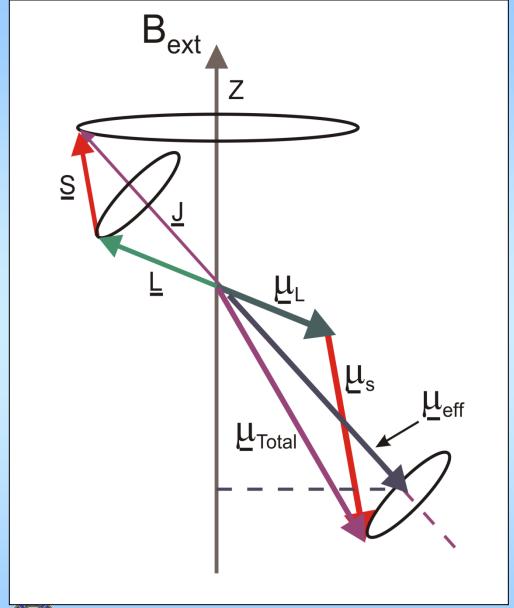


Oxford Physics: 3rd Year, Atomic Physics

# Lecture 7

- Magnetic effects on fine structure
  - Weak field
  - Strong field
- Magnetic field effects on hyperfine structure:
  - Weak field
  - Strong field

# Summary of magnetic field effects on atom with spin-orbit interaction



Total magnetic moment does not lie along axis of <u>J</u>.

Effective magnetic moment does lie along axis of <u>J</u>, hence has constant projection on B<sub>ext</sub> axis

$$\underline{\mu}_{\text{eff}} = g_J \mu_B \underline{J}$$

### Perturbation Calculation of Bext effect on spin-orbit level

Interaction energy

$$\hat{H}_{\text{mag}} = -\underline{\mu}_{\text{atom}} \cdot \underline{B}_{\text{ext}}$$

Effective magnetic moment

$$\underline{\mu}_{\text{eff}} = g_J \mu_B \underline{J}$$

Perturbation Theory: expectation value of energy

$$\Delta E_{\rm AZ} = g_J \mu_B \left\langle \underline{\hat{J}} \cdot \underline{\hat{B}}_{\rm ext} \right\rangle$$

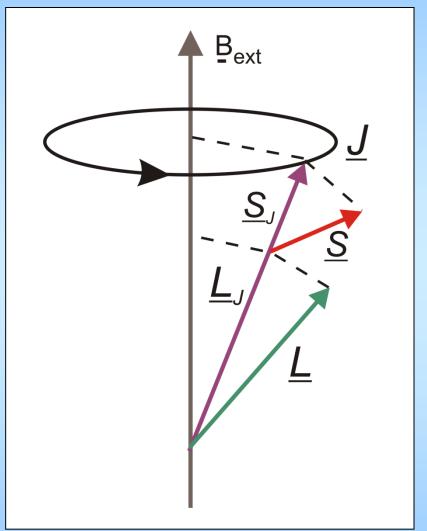
Energy shift of  $M_J$  level

$$\Delta E_{\rm AZ} = g_J \mu_B \underline{B}_{\rm ext} M_J$$



What is  $g_J$ ?

### Vector Model Calculation of Bext effect on spin-orbit level



Projections of  $\underline{L}$  and  $\underline{S}$  on  $\underline{J}$  are given by

$$\frac{|\underline{L}\cdot\underline{J}|\underline{J}}{|\underline{J}|^2} = \underline{L}_J$$

$$\frac{|\underline{S} \cdot \underline{J}|\underline{J}}{|\underline{J}|^2} = \underline{S}_J$$

### Vector Model Calculation of Bext effect on spin-orbit level

$$\Delta E_{\text{AZ}} = g_L \mu_B \underline{L}_J \cdot \underline{B}_{\text{ext}} + g_S \mu_B \underline{S}_J \cdot \underline{B}_{\text{ext}}$$

$$= g_L \mu_B \frac{|\underline{L} \cdot \underline{J}|}{|\underline{J}|^2} \underline{J} \cdot \underline{B}_{\text{ext}} + g_S \mu_B \frac{|\underline{S} \cdot \underline{J}|}{|\underline{J}|^2} \underline{J} \cdot \underline{B}_{\text{ext}}$$

$$\Delta E_{\rm AZ} = \mu_B \frac{\left[3\underline{J}^2 - \underline{L}^2 + \underline{S}^2\right]}{2|\underline{J}|^2} J_z B_{\rm ext}$$

$$\Delta E_{\rm AZ} = \underbrace{\frac{[3J(J+1) - L(L+1) + S(S+1)]}{2J(J+1)}} \mu_B B_{\rm ext} M_J$$

Perturbation Theory result

$$\Delta E_{\rm AZ} = g_J \mu_B \underline{B}_{\rm ext} M_J$$



### Landé g-factor

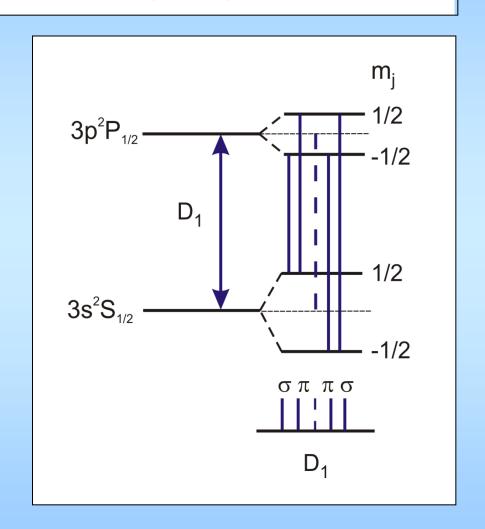
$$g_J = \frac{[3J(J+1) - L(L+1) + S(S+1)]}{2J(J+1)}$$

#### **Anomalous Zeeman Effect:**

$$3s^2S_{1/2} - 3p^2P_{1/2}$$
 in Na

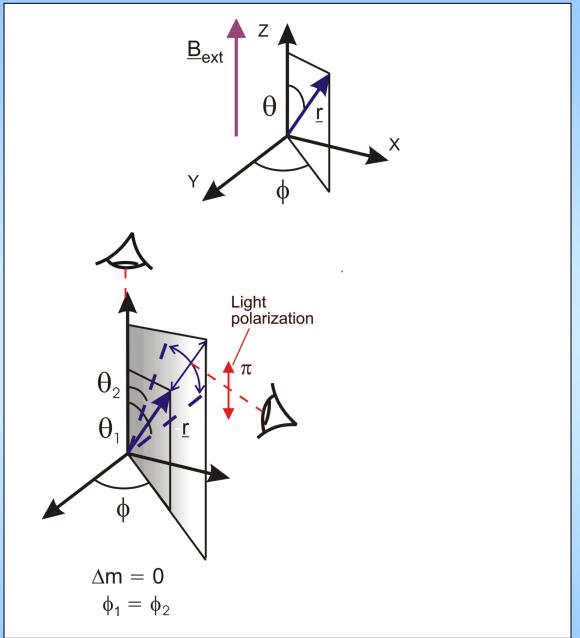
$$g_J(^2P_{1/2}) = 2/3$$
  
 $g_J(^2S_{1/2}) = 2$ 

$$g_{J}(^{2}S_{1/2}) = 2$$





Polarization of Anomalous Zeeman components associated with  $\Delta m$  selection rules



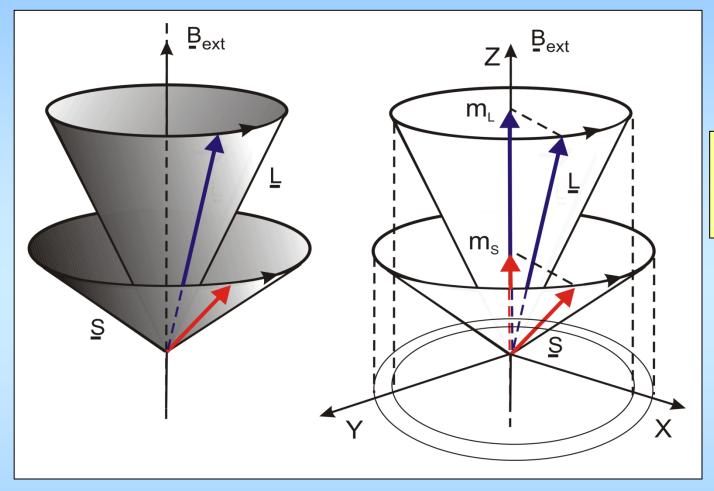


Oxford Physics: 3rd Year, Atomic Physics

# Strong field effects on atoms with spin-orbit coupling

Spin and Orbit magnetic moments couple more strongly to  $B_{ext}$  than to each other.

### Strong field effect on <u>L</u> and <u>S</u>.

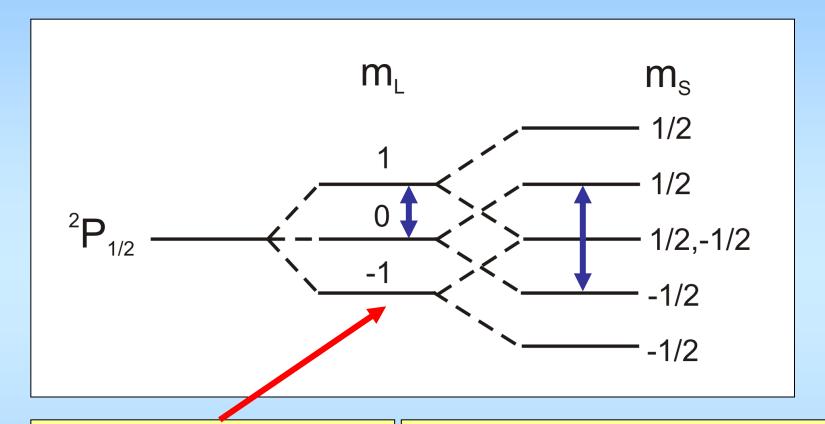


m<sub>L</sub> and m<sub>S</sub> are good quantum numbers

 $\underline{L}$  and  $\underline{S}$  precess independently around  $\underline{B}_{ext}$ Spin-orbit coupling is relatively insignificant

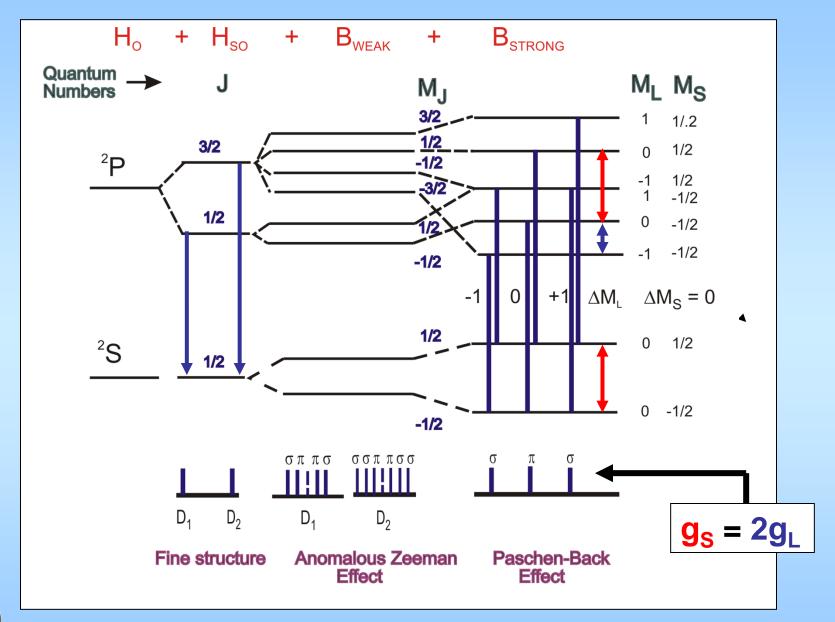
Oxford Physics: 3rd Year, Atomic Physics

#### Splitting of level in strong field: Paschen-Back Effect



N.B. Splitting like Normal Zeeman Effect Spin splitting =  $2 \times Orbital$  $g_5 = 2 \times g_L$ 







# Magnetic field effects on hyperfine structure

### Hyperfine structure in Magnetic Fields

$$A_J \underline{I} \cdot \underline{J} + g_J \mu_B \underline{J} \cdot \underline{B}_{\text{ext}} - g_I \mu_N \underline{I} \cdot \underline{B}_{\text{ext}}$$

Hyperfine interaction

Electron/Field interaction

Nuclear spin/Field interaction

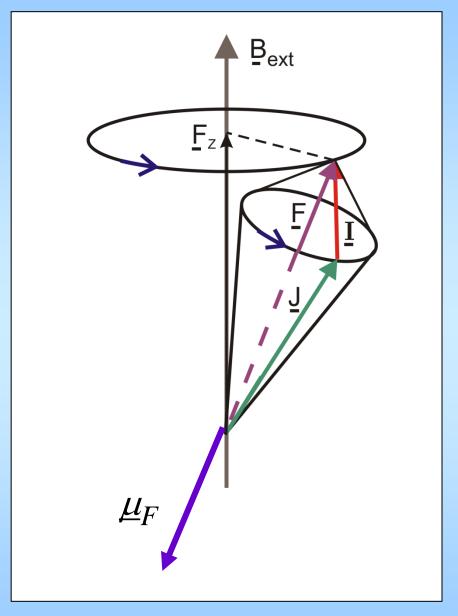
Weak field 
$$A\underline{I} \cdot \underline{J} >> g_J \mu_B \underline{J} \cdot \underline{B}_{\mathrm{ext}}$$
  
Strong field  $A\underline{I} \cdot \underline{J} << g_J \mu_B \underline{J} \cdot \underline{B}_{\mathrm{ext}}$ 

# Weak field effect on hyperfine structure

I and J precess rapidly around F. F precesses slowly around B<sub>ext</sub>

I, J, F and M<sub>F</sub> are good quantum numbers

$$\underline{\mu}_F = -g_F \mu_B \underline{F}$$





$$\underline{\mu}_F = -g_F \mu_B \underline{F}$$

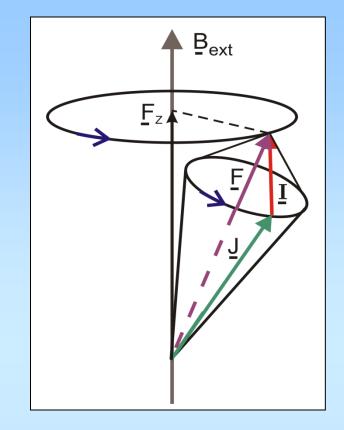
# Only contribution to $\mu_F$ is component of $\mu_J$ along $\underline{F}$

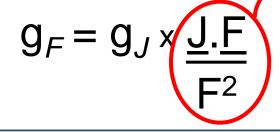
$$\underline{\mu_F} = -g_J \mu_B \underline{J}.\underline{F} \times \underline{F}$$

$$F$$

$$\underline{F}$$

$$\underline$$





Find this using Vector Model



$$g_F = g_J \times \underline{J.F}$$
 $F^2$ 

$$E = I + J$$

$$I^{2} = E^{2} + J^{2} - 2J.E$$

$$J.E = \frac{1}{2} \{F(F+1) + J(J+1) - I(I+1)\}$$

$$g_F = g_J \frac{F(F+1) + J(J+1) - I(I+1)}{2F(F+1)}$$



$$\Delta E = A_J \underline{I} \cdot \underline{J} + g_J \mu_B \underline{J} \cdot \underline{B}_{\text{ext}}$$

$$\Delta E = \frac{A_F}{2} \left\{ F(F+1) - J(J+1) - I(I+1) \right\} + g_F \mu_B \underline{F} \cdot \underline{B}_{\text{ext}}$$

### Each hyperfine level is split by $g_F$ term

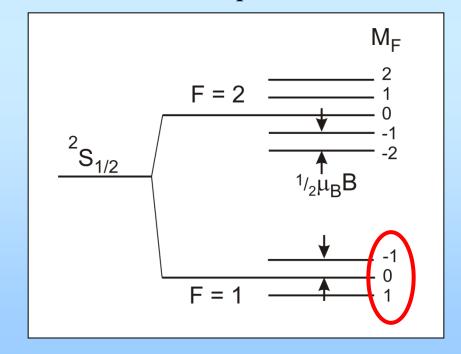
### Ground level of Na:

$$J = 1/2$$
;  $I = 3/2$ ;

F = 1 or 2

$$F = 2$$
:  $g_F = \frac{1}{2}$ ;  $F = 1$ :  $g_F = -\frac{1}{2}$ 

$$F = 1$$
:  $g_F = -\frac{1}{2}$ 





### Sign inversion of $g_F$ for F = 1 and F = 2

$$F = 2$$

$$J = 1/2$$

$$I = 3/2$$

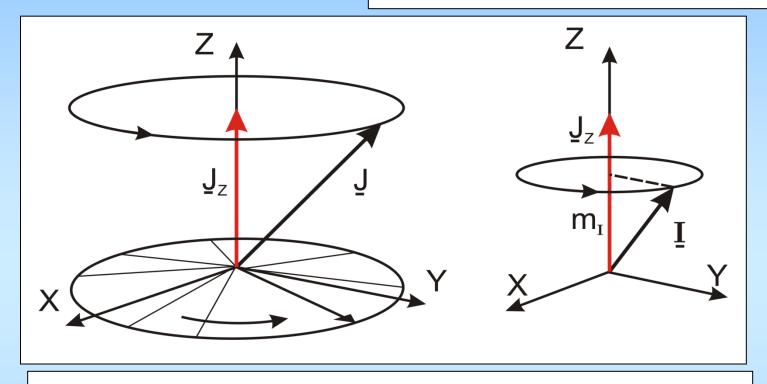
$$J = -1/2$$

$$I = 3/2$$



#### Strong field effect on hfs.

$$\Delta E = A_J \underline{I} \cdot \underline{J} + g_J \mu_B \underline{J} \cdot \underline{B}_{\text{ext}}$$



 $\underline{J}$  precesses rapidly around  $\underline{B}_{ext}$  (z-axis)  $\underline{I}$  tries to precess around  $\underline{J}$  but can follow only the time averaged component along z-axis i.e.  $\underline{J}_z$ 

So  $A_J \underline{I}.\underline{J}$  term  $\rightarrow A_J M_I M_J$ 



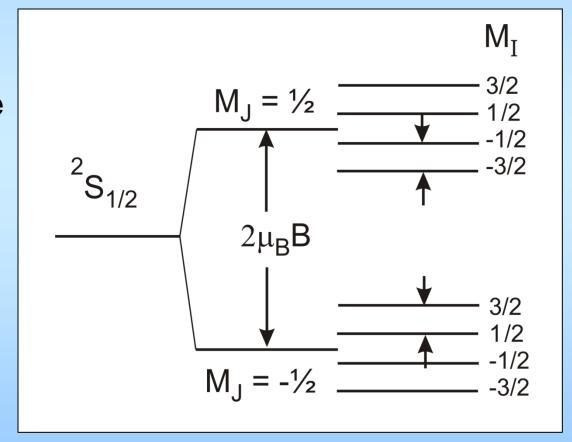
### Strong field effect on hfs.

Dominant term

Energy

$$\Delta E_{\rm BG} = A_J M_I M_J + g_J \mu_B M_J B_{\rm ext}$$

Na ground state





### Strong field effect on hfs.

Energy: 
$$\Delta E = A_J \underline{I} \cdot \underline{J} + g_J \mu_B \underline{J} \cdot \underline{B}_{\rm ext}$$

J precesses around field B<sub>ext</sub>

I tries to precess around J

I precesses around what it can "see" of <u>J</u>: The z-component of J:  $J_7$ 

$$\Delta E_{\rm BG} = A_J M_I M_J + g_J \mu_B M_J B_{\rm ext}$$

### Magnetic field effects on hfs

**Weak field:** F, M<sub>F</sub> are good quantum nos.

Resolve  $\mu_J$  along  $\underline{F}$  to get effective magnetic moment and  $g_F$ 

$$\Delta E(F,M_F) = g_F \mu_B M_F B_{ext}$$

→ "Zeeman" splitting of hfs levels

**Strong field:** M<sub>I</sub> and M<sub>J</sub> are good quantum nos.

J precesses rapidly around B<sub>ext</sub>;

I precesses around z-component of J i.e. what it can "see" of J

$$\bullet \Delta E(M_J, M_I) = g_J \mu_B M_J B_{ext} + A_J M_I M_J$$

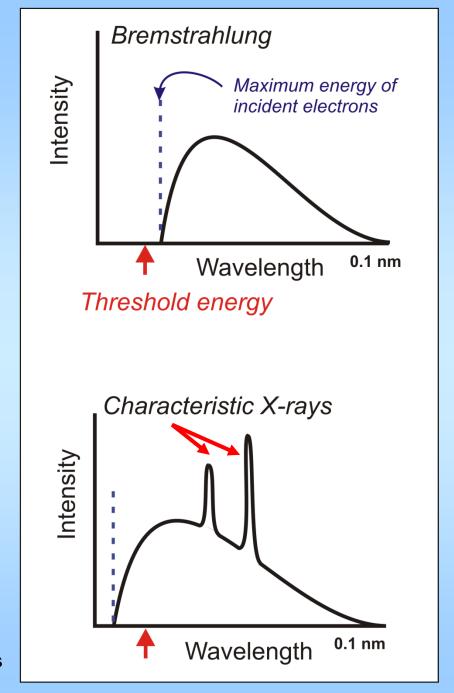
→ hfs of "Zeeman" split levels



# Lecture 8

- X-rays: excitation of "inner-shell" electrons
- High resolution laser spectroscopy
  - The Doppler effect
  - Laser spectroscopy
  - "Doppler-free" spectroscopy

### X – Ray Spectra

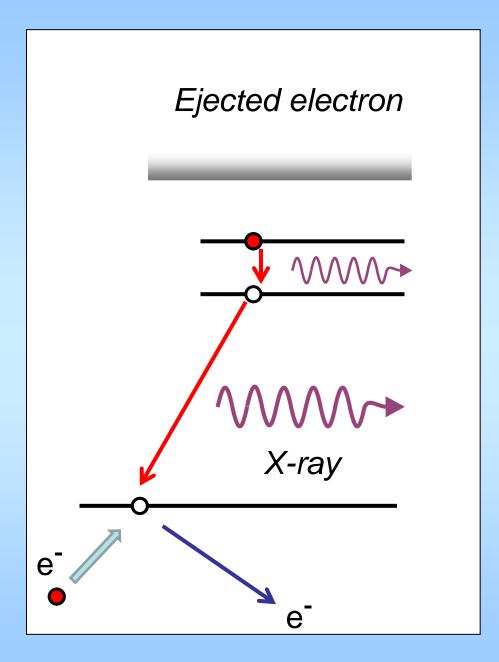




## Characteristic X-rays

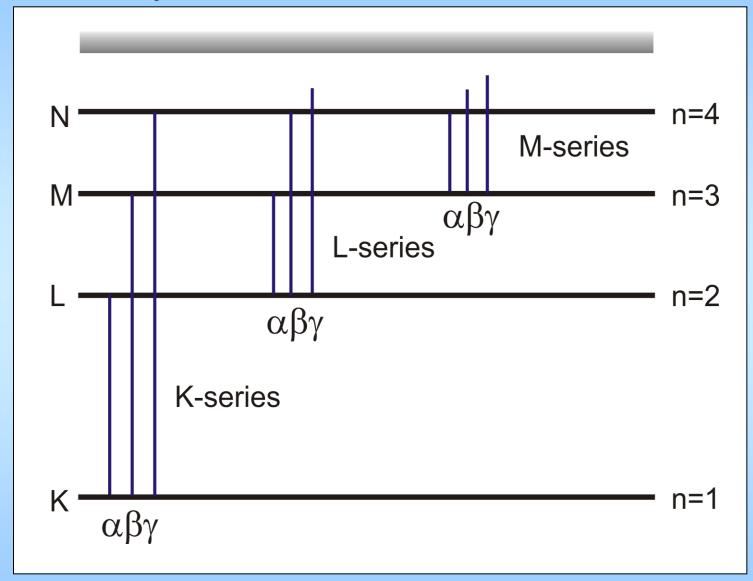
- Wavelengths fit a simple series formula
- All lines of a series appear together
  - when excitation exceeds threshold value
- Threshold energy just exceeds energy of shortest wavelength X-rays
- Above a certain energy no new series appear.

# Generation of characteristic X-rays



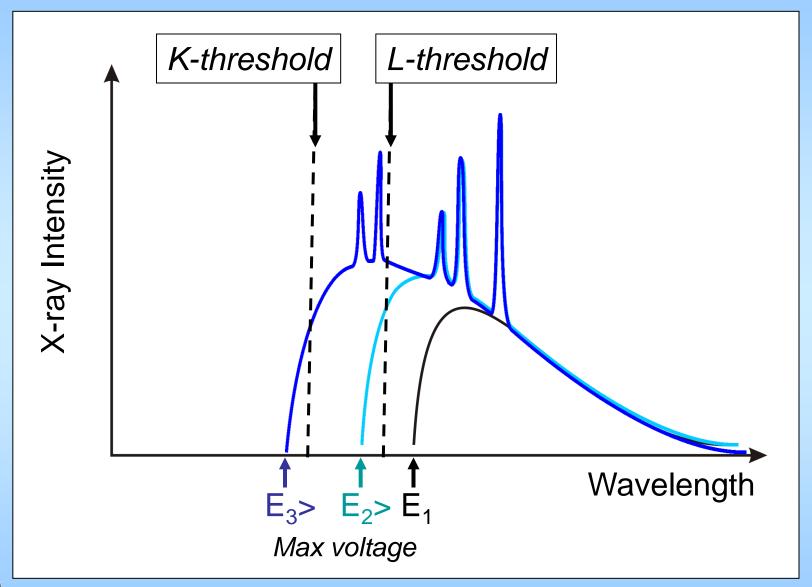


## X-ray series





### X-ray spectra for increasing electron impact energy





Binding energy for electron in hydrogen =  $R/n^2$ 

Binding energy for "hydrogen-like" system =  $RZ^2/n^2$ 

Screening by other electrons in inner shells:

$$Z \rightarrow (Z - \sigma)$$

Binding energy of inner-shell electron:

$$E_n = R(Z - \sigma)^2 / n^2$$

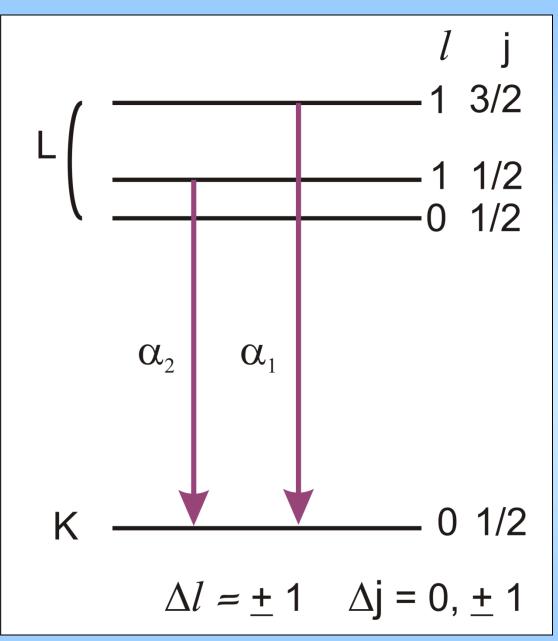
Transitions between inner-shells:

$$E_i - E_j = \overline{v} = R\{(Z - \sigma_i)^2 / n_i^2 - (Z - \sigma_j)^2 / n_j^2\}$$



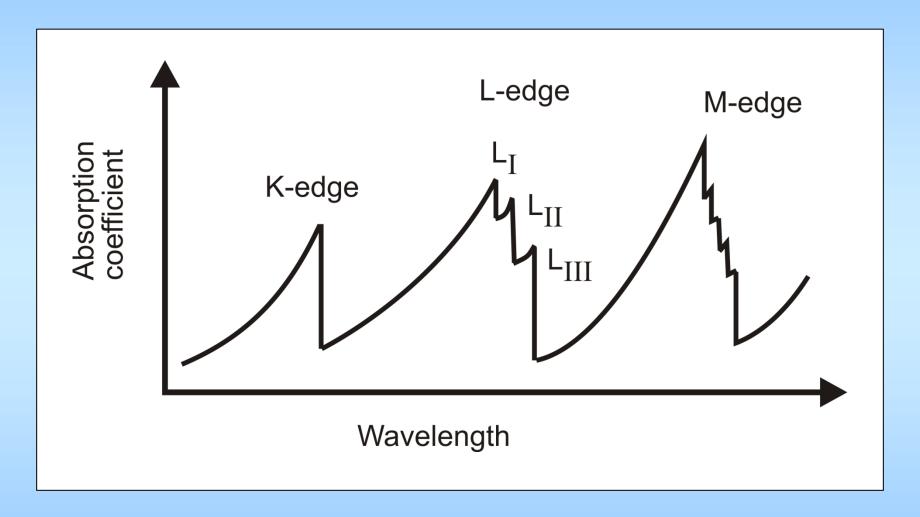
# Fine structure of X-rays

$$\Delta E_{\rm fs} = \frac{5.8Z^4}{n^3l(l+1)}$$



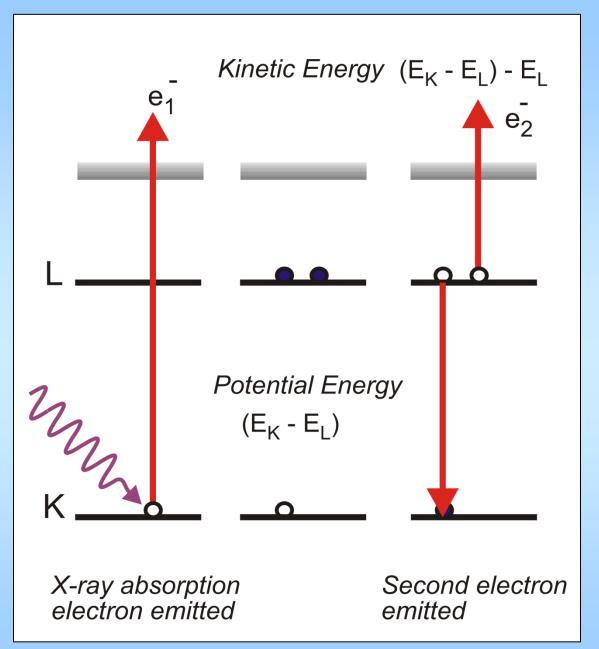


### X-ray absorption spectra





## Auger effect





## High resolution laser spectroscopy

## Doppler broadening

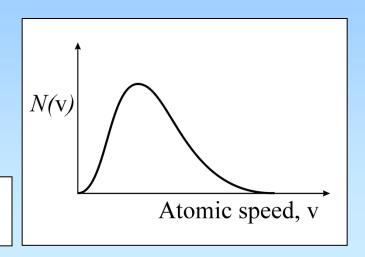
Doppler Shift:

$$\nu = \nu_0 \left( 1 \pm \frac{v}{c} \right)$$

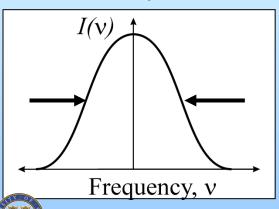
Maxwell-Boltzmann distribution of

Atomic speeds

$$dN = N_0 e^{-\frac{Mv^2}{2kT}} dv$$



Distribution of Intensity



$$I(\nu) = I(\nu_0) \exp\left[-\frac{Mc^2}{2kT} \left(\frac{\nu - \nu_0}{\nu_0}\right)^2\right]$$

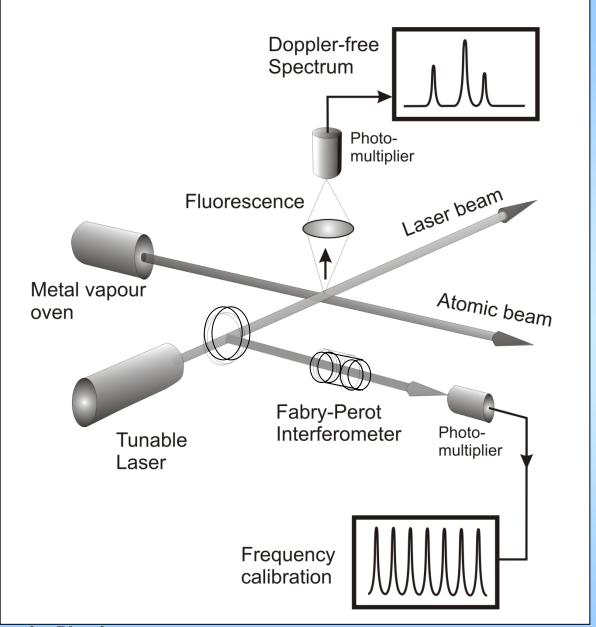
Doppler width

$$\Delta \nu_D = \frac{2\nu}{c} \left[ \frac{2kT}{M} \log_e 2 \right]^{1/2}$$

Oxford Physics: 3rd Year, Atomic Physics

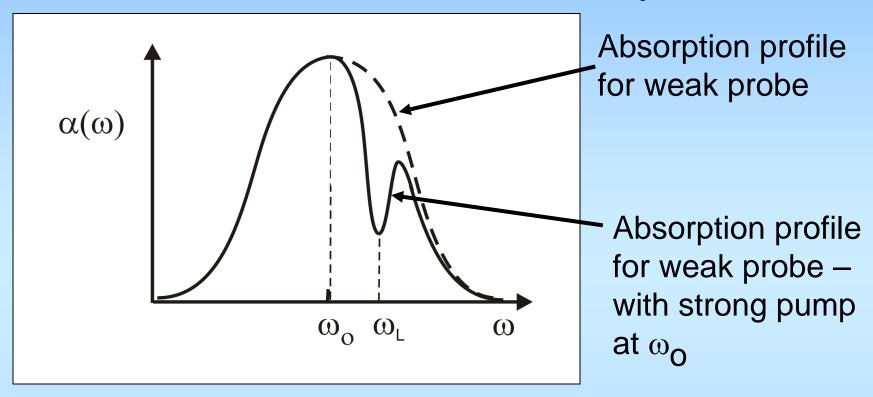
Notes error

# Crossed beam Spectroscopy





### Saturation effect on absorption

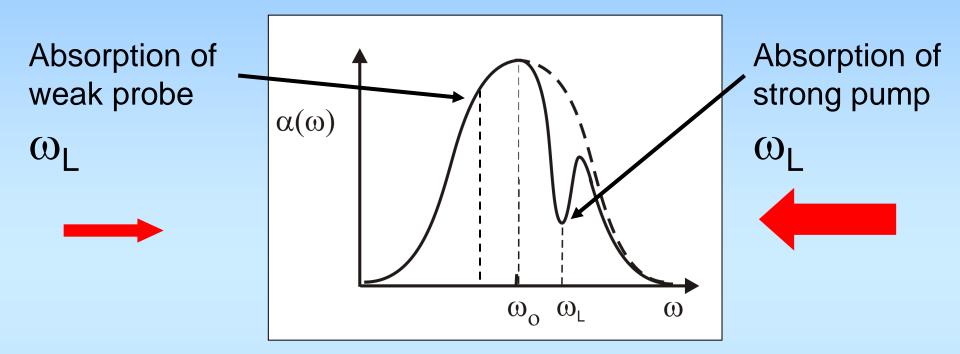


Strong pump at  $\omega_L$  reduces population of ground state for atoms Doppler shifted by  $(\omega_L - \omega_o)$ .

Hence reduced absorption for this group of atoms.



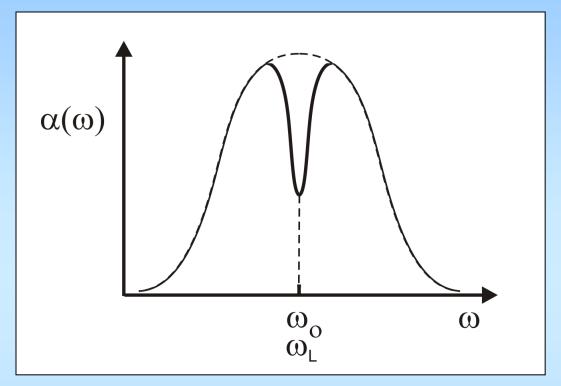
### Saturation effect on absorption



Probe and pump laser at same frequency  $\omega_L$ But propagating in opposite directions Probe Doppler shifted down = Pump Doppler shifted up. Hence probe and pump "see" different atoms.



## Saturation of "zero velocity" group at $\omega_{O}$



Counter-propagating pump and probe

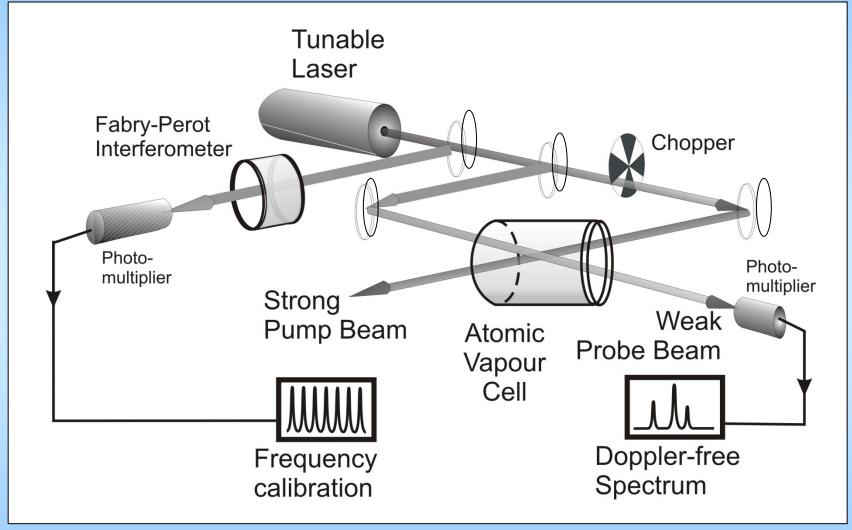
"see" same atoms at  $\omega_{\rm L} = \omega_{\rm O}$ 

i.e. atoms moving with zero velocity relative to light

Probe transmission increases at  $\omega_0$ 



## Saturation spectroscopy





# Saturation spectrum of Sodium D<sub>2</sub> line

Doppler broadening of hyperfine lines

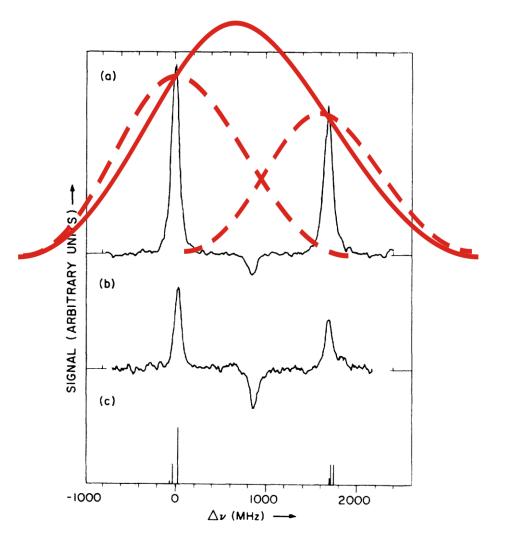
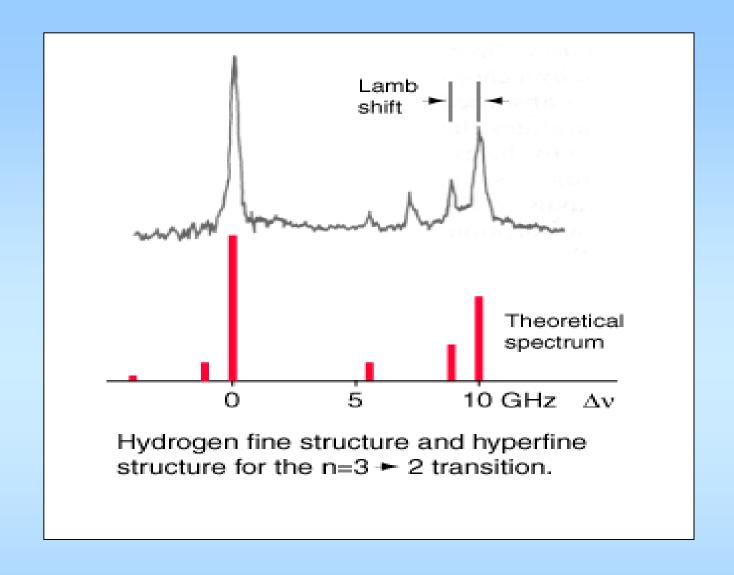
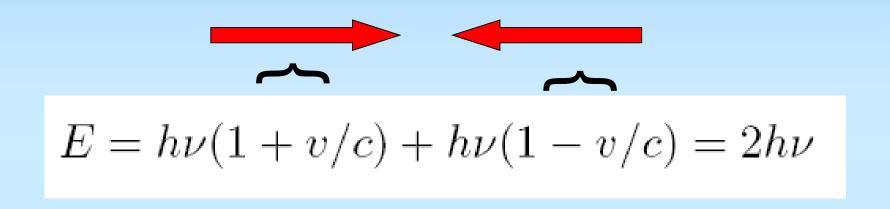


FIG. 3. (a) Saturation spectrum of the Na  $D_2$  line without delay. (b) Like (a), but with a probe delay of 700 nsec. (c)  $D_2$  hyperfine transitions.



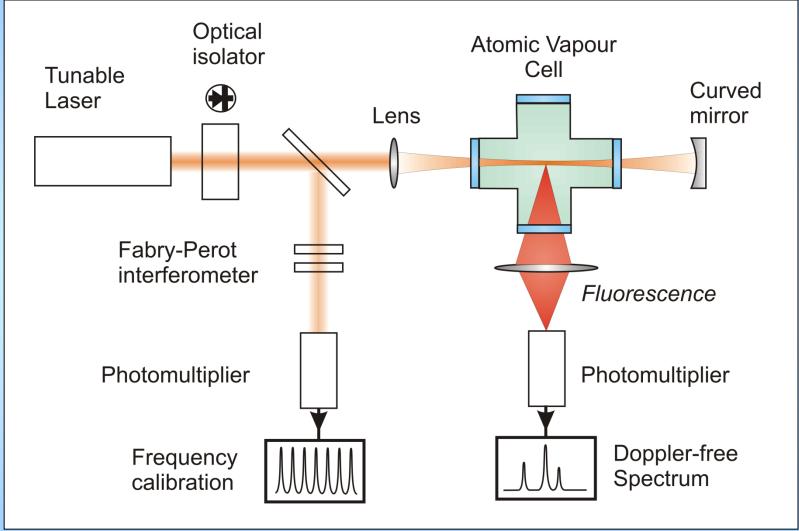
First saturation spectroscopy of atomic Hydrogen T W Hansch et al 1971

### Principle of Doppler-free two-photon absorption



Photon Doppler shifted up + Photon Doppler shifted down

### Two-photon absorption spectroscopy





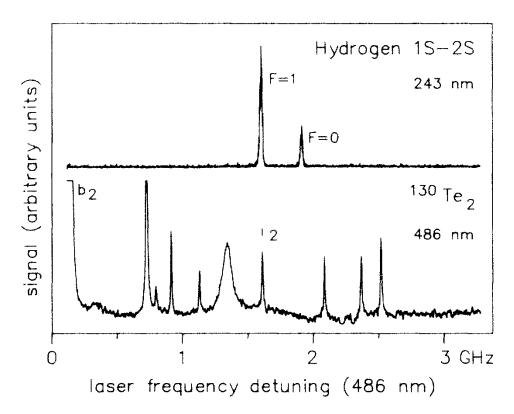
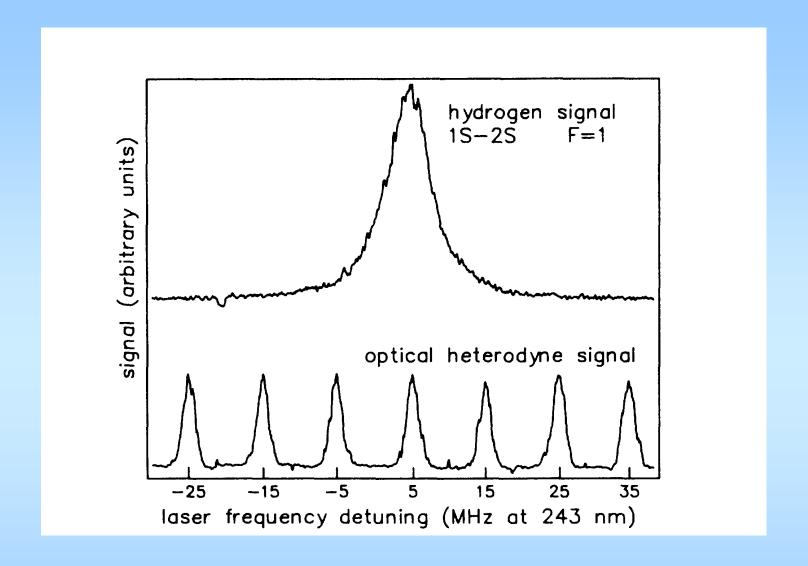
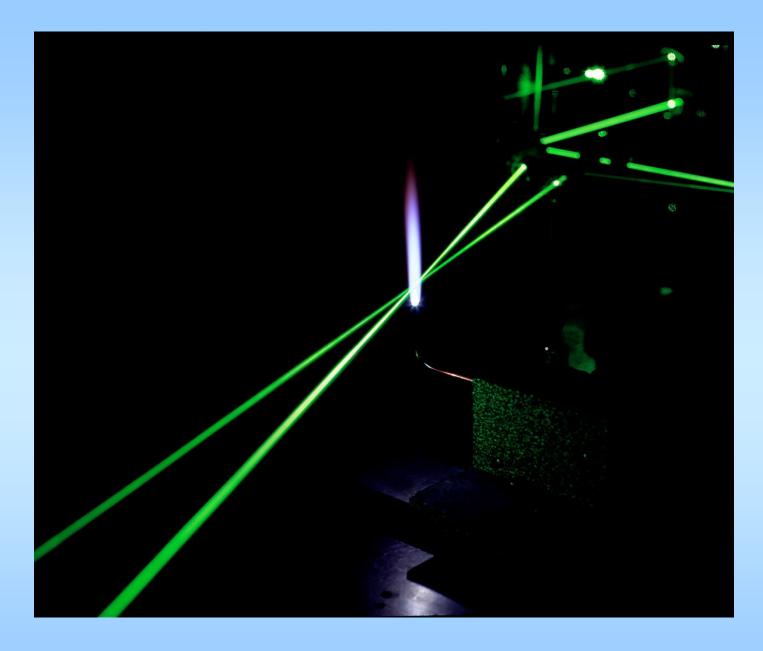


FIG. 2. Doppler-free two-photon spectrum of the hydrogen 1S-2S transition with simultaneously recorded saturation spectrum of <sup>130</sup>Te<sub>2</sub>. The tellurium reference spectrum appears shifted towards lower frequencies by 60 MHz as a result of the acousto-optic modulator.

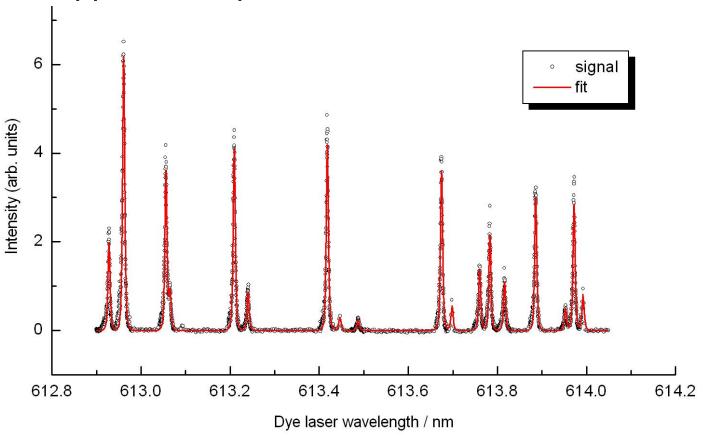


Doppler-free Two-photon spectrum of Hydrogen 1S – 2S transition Tests QED calculation of electron interaction with proton





### Doppler-free spectrum of OH molecule in a flame





# THE END