
Tomi Johnson1

Keble College - Michaelmas 2014
CP3&4: Mathematical methods I&II

Tutorial 4 - Calculus II

Prepare full solutions to the ‘problems’ with a self assessment of your progress on a cover page.
Leave these at Keble lodge by 5pm on Monday of 3rd week.
Look at the ‘class problems’ in preparation for the tutorial session.
Suggested reading: RHB 4 and 5, and the lecturer’s problem sets.

Goals

• Develop an understanding of how series expansions and limits may be applied to mathematics
and physics problems.

• Learn how to extend the concepts of differentiation and series expansions to higher dimensions.

• In particular, learn how to analyse properties of surfaces in three dimensional space using
partial differentiation.

Problems

Taylor series are an extremely important tool for analysing functions, especially if one is
concerned with the behaviour of/values taken by the function in the vicinity of a point. They
can be used to e.g. aid differentiation and integration, deduce relationships between functions,
approximate the value of the function in the vicinity of a point, deduce the type of behaviour
the function exhibits in the vicinity of a point, extend the domain of function (as you saw for
complex numbers and as you will see for matrices) and much much more.

The Taylor series of a function f(x) about x0 is defined by

∞∑
n=0

f (n)(x0)
(x− x0)n

n!
.

The function is analytic if the Taylor series is convergent and equals f(x) over some open inter-
val. A Maclaurin series is a Taylor series with x0 = 0 and is often simply called a power series
expansion. Get used to Taylor series by answering the following two questions.

1. If possible, find the Maclaurin series of each of the following functions, writing out terms in
up to and including those of order x3, and comment on the continuity, differentiability and
analyticity of the function: (i) ex, (ii)

√
1 + x, (iii) tan−1(x), (iv) e−1/x

2
, (v) the step function

θ(x) = 0, 1/2, 1 for x < 0, x = 0, x > 0, and (vi) |x|.
Solution: (i) ex = 1 + x + x2/2 + x3/6 + ..., (ii)

√
1 + x = 1 + x/2 − x2/8 + x3/16 + ...,

(iii) tan−1(x) = x − x3/3 + ..., (iv) 0, (v) and (vi) no Maclaurin series. All, except (v), are
continuous. All, except (v) and (vi), are differentiable. All, except (iv), (v) and (vi), are
analytic.

1These problems were compiled by Prof. D. Jaksch based on problem sets by Prof. J. Yeomans and past Oxford
Prelims exam questions.

1



For |x − x0| � 1 the terms in the Taylor series (see previous box) usually get smaller with
increasing n so that the first few terms approximate the function well near x0. Taylor’s theorem
(not on syllabus) gives quantitative estimates for the error in this approximation.

2. Obtain the value of sin(31◦) by Taylor expanding sin(x) up to the fourth term about the point
x0 = π/6. How accurate is your answer?

Solution: sin(31◦) ≈ 0.515038, accuracy better than 10−8.

The very fact that we are able to exactly or approximately write a function as a Taylor series
makes it simple to find the integral or derivative of a function exactly or approximately. This is
another use of Taylor series.

3. Write down the power series expansion for x−1 sin(x). Hence evaluate, to four significant
figures, the integral I =

∫ 1
0 x
−1 sin(x)dx.

Solution: I ≈ 0.9461.

Taylor series also offer a means of rewriting the limits of combinations of functions into a form
from which its well-defined value can be deduced. For example, for f(x) and g(x) that are analytic
around x = c, it can be shown from their Taylor series (try it) that, provided the limit is well
defined,

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
,

if limx→c f(x) = limx→c g(x) = 0. This is a special case of l’Hôpital’s rule, which holds
more generally in the case that f(x) and g(x) are merely differentiable and if limx→c |f(x)| =
limx→c |g(x)| =∞. This rule together with other clever manipulations and substitutions allow a
wide range of limits to be evaluated. When evaluating such limits please try not to write down
any ill-defined expressions, such as 0/0, ∞/∞ or ∞/0.

4. Use Taylor series or directly apply L’Hôpital’s rule to evaluate the values taken by the functions

(i) sin(x)/x,

(ii) (1− cos2(x))/x2,

(iii) (sin(x)− x)/(e−x − 1 + x),

in the limits (a) x→ 0, (b) x→∞ :

Solution: (a) (i) 1, (ii) 1, (iii) 0; (b) (i) 0, (ii) 0, (iii) −1.

5. Expand [ln(1+x)]2 in powers of x as far as x4. Hence determine the limit of [ln(1+x)]2/[x(1−
cos(x)] as x→ 0.

Solution: ∞.
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Consider a small change δx in x away from x0. It is clear from the Taylor series that for an
analytic function f(x) the corresponding change in its value will be

δf =

∞∑
n=1

f (n)(x0)
δxn

n!
.

Usually, by analysing the first few terms of this expansion we can deduce whether x0 is a sta-
tionary point of the function and what type of stationary point it is. It is a stationary point iff
δf is zero to first order in δx i.e. f ′(x0) = 0. It is a maximum if to leading order δf is always
positive, e.g. if f ′′(x0) < 0, and a minimum if to leading order δf is always negative, e.g. if
f ′′(x0) > 0. Otherwise it is a saddle point (also known for single-variable functions as a point
of inflection). Note that if f ′′(x0) = 0 then we need to consider higher order terms to infer the
type of stationary point.

6. Using the results of the previous question, or not, determine whether cos(2x) + [ln(1 + x)]2

has a maximum, minimum or point of inflection at x = 0.

Solution: Maximum.

It is clear that physics involves quantities that depend on more than one variable, which in turn
necessitates our learning about functions of more than one variable. The variables could be
independent, e.g. the temperature of the atmosphere as function of 3D coordinates, or they could
be related, e.g. the temperature on a balloon’s surface as a function of 3D coordinates. In the
same way that a quantity Q = f(x) dependent a single variable x could instead be represented
by a function Q = g(y) of a related variable y = y(x), a quantity dependent on more than one
variable may be described by many different functions of different combinations of the variables.
For instance, one can express the energy E of an ideal gas in terms of its particle number
and temperature (N,T ) or in terms of the volume and pressure (V, p). These parameters are
related by the ideal gas law pV = NRT with R the ideal gas constant. Formally we write
E = f(N,T ) = g(V, p) to represent the two functional dependencies. However, as we noted for
functions of a single variable, often it will sloppily be written that E = E(N,T ) and E = E(V, p)
even though the functions E appearing in the two equations are different. As another example,
consider expressing height z = f(x, y) as a function of two variables x and y. If x = x(t)
and y = y(t) follow a path parameterised by time t, then we could equally think of z = g(t) as
depending on a single variable t. Be aware of such notational issues and try to avoid confusion.
Separate the concepts of a quantity and a function in your mind. Don’t assign a quantity and
function the same symbol unless you plan on using only a single functional representation or
make it very clear what is going on through other means.

The concepts of gradients, Taylor series, limits and stationary points can all vitally be
extended to functions of more than one variable. Their mathematical treatment rests on the
concept of a partial derivative. The partial derivative with respect to x of a function in more
than two (generalisation to more variables is trivial) variables f(x, y) is defined as

∂f(x, y)

∂x

∣∣∣∣
y

= lim
δx→0

f(x+ δx, y)− f(x, y)

δx
.

The variables listed right of | are treated as being constants. It is important to indicate which
variables are being held constant in expressions of the above type. If it is absolutely clear what
variables are being held constant one often writes e.g. ∂f/∂x = ∂xf = fx, ∂2f/∂x∂y = ∂x∂yf =
∂xyf = fxy. All of the notational ambiguities present in ordinary differentiation remain here, so
work as clearly as you can, especially while you are learning.
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7. (a) Find ∂f/∂x|y for f(x, y) equal to (i) (x2 + y2)1/2, (ii) tan−1(y/x), (iii) yx.

(b) Verify that fxy = fyx for f(x, y) equal to (i) (x2 + y2) sin(x+ y), (ii) xmyn.

(c) The function f(x, y) is such that fxy = 0. Find the most general forms for fx and fy and
show that f(x, y) has the form f(x, y) = F (x) +G(y) with arbitrary functions F and G.

When dealing with quantities Q written as functions Q = f(x) of a single variable, we introduced
the idea of an ordinary derivative dQ

dx = f ′(x) with respect to this variable x. We showed that
since Q = g(y) can be written as a function of another variable y = y(x) we can consider the
derivative dQ

dy = g′(y) of the same quantity with respect to that variable. The two derivatives are

related by df(x)
dx = dg(y(x))

dy
dy(x)
dx or less precisely dQ

dx = dQ
dy

dy
dx , i.e. the chain rule. With quantities

that depend on more than one variable there are even more ways in which a quantity Q can be
written as functions of different variable and therefore even more derivatives to consider and
relate. The first thing to note is that it means we have to be very precise to express exactly which
derivative we mean, as the next problem demonstrates.

8. Calculate ∂Q/∂x|y, ∂Q/∂x|u and ∂Q/∂x|v for Q = x + y = f(x, y) = g(x, u) = h(x, v) and
u = x+ y, v = x− y, showing them to be different.

Solution: ∂Q/∂x|y = 1, ∂Q/∂x|u = 0, ∂Q/∂x|v = 2.

With functions of more than one variable, there is no one general formula for relating the
different derivatives as was the case for the chain rule. However, the same careful thought
through which one can derive the chain rule can be applied to derive the relations in each case.
A good way to think about this is to imagine infinitesimal changes, called differentials, of the
variables/quantity and how these must be related. Then to use these relations to find the relations
between the derivatives. In the case of the chain rule, we know that for Q = f(x) = g(y) and
y = y(x) that infinitesimal changes dx, dy and dQ around the point x must, from the definition

of a derivative and an assumption of differentiability, be related by dQ = df(x)
dx dx = dg(y(x))

dy dy.

Rearranging this, we get df(x)
dx = dg(y(x))

dy
dy(x)
dx . The ratio dy(x)

dx of two related changes in the limit
that they are infinitesimal is correctly identified as the derivative of y with respect to x.

This approach generalises. Consider now Q = f(x, y). The definition of a partial derivative and
an assumption of differentiability, leads to differentials related by

dQ =
∂f(x, y)

∂x

∣∣∣∣
y

dx+
∂f(x, y)

∂y

∣∣∣∣
x

dy .

This is the infinitesimal change in the value of Q if the variable x is changed from x by dx and
y from y by dy. It is easily generalised to more variables. Manipulating such relations between
differentials, one can derive relations between derivatives, as we will now practice.

9. If f(x, t) = g(x− ct) + h(x+ ct) where c is a constant, prove that fxx − ftt/c2 = 0.

10. (a) Let u = f(x, y) = g(t), x = x(t), y = y(t). Show that dg(t)
dt = ∂f(x(t),y(t))

∂x

∣∣∣
y

dx(t)
dt +

∂f(x(t),y(t))
∂y

∣∣∣
x

dy(t)
dt , often abbreviated as du

dt = ∂u
∂x

∣∣
y

dx
dt + ∂u

∂y

∣∣∣
x

dy
dt .

(b) Use this to find du/dt = g′(t) when (i) u = xnyn and x = cos(at), y = sin(at), where a, n
are constants, and (ii) u = x2y + y−1 and y = ln(x).

(c) Verify your solutions for both (i) and (ii) by applying the normal rules (product and
chain) of ordinary differentiation directly to the expression of u.

Solution: (i) na cosn−1(at) sinn−1(at)(cos2(at)− sin2(at)), (ii) x+ 2x ln(x)− 1/[x(ln(x))2].
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11. (a) The perfect gas law pV = RT may be regarded as defining any one of the quantities
pressure p, volume V , or temperature T , for a fixed particle number N of perfect gas, as
a function of the other two. Verify explicitly that

∂p

∂V

∣∣∣∣
T

∂V

∂T

∣∣∣∣
p

∂T

∂p

∣∣∣∣
V

= −1 , and
∂p

∂V

∣∣∣∣
T

= 1/
∂V

∂p

∣∣∣∣
T

.

Note the notational simplifications in this question and many that follow. You may
choose to work with more precise notation.

(b) Show that this is true whenever there is a relationship of the form f(p, V, T ) = 0 between
p, V and T .

12. Change of variable [from Prelims 1997]. A variable z may be expressed either as a function
of (u, v) or of (x, y), where u = x2 + y2, v = 2xy.

(a) Find
∂z

∂x

∣∣∣∣
y

in terms of
∂z

∂u

∣∣∣∣
v

and
∂z

∂v

∣∣∣∣
u

.

(b) Find
∂z

∂u

∣∣∣∣
v

in terms of
∂z

∂x

∣∣∣∣
y

and
∂z

∂y

∣∣∣∣
x

.

(c) Express
∂z

∂u

∣∣∣∣
v

− ∂z

∂v

∣∣∣∣
u

in terms of
∂z

∂x

∣∣∣∣
y

and
∂z

∂y

∣∣∣∣
x

.

(d) Check your expressions by seeing if they hold for the specific case z = u+ v.

We can generalise the concept of a Taylor series to functions of more than one variable. Consider
a function f(x, y) of two variables. The Taylor series about (x0, y0) is defined by

∞∑
n=0

1

n!

[(
(x− x0)

∂

∂x
+ (y − y0)

∂

∂y

)n
f

]
x0,y0

,

where the subscript of the square bracket indicates the points at which the derivatives are eval-
uated. Again, the function is analytic if the Taylor series is convergent and equals f(x, y) over
some open interval. Assuming this, the Taylor series representation of f(x, y) may be derived
by assuming f(x, y) can be expanded as a Taylor series in x and y separately (try it), as well
as by other means. Also, one can show (try it) that continuity of the partial derivatives implied
by analyticity means that the order of multiple partial differentiations is irrelevant, in particular
fxy = fyx, which simplifies the expression when the Taylor series is expanded.
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Taylor series of functions of more than one variable have all the same uses as for functions of a
single variable. For the rest of this problem set, however, we’ll focus on the use of Taylor series
in identifying and classifying stationary points of functions of two variables. It may be useful to
compare with what we previously said for a function of one variable. Consider a small change
δx in x and δy in y away from (x0, y0). It is clear from the Taylor series that for an analytic
function f(x, y) the corresponding change in its value will be

δf =

∞∑
n=1

1

n!

[(
δx

∂

∂x
+ δy

∂

∂y

)n
f

]
x0,y0

.

Usually, by analysing the first few terms of this expansion we can deduce whether (x0, y0) is a sta-
tionary point of the function, and what type of stationary point it is. It is a stationary point iff δf
is zero to first order in δx and δy. Looking at the first order terms δx∂f∂x+δy ∂f∂y reveals that (x0, y0)
is a stationary point iff fx = fy = 0 at that point. It is a maximum if to leading order δf is always
positive and a minimum if to leading order δf is always negative. Otherwise it is a saddle point.
We can usually tell this from the second order terms 1

2

[
δx2fxx + δy2fyy + 2δxδyfxy

]
, which for

fxx 6= 0 and fyy 6= 0 respectively rearrange to 1
2

[
fxx (δx+ fxyδy/fxx)2 + δy2

(
fyy − f2xy/fxx

)]
and 1

2

[
fyy (δy + fxyδx/fyy)

2 + δx2
(
fxx − f2xy/fyy

)]
. It is then clear that if fxx and fyy take

finite values with different signs then the second order contribution to δf can be both positive and
negative and thus (x0, y0) is a saddle point. If fxx, fyy < 0 and f2xy < fxxfyy then the second order
contribution to δf is strictly negative and thus (x0, y0) is a maximum. Similarly, if fxx, fyy > 0
and f2xy < fxxfyy, it is strictly positive and thus (x0, y0) is a minimum. If f2xy > fxxfyy then it
can be both positive and negative and thus (x0, y0) is a saddle point. The unexplored cases are
when f2xy = fxxfyy, and fxx and fyy are not both finite and of opposite sign. For these cases we
need to consider higher order terms to infer the sign of the leading order terms to δf and the
type of stationary point.

13. Find the position and nature of the stationary points of the following functions and sketch
rough contour graphs in each case. (i) f(x, y) = x2+y2, (ii) f(x, y) = x3+y3−2(x2+y2)+3xy,
(iii) f(x, y) = sin(x) sin(y) sin(x+ y), the latter for 0 < x < π/2 and 0 < y < π/2.
[Note: The symmetry of the value taken by the functions when swapping x and y suggests
that the mathematics may be simpler/or sketching easier when using rotated coordinates
u = (x + y)/

√
2 and v = (x − y)/

√
2. One could work with another function g(u, v) =

f(x, y) = Q, whose form is easily found. Since they describe the same quantity Q, they must
have corresponding stationary points of the same type. This is perhaps obvious for a rotation
but holds more generally. Even if you don’t use these alternative variables, the symmetry
should help you in your sketching.]

14. Figure 1 shows a Mathematica file producing contour and surface plots of the function
f(x, y) = x3 + y3 − 2(x2 + y2) + 3xy. Use the results from question 13 to mark the sta-
tionary points in these plots.

Class Problems

15. Sketch the following functions and state whether they are (i) continuous and/or (ii) differen-
tiable throughout the domain −1 ≤ x ≤ 1?

(a) f(x) = 0 for x ≤ 0, f(x) = x for x > 0,

(b) f(x) = 0 for x ≤ 0, f(x) = x2 for x > 0,

(c) f(x) = 0 for x ≤ 0, f(x) = cos(x) for x > 0,

(d) f(x) = |x|.
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In[90]:= f@x_, y_D = x^3 + y^3 - 2 Hx^2 + y^2L + 3 x y;

GraphicsRow@
8ContourPlot@8f@x, yD == f@0.1, 0.1D, f@x, yD == f@1.75, 1.75D, f@x, yD � f@1 � 3, 1 � 3D,

f@x, yD � -0.5, f@x, yD � -2, f@x, yD � 0.5, f@x, yD � 3, f@x, yD � -5<, 8x, -1, 2<,

8y, -1, 2<, FrameTicks ® 88-1, 0, 1, 2<, 8-1, 0, 1, 2<<, FrameLabel ® 8x, y<D,

Plot3D@f@x, yD, 8x, -1, 2<, 8y, -1, 2<, Ticks ® 88-1, 0, 1, 2<, 8-1, 0, 1, 2<, 80, 10<<,

AxesLabel ® 8"x", "y", "fHx,yL"<D<D

Out[91]=

Figure 1: Surface and contour plots of f(x, y) = x3 + y3 − 2(x2 + y2) + 3xy.

16. Chain rule. If w = e−x
2−y2 , x = r cos(θ), y = r sin(θ), find ∂w

∂r

∣∣
θ

and ∂w
∂θ

∣∣
r

in two ways.

17. Taylor series in two variables. Expand f(x, y) = exy to three terms around the point x = 2,
y = 3.

18. Exact differentials.

(a) Which of the following differentials are exact? For those that are exact, find f . (i)
df = xdy + ydx, (ii) df = xdy − ydx, (iii) df = xdx+ ydy + zdz.

(b) What is the value of
∮

(xdy + ydx) around the closed curve x4 + y4 = 1?
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