
Vector calculus in curvilinear coordinates
D. Jaksch

Goals:

• Understand the difference between coordinates and vector components

• Understand the implications of basis vectors in curvilinear coordinates not being constant

• Learn how to use curvilinear coordinate systems in vector calculus

Coordinate systems and vector fields

Coordinate systems

A point in coordinate space r is often represented as r = (x, y, z)T with x, y, and z the distances along the
three coordinate axes. We can equally introduce cylindrical polar coordinates which we will use here as the
prime example for curvilinear coordinate systems. They are defined through the relations

x = ρ cos(ϕ), y = ρ sin(ϕ), and z = z.

The point in space is now written as r = (ρ cos(ϕ), ρ sin(ϕ), z)T where the meaning of the components is still
that they give the distances along the three coordinate axes.

Vector fields

A vector field assigns a vector to each point r and is usually denoted as F(r) or simply F. The vector field
is often defined through components Fi(r) which are the projections of the vector onto the three coordinate

axes. For instance F = (−y, x, 0)T /
√
x2 + y2 assigns vectors as indicated in figure 1a). Using cylindrical polar

coordinates this vector field is given by F = (− sin(ϕ), cos(ϕ), 0)T . Here we have rewritten the vector field in
different coordinates but not changed the meaning of its components.
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Figure 1: (a) Vector field F = (−y, x, 0)T /
√
x2 + y2 (red arrows) and showing cartesian (b) and cylindrical

polar (c) components for two of its vectors.

Basis vectors

Each point in coordinate space has a vector space associated with it where the vectors of vector fields live. A
coordinate system {xi} allows us to define bases for all of these vector spaces through

ei =
∂r

∂xi
.



For cartesian coordinates the normalized basis vectors are êx = î, êy = ĵ, and êz = k̂ pointing along the three
coordinate axes. They are orthogonal, normalized and constant, i.e. their direction does not change with the
point r1.

Next we calculate basis vectors for a curvilinear coordinate systems using again cylindrical polar coordinates.
They are given by

êρ =
∂r

∂ρ
= cos(ϕ)êx + sin(ϕ)êy , êϕ =

1

ρ

∂r

∂ϕ
= − sin(ϕ)êx + cos(ϕ)êy , and êz = êz .

The 1/ρ in the definition of êϕ is required for the vector to be properly normalized to 1. These basis vectors
are mutually orthogonal and normalized. However, they are not constant, their direction changes with position.
By inverting this set of linear equations for the basis vectors we find

êx = cos(ϕ)êρ − sin(ϕ)êϕ , êy = sin(ϕ)êρ + cos(ϕ)êϕ , and êz = êz .

We can now write a vector field F(r) = (Fx(r), Fy(r), Fz(r))Tc ≡ Fx(r)êx + Fy(r)êy + Fz(r)êz in new
components using the above relations between the basis vectors for different coordinate systems. This is still
the same vector field but now written as F(r) = (Fρ(r), Fϕ(r), Fz(r))Tp ≡ Fρ(r)êρ + Fϕ(r)êϕ + Fz(r)êz. The
new components are projections on the basis vectors êρ, êϕ, and êz. We use indices c and p to make explicit
which components are used. In detail, the change of components is carried out by

F =

 Fx
Fy
Fz


c

= Fxêx + Fyêy + Fzêz = Fx[cos(ϕ)êρ − sin(ϕ)êϕ]

+Fy[sin(ϕ)êρ + cos(ϕ)êϕ] + Fzêz =

 Fx cos(ϕ) + Fy sin(ϕ)
−Fx sin(ϕ) + Fy cos(ϕ)

Fz


p

Cartesian and cylindrical polar components for the vector field F = (− sin(ϕ), cos(ϕ), 0)Tc = (0, 1, 0)Tp are shown

in figures 1b) and 1c) respectively. Produce a similar figure for the vector field F = r = (x, y, z)Tc = (ρ, 0, z)Tp .
The most commonly used coordinate systems produce orthogonal right handed bases. This means that scalar

and vector products between the basis vectors obey the familiar relations êi · êj = δij and êi × êj = êkεijk,
where δij is the Kronecker delta and εijk the totally antisymmetric tensor. For cylindrical polar coordinates
(ρ, ϕ, z) we explicitly have

êρ · êρ = êϕ · êϕ = êz · êz = 1 and êρ · êϕ = êϕ · êz = êz · êρ = 0 ,

êρ × êρ = êϕ × êϕ = êz × êz = 0, êρ × êϕ = êz , êϕ × êz = êρ and êz × êρ = êϕ ,

Vector Calculus

Partial derivatives

The partial derivatives with respect to the coordinates are found using the chain rule2

∂ρ = cos(ϕ)∂x + sin(ϕ)∂y , ∂ϕ = −ρ sin(ϕ)∂x + ρ cos(ϕ)∂y , and ∂z = ∂z ,

and

∂x = cos(ϕ)∂ρ −
sin(ϕ)

ρ
∂ϕ , ∂y = sin(ϕ)∂ρ +

cos(ϕ)

ρ
∂ϕ , and ∂z = ∂z .

∇-operator

We now rewrite the ∇-operator by using these relations

∇ =

 ∂x
∂y
∂z


c

= êx∂x + êy∂y + êz∂z = êρ∂ρ +
êϕ
ρ
∂ϕ + êz∂z =

 ∂ρ
1
ρ∂ϕ
∂z


p

1This might seem obvious but needs to be revisited in relativity and has far reaching consequences for the physical nature of
space.

2The calculation is identical to working out the basis vectors but replacing ∂r/∂i → ∂i. The partial derivatives can thus directly
be read off from the relations between the basis vectors.



Gradient

The gradient of a scalar field U in cylindrical polar coordinates is now given by

gradU = ∇U =

 ∂U
∂ρ

1
ρ
∂U
∂ϕ
∂U
∂z


p

= êρ∂ρU +
êϕ
ρ
∂ϕU + êz∂zU .

The expression for the ∇-operator in cylindrical polar components is thus indirectly given on the data-sheet3.
There you will find an expression for∇U and the del-operator is found by simply leaving out U in this expression.

Divergence

When working out the divergence we need to properly take into account that the basis vectors are not constant
in general curvilinear coordinates. For cylindrical polar coordinates we have two nonzero derivatives

∂ϕêϕ = − cos(ϕ)êx − sin(ϕ)êy = −êρ and ∂ϕêρ = − sin(ϕ)êx + cos(ϕ)êy = êϕ .

The divergence will thus in general not be given by ∇ · F(r) =
∑
i ∂iFi(r) which is only true for an orthogonal

coordinate system whose basis vectors are constant in space. Using the product rule we find

∇ · F = [êρ∂ρ +
êϕ
ρ
∂ϕ + êz∂z] · [Fρêρ + Fϕêϕ + Fzêz] = ∂ρFρ +

êϕ
ρ
· [∂ϕ(Fρêρ) + ∂ϕ(Fϕêϕ)] + ∂zFz

= ∂ρFρ +
êϕ
ρ
· [êρ∂ϕFρ + Fρêϕ + êϕ∂ϕFϕ − êρFϕ] + ∂zFz =

∂ρ(ρFρ)

ρ
+
∂ϕFϕ
ρ

+ ∂zFz .

Rotation

The calculation is similar to working out the divergence

∇× F = [êρ∂ρ +
êϕ
ρ
∂ϕ + êz∂z]× [Fρêρ + Fϕêϕ + Fzêz] = êρ × [êϕ∂ρFϕ + êz∂ρFz] +

êϕ
ρ
× [êρ∂ϕFρ − êρFϕ + êz∂ϕFz] + êz × [êρ∂zFρ + êϕ∂zFϕ]

= êρ

[
∂ϕFz
ρ
− ∂zFϕ

]
+ êϕ [−∂ρFz + ∂zFρ] + êz

[
∂ρ(ρFϕ)

ρ
− ∂ϕFρ

ρ

]
.

Laplace operator

We obtain the Laplace operator by replacing F→ ∇ in the expression for the divergence

∆ = ∇ · ∇ =
1

ρ
∂ρ(ρ∂ρ) +

1

ρ2
∂2ϕ + ∂2z .

Example

A velocity field describing a vortex is given by u = Aêϕ/ρ with A a constant. Its divergence and rotation are
given by

∇ · u =

[
êρ∂ρ +

êϕ
ρ
∂ϕ + êz∂z

]
· Aêϕ
ρ

= 0 , ∇× u =

[
êρ∂ρ +

êϕ
ρ
∂ϕ + êz∂z

]
× Aêϕ

ρ
=
A

ρ2
(êz − êz) = 0 .

The acceleration of a parcel of fluid is given by (this term appears in the Navier Stokes equation)

(u · ∇)u =
A

ρ2
∂ϕ
Aêϕ
ρ

= − A
ρ3

êρ .

Work out these expressions using cartesian components.

3Also spherical polar coordinates can be found on the data sheet.



Summary

Cylindrical polar coordinates (ρ, ϕ, z)

• Relation to cartesian coordinates (care is required to obtain ϕ in the correct quadrant)

x = ρ cos(ϕ) , y = ρ sin(ϕ) and z = z

ρ =
√
x2 + y2 , ϕ = arctan(y/x) and z = z

• Basis vectors êρ = ∂ρr, ρêϕ = ∂ϕr, êz = ∂zr

êρ = cos(ϕ)êx + sin(ϕ)êy , êϕ = − sin(ϕ)êx + cos(ϕ)êy and êz = êz

êx = cos(ϕ)êρ − sin(ϕ)êϕ , êy = sin(ϕ)êρ + cos(ϕ)êϕ and êz = êz

• Non-zero derivatives of basis vectors

∂ϕêρ = êϕ , ∂ϕêϕ = −êρ

• ∇-operator

∇ = êρ∂ρ +
êϕ
ρ
∂ϕ + êz∂z

• Divergence

∇ · F =
∂ρ(ρFρ)

ρ
+
∂ϕFϕ
ρ

+ ∂zFz

• Rotation

∇× F(r) = êρ

[
∂ϕFz
ρ
− ∂zFϕ

]
+ êϕ [−∂ρFz + ∂zFρ] + êz

[
∂ρ(ρFϕ)

ρ
− ∂ϕFρ

ρ

]
• Laplace

∆ =
1

ρ
∂ρ(ρ∂ρ) +

1

ρ2
∂2ϕ + ∂2z

Spherical polar coordinates (r, θ, ϕ)

• Relation to cartesian and cylindrical coordinates (care is required to obtain ϕ in the correct quadrant)

x = r cos(ϕ) sin(θ) , y = r sin(ϕ) sin(θ) , z = r cos(θ) and ρ = r sin(θ)

r =
√
x2 + y2 + z2 , ϕ = arctan(y/x) and θ = arccos(z/r) = arctan(ρ/z)

• Basis vectors êr = ∂rr, rêθ = ∂θr, r sin(θ)êϕ = ∂ϕr

êr = cos(θ)êz + sin(θ)êρ , êθ = − sin(θ)êz + cos(θ)êρ and êϕ = êϕ

êz = cos(θ)êr − sin(θ)êθ , êρ = sin(θ)êr + cos(θ)êθ and êϕ = êϕ

êx = sin(θ) cos(ϕ)êr + cos(θ) cos(ϕ)êθ− sin(ϕ)êϕ and êy = sin(θ) sin(ϕ)êr + cos(θ) sin(ϕ)êθ + cos(ϕ)êϕ

• Non-zero derivatives of basis vectors

∂θêr = êθ , ∂θêθ = −êr , ∂ϕêr = sin(θ)êϕ , ∂ϕêθ = cos(θ)êϕ and ∂ϕêϕ = −êρ

• ∇-operator

∇ = êr∂r +
êθ
r
∂θ +

êϕ
r sin(θ)

∂ϕ

• Divergence

∇ · F =
∂r(r

2Fr)

r2
+
∂θ(sin(θ)Fθ)

r sin(θ)
+

∂ϕFϕ
r sin(θ)

• Rotation

∇× F =
êr

r sin(θ)
[∂θ(Fϕ sin(θ))− ∂ϕFθ] +

êθ
r

[
−∂r(rFϕ) +

∂ϕFr
sin(θ)

]
+

êϕ
r

[∂r(rFθ)− ∂θFr]

• Laplace

∆ =
1

r2
∂r(r

2∂r) +
1

r2 sin(θ)
∂θ(sin(θ)∂θ) +

1

r2 sin2(θ)
∂2ϕ


