
Lecture 8 — Introduction to lattice modes
and their symmetry.

1 Introduction

Up to this point, the focus of our course has been on understanding the static properties of
crystals. In doing this, we have heavily exploited the symmetry of the crystals — in particular
the translational symmetry, which is responsible for the characteristic features of crystalline
diffraction patterns. Some dynamic features have been accommodated in this picture through the
introduction of Debye-Waller factors. At this point, however, we have to abandon this “comfort
zone”, and deal with properties that distinctly break the symmetry. For example, a sound wave
or, for metals, a conduction electron, may propagate in the crystal in a certain direction, and this
“picks out” this direction over all the other, symmetry-equivalent directions. We may surmise
(correctly) that the propagation along symmetry-equivalent directions would obey the same laws,
but the fact remains that the propagation breaks the symmetry, since the electron or sound waves
do not propagate along all the symmetry-equivalent directions at the same time. Perhaps more
significantly, the wavevector of the propagating wave is, in general, not in register with the
crystal lattice, so even translational invariance is lost. Another important class of problems
involves phase transitions, where the crystal symmetry is reduced by atomic displacements
(structural phase transitions), ordering of magnetic moments (magnetic phase transitions)
etc. In this case also we have to be prepared to relinquish at least part of the symmetry that we
enjoyed in the high-symmetry phase. Rather than “jettisoning” all the symmetry machinery we
have so far employed, it would seem natural to attempt a step-by-step, systematic lowering of
the symmetry, so as not to give up more than is needed. For example, one simple idea (that
often works) is be to consider group-subgroup relations. In structural phase transitions, for
example, the symmetry of the low-symmetry phase is often a subgroup of the high symmetry —
an observation that can significantly help in solving the distorted structure. Even this approach,
however, is clearly inadequate in the general case: when translational symmetry is lost, in general
very little remains.

1.1 Symmetry approach to crystal dynamics: the general idea

Let’s consider in general the solution ψ1, either stationary or propagating, of a Hamiltonian or
secular equation in a molecule or a crystal with a symmetry group {g}, e.g., a normal mode of
vibration of the molecule, a phonon mode, an electronic wavefunction etc. When considering
the symmetry of this solution (intended as a “pattern” of some kind in real space) there are three
possibilities:
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1. The solution ψ2 is completely invariant by all the elements of the symmetry group {g},
i.e., g[ψ1] = ψ1 ∀g ∈ {g}.

2. The solution is not invariant for some elements of the group, but the transformed solution
is proportional to the original one, i.e., g[ψ1] = c ψ1 for certain elements of the group.
Because we are dealing with rotational symmetry, we can surmise that |c| = 1, i.e., c = ±1

if it is real. Complex values c = eiφ are of course allowed for complex solutions (e.g.,
wavefunctions.

3. For certain elements of the group, the solution is not invariant and is not proportional to
the original solution, i.e., g[ψ1] = ψ2 6= cψ1.

In all these cases, it is completely intuitive that the transformed solutions are also solutions of
the same equations with the same properties of the original one — this is obvious in the first
two cases but not in the third. Moreover, if the equations are linear (e.g., harmonic oscillator,
Schrodinger equation) and ψ2 6= cψ1, then aψ1 + bψ2 for generic a and b will also be a solution
with the same frequency or eigenvalue. in other words symmetry generates a subspace of
degenerate modes or eigenvectors. In the cases (1) and (2) here above, the eigenvectors are
non-degenerate.

The key point here is that the structure of these subspaces (i.e., their dimensionality, which
determines how many singlets, doublets, triplets etc. there are) does not depend on the particular
form of the potential, but only by its symmetry.

The multiplet structure of a Hamiltonian is entirely determined by symmetry. Functions
that uniquely transform with a certain symmetry are degenerate eigenfunctions of the
Hamiltonian. In general, symmetry does not determine the energy of the levels.

1.2 Inversion and parity

Inversion is in a sense a special symmetry operation: it commutes with all other rotations and
forms a group of two elements with the identity. For this reasons, it is possible to show that in
centrosymmetric crystals (i.e., those possessing the inversion as a symmetry element) all so-
lutions of the Schroedinger and normal-mode equations have a definite parity — in other
words, transform either into themselves (even-parity or “gerade” solutions) or into minus them-
selves (odd-parity or “gerade” solutions) by inversion. As we shall see, this is important in
determining the Infrared and Raman selection rules.
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1.3 Symmetry analysis

Given a certain “space of solutions” (e.g., the Hilbert space or a space of modes), how do we
decompose it into the “multiplet spaces”? As we have seen, we can go a long way by just
considering the symmetry, without any knowledge of the actual equations. To deal with this
problem, mathematicians and physicists have, over the years, developed very powerful tools,
all derived from the so-called theory of the irreducible representations of symmetry groups.
Unfortunately, time does not allow us to describe in any detail the mathematical aspects of this
theory, nor to learn the powerful “constructive” theorems required to solve meaningful problems.
In the following sections, I aim to give a “flavour” of these methods, and to illustrate how their
systematic use can simplify enormously the solution of a variety of problems in condensed-matter
physics.

Our initial aim will be to find the normal mode of vibration of a 5-atom molecule — a
problem that normally involves diagonalisation of a 10× 10 matrix. As we shall see, with
the help of symmetry we can do it with pen and paper. Later, we will extend the same
concepts to lattice modes (phonons).

2 Lattice fields and lattice “modes”

2.1 General definitions

What do the following concepts have in common?

1. Atomic displacements — static, as for a structural phase transition or dynamic, as for
lattice vibrations.

2. Configurations of magnetic moments — static, as for magnetically-ordered phases or dy-
namic, as for “spin waves”.

3. Electron density fluctuations from the “average” density.

4. Electronic wave-functions, for example, the solutions of the Schrodinger equation for the
whole crystal.

The answer is: they (and many more quantities that are not mentioned here) are all represented by
lattice fields, i.e., by quantities that have values either at specific points in the crystal (typically
the location of ions, as for 1 and 2), or at all points within the crystal, as for 3 and 4. Beside this
obvious difference (discrete vs continuous field), another important difference is represented by
the nature of the objects that are defined at each point:
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Atomic displacements are polar vectors i.e., parity-odd vectors. When each vector is consid-
ered in isolation, it changes sign upon inversion (parity). As it happens, atomic displace-
ments are time-reversal even, i.e., they are insensitive to the arrow of time (velocities
would be time-reversal odd).

Magnetic moments are axial vectors, i.e., parity-even vectors.When each vector is considered
in isolation, it is unaffected by inversion. Parity-even and parity-odd vectors have the same
behaviour upon proper rotations. Magnetic moments are time-reversal odd, since they
represent circulating currents.

Electron density fluctuations are real scalar quantities. Fluctuations from the average density
can be positive and negative, whereas the density itself is positive-definite.

Electronic wave-functions are complex scalar quantities. Note that electronic wave-functions
are not required to have the full symmetry of the crystal (probability densities do).

Importantly, all the aforementioned quantities can be thought of as forming a linear space. In
fact, they can all be added, subtracted and multiplied by scalar quantities, whilst still yielding
“valid” quantities (the dot product is not necessarily defined, though). In this sense, we could
call them “vectors”, but, to avoid confusion with the previous classification, we will use the
general term lattice modes. We will call the linear space spanned by these modes mode space.

The dimensionality of mode space is clearly dependent on the specific field and on whether we
are considering a finite lattice (or even a molecule) or an infinite lattice. Scalar modes defined
on a N-node lattice have N degrees of freedom, which means that there are N linearly indepen-
dent modes, whereas vector modes have 3N degrees of freedom. Generic continuous modes, in
general, span infinite dimensions.

There are clearly many different ways to select the basis vectors in mode space. The goal
of the following paragraphs is to learn that some basis vectors are very special, and can
simplify enormously the solution of a variety of problems involving modes.

2.2 Symmetry operations on lattice modes

Each lattice mode could be thought as defining a “pattern” on the crystal lattice, very much
akin to the ones we have already encountered. Clearly, a generic mode will not obey the full
symmetry of the crystal; consequently, if we apply what was previously a symmetry operator to
a mode, in the form of an “active” transformation, we will in general get a different mode; we
can, again, surmise that the new mode will largely behave as the old one because it is related to it
by symmetry. It is easy to convince ourselves that these transformations preserve the linearity
of mode space, so that, if g is an operator, m1 and m2 are modes and a and b are scalar constants
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g[am1 + bm2] = agm1 + bgm2 (1)

Therefore, the symmetry operators of the crystal are linear operators in mode space. Once
a suitable basis is introduced in mode space the symmetry operators can be represented by
matrices. We will not explore this further, but refer to the extended version of the notes for a
short introduction to matrix representations. A modern presentation of the theory of “irreducible
representations” is given in [1].

2.3 An example of normal mode decomposition

Rather than describing in details the theory of irreducible representation, with all its theorems,
lemmas and corollaries, we will here see a practical example in the form of a very simple set
of displacement modes of for a hypothetical molecule with D4 symmetry. Our ultimate goal is
to find the normal modes of vibration of the molecule, but we will build up to this result by
first considering the possible displacements of the atoms in the molecule. To further simplify
the problem, we will consider only planar modes, so that the symmetry group to consider is the
familiar 4mm 2-dimensional point group. Our molecule will have four atoms at the corners and
one, of a different species, in the centre. We can start by counting the degrees of freedoms —
two per atoms (x and y displacements), for a total of 10 degrees of freedom. We could consider
each of these degrees of freedom as a mode — for instance, the displacement of atom 1 along
the x axis (mode “[1x]”) could be one of the modes (fig. 1 top left for the labelling). In this
case, however, symmetry operations would mix all the modes; for instance, the 4+ operator (90◦

counterclockwise rotation) would transform the mode [1x] into a new mode whereby atom 2
would be displaced in the positive y direction, mode “[2y]” etc.

2.3.1 The “1D” modes of 4mm

As an alternative to the simple modes like [1x] and [2y], let us consider the modes in fig. 1.
For these modes, we use the labelling Γ1, Γ2, etc., which is widely used by physicists. It is
very easy to understand that all these modes are either symmetric or antisymmetric (i.e, the mode
is transformed into minus itself ) under all symmetry operators of the 4mm point group. in
particular (we remind that m10 is the mirror plane parallel to the x axis etc.:

• Mode Γ1 is symmetric under all the symmetry operators of the group — we say that it trans-
forms under the totally symmetric mode.

• Mode Γ2 is symmetric under 1, 2, m10 and m01 and antisymmetric under 4+, 4−, m11 and m11̄.
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• Mode Γ3 is symmetric under 1, 2, m11 and m11̄ and antisymmetric under 4+, 4−, m10 and m01.

• Mode Γ4 is symmetric under 1, 2, 4+ and 4− and antisymmetric under m10, m01, m11 and m11̄.

In general, we would say that “something that transforms like Γ1 to mean that it has the same
transformation rules.

Figure 1: The four “1 dimensional modes” of the square molecule. These modes transform into
either themselves (symmetric) or minus themselves (antisymmetric) upon all symmetries of the
molecule.

Therefore, with this choice of modes the symmetry operators, M(g) are “represented” by num-
bers. For the totally symmetric mode, every operator in 4mm is mapped to the number 1. For
the others, operators are mapped onto 1 or −1, depending on whether the mode is symmetric or
antisymmetric, respectively. For example (we enclose the modes in square brackets for clarity):

4+ [Γ2] = −1 [Γ2]

2 [Γ3] = +1 [Γ3]

m11 [Γ4] = −1 [Γ4] (2)

etcetera. With these modes, we have exhausted 4 of the 8 degrees of freedom of associated with
the “corner” atoms. What about the other four?
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2.3.2 The remaining four modes

Let us now consider the modes depicted in fig. 2. Here, the situation is clearly different. By
applying one by one the symmetry operators (e.g, graphically) we can verify that:

• Certain symmetry operators interchange the modes. For example, the operator 4+ transforms
mode [I] into mode [II] and [III] into mode IV ], etc.

• There is no way of decomposing these modes into ”simpler” modes that transform as the
previous group, i.e., as a multiplication by +1 or −1. This is not immediately obvious
but can be shown with a bit of work.

• [I] is never transformed into [III] (or vice versa) and [III] is never transformed into [IV ]

(or vice versa). In other words, the subspace of mode space spanned by [I] and [II] is
closed with respect to the symmetry operators (and likewise for [III] and [IV ].

• The pairs [I]-[II] and [III]-[IV ] transform in the same way. This becomes clear if we write
the transformations in matrix form.

Figure 2: The four “2 dimensional modes” of the square molecule. These modes transform into
either ± themselves (symmetric/antisymmetric) or into each other in pairs upon all symmetries
of the molecule. Note that all these modes are antisymmetric upon 2-fold rotation.
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2.3.3 Another example: the central atom

As a second example, we analyse the displacements of the central atom of our hypothetical
molecule, located on the fourfold axis. This atom has two degrees of freedom, as shown in fig 3.
It is a simple exercise, left to the students, to verify that the two corresponding modes transform
as Γ5.

Figure 3: The two central-atom modes of the square molecule. One can verify that they transform
as the ”2-D” corner modes, i.e., with the representation Γ5

3 Normal-mode analysis of molecular vibrations

In this section, we should (hopefully) see the point of all the hard work we put in decom-
posing the displacement modes into these special, symmetrised modes. In short, all the
normal modes of vibration can be constructed by combining modes that transform in the
same way. This enormously simplifies the problem of diagonalising the normal-mode ma-
trix (see below), and will be come shortly even more significant, as we deal with dynamical
matrices of infinite dimension (lattice modes.)

3.1 Normal-mode matrix

You should already be familiar with the material in this paragraph — if so, just skip it.

We start with the expression for the kinetic and potential energies in the limit of “small” displace-
ments from the equilibrium position. In a somewhat short-hand notation, they are, respectively
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EK =
1

2

∑
i

miẋ
2

EP =
1

2

∑
i,j

∂2V

∂xi∂xj
xixj (3)

Here, the xi’s are the displacement coordinates of ion i and mi are their mass. The sum runs over
both ions and components. The analysis proceeds in the following steps:

1. We perform a transformation to the reduced coordinates:

ξi = xi
√
mi (4)

This has the effect of eliminating the masses from the kinetic energy expression:

EK =
1

2

∑
i

ξ̇2

EP =
1

2

∑
i,j

(
1

√
mimj

∂2V

∂xi∂xj

)
ξiξj (5)

2. We write the equation of motion as:

ξ̈i +
∑
j

(
1

√
mimj

∂2V

∂xi∂xj

)
ξj = 0 (6)

3. We seek solution of the form

ξi = qi e
iωt (7)

from which we derive the secular equation

ω2qi =
∑
j

(
1

√
mimj

∂2V

∂xi∂xj

)
qj (8)

Eq. 8 is solved in the usual manner by diagonalising the matrix on the right-hand side.
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3.2 Solution of the dynamical problem for our hypothetical molecule

The corner atoms are linked to their neighbours by a spring with constant K1 and to the central
atom with a spring with constant K2 (fig. 4). In considering the vibration modes of a molecule,
we can exclude the ones that give rise to translations (2) and rotations (1) of the whole molecule,
so we are left with 7 degrees of freedom in total. The normal-mode equation, nevertheless, will
entail the diagonalisation of a 10× 10 matrix, whilst we expect that three of the resulting modes
will have zero frequency.

Figure 4: The masses and spring constants used to solve the dynamical problem of our molecule.

We can, however, dramatically simplify the problem by exploiting symmetry. Let us consider a
normal mode Qi so that

Qi =
∑
j

aij qj (9)

and let us assume that Qi is non-degenerate, so that it uniquely satisfies the secular equation
with a frequency ωi. We can simply use physical intuition to conclude that all the modes related
by symmetry to Qi, such as (g [Qi]) must also be eigenvectors with the same frequency.
However, we just assumed that Qi is non-degenerate, so it must necessarily follow that

g [Qi] = cQi (10)

where c is a constant (in fact, a unitary constant, here, ±1). We reach therefore the following
surprising conclusion:
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The non-degenerate modes of our molecule must transform as one of the four modes Γ1–
Γ4. Since there are no other modes with these transormation properties, Γ1–Γ4 must be
normal modes!

In particular, we know that for these modes we should not invoke displacements of the central
atom, because

Modes can only “mix” with other modes of the same symmetry.

3.2.1 Frequencies of the Γ1–Γ4 modes

We can immediately find out their frequency by equating the potential and kinetic energy terms
(conservation of energy). For example, if mode Γ1 has amplitude δ, the “stretch” of each K1

spring is
√

2δ, whereas that of each K2 spring is δ. Equating potential and kinetic energy per ion
(we omit a factor of 4 in each) we get:

1

2
(2K1 +K2) =

1

2
m1ω

2
1 (11)

whence (and likewise for the other modes):

ω1 =

(
2K1 +K2

m1

)1/2

ω2 =

(
K2

m1

)1/2

ω3 =

(
2K1

m1

)1/2

ω4 = 0 (12)

3.2.2 Frequencies of the other modes

We can repeat the same argument we made regarding non-degenerate eigenvectors to degenerate
eigenvectors, and reach a very similar conclusion:

The degenerate eigenvectors with degeneracy d transform in such a way as to span a sub-
space of dimension d (unless the degeneracy is accidental). This follows from the fact that
g [Qi] is an eigenvector with the same frequency, and must be either the same mode or a
degenerate mode.

In our problem, we have 6 modes with the same Γ5 transformation properties, transforming in
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pair into each other. How do we combine them to get degenerate normal modes? In principle,
they can all mix, since they have identical transformation properties. Therefore, it would seem
that the complexity of the problem has only been slightly reduced. However, we can get much
closer to the solution by considering that:

• If K2 = 0, the Γ5 modes listed above are the normal modes of the problem. In particular,
modes [I] and [II] and the central atom modes have zero frequency.

• If K2 6= 0, the new normal modes can only be admixtures of collinear modes (e.g., [I], [III]

and the x-displacement of the central atom). We could assume this as physical intuition,
but formally this comes about because the part of the dynamical matrix containing K2 is
diagonal, and cannot mix components.

• Even if K2 6= 0, two of the normal modes remain at zero frequency: they correspond to rigid
displacements of the whole molecule in the x and y direction.

Therefore, the problem reduces to finding the eigenvectors of a zero-determinant 3 × 3 matrix -
a quadratic equation that has a simple analytic solution (see extended notes).

Figure 5: Examples of non-zero-frequency normal modes of Γ5 symmetry involving two-atom
displacements. The exact mixing coefficient depend on the mass and spring constant parameters.
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4 Extended lattices: phonons and the Bloch theorem

Up to this point, we have only considered an isolated molecule with point-group symmetry. How
will the concepts that we learned apply to space groups, which, as we have seen, have infinite
dimension? The answer is that all of the symmetry machinery — particularly representation
analysis — still applies. The demonstration is much beyond the scope of this course (a good
reference, again, is [1]). We will instead proceed as follows: we will prove a very simple but
far-reaching result, known as the Bloch theorem

The Bloch theorem: The lattice modes fully symmetrised with respect to the translation
group are constructed by defining an arbitrary mode [u(0)] in the first unit cell and re-
peating in all the other unit cells with origin ri the same pattern multiplied by a phase
factor, as

[u(ri)] = [u(0)]eik·ri (13)

The vector k is known as the propagation vector of the mode, and can be restricted to the
first Brillouin zone. This is clear from the fact that an arbitrary propagation vector k can
be written as

k = τ + k′ (14)

Where τ is a RL vector. However, τ can always be omitted since ri · τ = 2πn
The proof of the Bloch theorem is very simple: one shows that if one applies the lattice
translation t (with translation vector t) to the mode in eq. 13, one obtains

t [u(ri)] = e−ik·t[u(ri)] (15)

This is shown graphically in fig. 6. Because this mode transforms upon translation by
multiplication with a constant, it must be fully symmetrised.

It is necessary to emphasise that the arbitrary Bloch modes we just described are in general fully
symmetrised with respect to the translation group but not fully symmetrised with respect to the
other symmetry elements of the space group. Considerably more effort is required to achieve full
symmetrisation.

All eigenfunctions of a Hamiltonian with a translational periodicity are Bloch waves or
linear combinations of Bloch waves with symmetry-related propagation vectors.

4.1 A simple case: symmorphic groups

A considerable simplification of the problem occurs when the space group is symmorphic, i.e.,
as we will remember, it contains a point with site symmetry equivalent to the crystal class. We
must also require that the propagation vector k obeys the same symmetry. In this case, we can
apply the following recipe:
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Figure 6: A simple example of a vector Bloch mode to illustrate the transformation properties of
these modes upon translation. The arrows represent the amplitude of the mode (here a constant
vector), while the clocks represent the phases. Mode (b) and (c) are the same as mode (a)
translated by one or two unit cells to the right. However, they can also by obtained multiplying
mode (a) by exp(ikR) where R is one or two lattice spacings for (b) and (c), respectively, and k
is the propagation or Bloch vector of the mode.

1. Consider all the atom in the unit cell centred around the high-symmetry point as a “molecule”
and construct the appropriate point-group modes.

2. Propagate the modes using the Bloch construction (eq. 13).

We can see the implications of this by examining once again the modes of our square molecule,
and trying to imagine how they will propagate in an extended lattice, for example, with space-
group symmetry P4mm. To comply with our requirements, the propagation vector must be along
the c axis. We can see that:

• The three zero-frequency modes will give rise to acoustic modes. All the other modes will be
optical.

• If no other spring constants are introduced, the energy of the modes will be unchanged. Springs
between the “molecules” in different unit cells, will give rise to dispersion, i.e., the energy
will depend on k.

14



5 Experimental techniques using light as a probe: “Infra-
Red” and “Raman”

Optical techniques are extremely useful to determine vibration frequencies in molecules, as well
as phonon frequencies in solids. Here, we will briefly introduce two techniques — Infrared (IR)
absorption/reflection and Raman scattering. As we shall see, these techniques have opposite and
complementary selection rules, and must be used in combination to measure all frequencies. In-
elastic neutron scattering (see below) does not suffer from selection rules, and is able to measure
all vibration modes at the same time. As the name suggests, IR spectroscopy is performed by
measuring the absorption or reflection of infra-red radiation (the latter exploiting the fact that
reflectivity contains information about absorption). In the more “direct” absorption process, a
photon is completely absorbed and a phonon is created instead (fig. 7 a). Raman scattering
is a “photon-in-photon-out” technique, where one measures the wavelength change of visible
light as a phonon is created or annihilated (fig. 7 b). Typical values of the incident energy and
wave-vector are:

IR ~ω ∼ 10− 100 meV

1

λ
∼ 103 cm−1

Raman ~ω ∼ 1− 10 eV

1

λ
∼ 105 cm−1 (16)

5.1 IR absorption and reflection

We know from the theory of optics that the dielectric constant acquires an anomalous component
with both real and imaginary parts near a resonance of the material. In particular (you will have
seen this in more details in the “Optical Properties of Solids” part of the C3 course. We defer
to this part for the detailed mathematical treatment). The following results can be obtained by
analysing the Classical Dipole Oscillator Model:

• The reflectivity R of a material contains information about both refractive index n and absorp-
tion coefficient α.

• Near a resonance, both R and n become anomalous, and show a peak at the resonant energy.

• The width of the peak is related to the width (sharpness) of the resonance (the “γ” coefficient,
which you might have encountered already).
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Figure 7: Diagrammatic representation of the IR and Raman scattering processes in a crystalline
material, illustrating the energy and momentum conservation. For a molecule, the recoil of the
molecule itself ensures conservation of momentum.

An example of an absorption spectrum for a the Vanillin molecule is shown in fig 8.

Figure 8: The IR transmission (1/absorption) spectrum of the vanillin molecule. Note the sharp
peaks where the IR light is strongly absorbed by the molecular vibration modes.
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Typical vibration frequencies in molecules and optical phonon frequencies in solids (see
here below) are of the order of several THz (1000 cm−1 = 30 THz), which falls in the IR
region of the electromagnetic spectrum. For our purpose, it is important to stress two
things:

• It is the displacement of oscillating charges that causes the polarisation. In other words,
in order for a resonance to cause a IR anomaly, the vibration of phonon modes must
generate oscillating electrical dipoles.

• The momentum of the electromagnetic radiation, hν/c, is much smaller than that of
typical phonons, except for phonons very near the zone centre. On the other hand,
the frequency of near-zone-centre acoustic phonons is much too low to be accessed
with this method. Therefore, in extended solids, IR spectroscopy essentially probes
zone-centre optical phonons.

With this introduction, we can look back at the vibration modes of our molecule, and ask our-
selves which ones will be visible by IR. The answer, once again, is obtained from symmetry
considerations:

Since a dipole moment is parity-odd (i.e., it change sign upon inversion) only parity-odd
modes (i.e., modes that are antisymmetric by inversion) can be “IR active”. The same
selection rules apply to centrosymmetric crystals where phonons can also be classified as
parity-even and parity-odd.

Since we only considered 2-dimensional modes, we can identify inversion and 2-fold rotation
and look at the symmetry-antisymmetry properties of our normal modes. Referring to section
2.3.1 and to fig. 1 and 5, we can easily see that modes Γ1–Γ4 are symmetric upon 2-fold rotation,
whereas all the Γ5 modes are antisymmetric. It follows that only the modes in 5 (degenerate in
pairs) will be IR-active — all the rest are IR-silent. The IR spectrum of this molecule (excluding
“overtones”= higher harmonics) will only contain 2 peaks.

5.2 Raman scattering

The second important optical spectroscopy technique is inelastic light scattering. In extended
solids, this technique can be used to measure both acoustic and optical phonons. Inelastic light
scattering via acoustic phonons is known as Brillouin scattering — a technique that is per-
haps more often applied to liquids. Inelastic light scattering via molecular vibrations or optical
phonons is known as Raman scattering In both cases, the previous consideration apply and the
phonon probed optically are those very near the zone centre.

In the case, of Brillouin scattering however, acoustic phonons can be probed because their fre-
quency is equal to the frequency change ω1 − ω2, which can be a small fraction of ω1. Note that
the shift can be positive (phonon creation) or negative(phonon annihilation), so, in general, two
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peaks are observed (fir 9.

Figure 9: Phonon creation (“Stokes” process) and phonon annihilation (“antiStokes” process) in
Brillouin scattering. in Raman scattering, only the “Stokes” process is usually observed at room
temperature, because the optical phonon modes have low populations.

The mechanism giving rise to Raman scattering involves a change in the polarisability of the
molecule or crystal as it vibrates, which generates alternative selection rules to the IR process.
Again, this can be seen classically as follows: the polarisation vector inside the material at a
given position r and time t can be written as:

P(t, r) = αEei(k0r−ω0t) + c.c.

α = α0 +
∑
i

αiQi e
i(kir−ωit) + . . .+ c.c. (17)

In eq. 17 k0 and ω0 are the wavevector and frequency of the electric field and ki and ωi are the
values for normal mode i having amplitude Qi. The quantities α0 and αi are components of
the polarisability tensor, since, in general, P is not parallel to E. Importantly, all the α’s are
properties of the crystal, and must have the full symmetry of the crystal.

By combining the two expression in eq. 17 we obtain

P(t, r) = α0Ee
i(k0r−ω0t) +

∑
i

αiQiE e
i[(k0±ki)r−(ω0±ωi)t)] + . . .+ c.c. (18)

We can see from eq. 18 that the polarisation vibrates with three distinct frequencies: that
of the original photon and those shifted upwards or downwards by the phonon frequency.
A full quantum-mechanical analysis is required in order to obtain the relative height of
the “Stokes” and “antiStokes” peaks (see, again, fig. 9).
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Here, we are principally interested in the symmetry selection rules. Let us have another look
at eq. 18 in the case of a centrosymmetric molecule or crystal. Once again, we remind that
the α’s must have the full symmetry of the molecule or crystal — in particular, they must
be parity-even for a centrosymmetric system. Both P and E are parity-odd, so the phonon
or vibration must be parity-even (This is strictly true only if one ignores the small amount of
momentum carried by the photon). In the case of our molecule, this condition is satisfied by
modes Γ1-Γ4, which are therefore Raman active.

6 Inelastic neutron scattering

Inelastic neutron scattering (INS) is another powerful technique to measure molecular and lattice
vibrations. In this case, the probe is a thermal neutron, and one measures the change in energy
and momentum of the scattered neutron. This process is illustrated in diagrammatic form in fig.
10 for a crystal. For a molecule, as in the case or IR and Raman scattering, conservation of
momentum is ensured by the recoil motion of the molecule itself.

Figure 10: Diagrammatic representation of the inelastic neutron scattering process (INS) in a
crystalline material, illustrating the energy and momentum conservation. For a molecule, the
recoil of the molecule itself ensures conservation of momentum.

Typical neutron parameters employed for INS are

INS ~ω ∼ 10− 400 meV

1

λ
∼ 107 − 109 cm−1

(19)

As we can see, the neutron and IR energies are comparable, but the neutron wavenumber
(momentum) is much larger, enabling one to access several Brillouin zones
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The main advantages of INS over IR and Raman are in fact

• The range and momentum is much extended.

• There are no selection rules, so all phonon modes can be accessed at the same time.

The most popular neutron instrument used to measure phonons in crystal is known as a triple-
axis spectrometer (fig. 11). By varying the monochromator, sample, analysed and detector
angle one can explore a vast say of the energy-momentum space.

Figure 11: Schematic drawing of a “triple-axis” spectrometer.
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