
Lecture 10 — Phase transitions.

1 Introduction

The study of phase transitions is at the very core of structural condensed-matter physics, to the
point that one might consider all we have learned in the previous lectures as a mere preparation
for the last one. The reason why the structural physicist has so much to offer here is that, in a
large class of phase transitions, the system undergoes a symmetry change. Here is a reminder
of a few generic facts about phase transitions

• A phase transition can be driven by many parameters — temperature, pressure, chemical com-
position, magnetic or electric field etc. If the driving parameter is temperature, the
high-temperature phase is almost always more disordered, i.e., has a higher symmetry
than the low-temperature phase.

• As for the point here above, phase transitions entail a change in the entropy of the system.
The change can be:

Discontinuous. In this case, the phase transition is accompanied by release of heat (latent
heat), and all the other thermodynamic quantities (internal energy, entropy, enthalpy,
volume etc.) are discontinuous as well. Such a phase transition is known as first-
order transition.

Continuous. In this case, the phase transition is continuous across the transition temper-
ature (or other transition parameter). The thermodynamic quantities are continuous,
but their first derivatives are discontinuous. In particular, the specific heat has a
pronounced anomaly (see below) and the thermal expansion coefficient has a step at
the transition.

• Some important phase transitions do not entail a change in symmetry — e.g., the liquid-to-gas
transition. Such phase transitions can only be first-order. We will not be concerned with
them in this lecture.

2 Phase transitions as a result of symmetry breaking

In the previous lectures, we have learned that in 2D and 3D symmetry is broken at the level of
the individual excitation. Therefore, at any temperature higher than T = 0, the fully symmetry is
retrieved only because the population of each excitation (e.g., phonon mode, but we can include
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electronic and magnetic excitations as well) is identical to that of its symmetry-equivalent modes.
We can then ask ourselves what happens if the frequency of a particular mode becomes zero at
a particular temperature. The answer is that this temperature is a phase transition temperature
(Tc): the mode will become “frozen” and the pattern (e.g. of displacements) becoming static.
What happens to the symmetry then? For a wide variety of phase transitions, both first- and
second-order, one can show that:

• At Tc, a single mode becomes frozen in a given macroscopic part of the crystal (domain)—
neither its symmetry-equivalent not any symmetry-inequivalent modes freeze in that do-
main. The symmetry within that domain will be therefore lowered by that frozen mode.
Symmetry classification of modes and symmetry-lowering at phase transitions are there-
fore closely related topics.

• Overall symmetry is restored because symmetry-equivalent modes freeze in different domains.

• A phase transition of this kind is described by amplitude parameter of the relevant mode,
which then describe the degree of “departure” from the high symmetry. This parameter is
therefore called order parameter.

• Disorder = high symmetry. Order=low symmetry.

2.1 The nature of the modes: “order-disorder”, “displacive” and other
phase transitions.

The first thing to observe is the nature of the modes we require and their symmetry properties. In
real crystal structures, there is a wide class of phase transitions, known as order-disorder phase
transitions, which are described in terms of scalar modes. One example is when atoms in a
previously random alloy become ordered on specific crystallographic sites, yielding (usually) a
larger unit cell. Here, the scalar quantity in question is the degree of ordering on each site, i.e.,
the positive or negative deviation from a random occupancy of each site by a certain species.

Another very common class of phase transition is that of displacive phase transition. These
are usually described in terms of polar vector modes, very similar to those we used to describe
the distortion of our 4-fold molecule in Lecture 8. Magnetic phase transitions are also usually
described using vectors — in this case axial vectors (as already mentioned, the time reversal
operator is important in describing magnetic modes — see here below). Other phase transitions
require yet more exotic modes, e.g., pseudoscalars (chiral order transitions) and higher order
tensors.
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2.2 Macroscopic quantities: the Neumann principle

When a phase transition occurs, the symmetry of the ordered phase is usually a subgroup of that
of the disordered phase. Symmetry may be lowered because of loss of translational and/or rota-
tional invariance. Changes in point group symmetry (i.e., loss of rotation/mirror symmetries) are
extremely important, since they allow new macroscopic physical phenomena. This is expressed
in the famous Neumann Principle (from Franz Ernst Neumann 1798-1895): “The symmetry
elements of any [macroscopic] physical property of a crystal must include the symmetry el-
ements of the point group of the crystal”. For example, the point group 4/mmm is non-polar
(see here below), whereas the point group 4 is polar. Therefore, a phase transition between space
groups I4/amd (crystal class = point group = 4/mmm) and I4 (crystal class 4) can (and in
general will) result in the development of a macroscopic electrical polarisation (ferroelectricity).
When a phase transition results in the development of a new macroscopic property that couples
to an external field, it is said to be a ferroic transition. It follows that all ferroic transitions
reduce the point-group symmetry. Here below, we describe the two most famous examples of
ferroic transitions: ferroelectricity and ferromagnetism.

2.2.1 Polarisation and ferroelectricity

Macroscopic polarisation describes the overall electrical dipole moment of a crystal, resulting
form the sum of microscopic electrical dipole moments. It is measured in C/m2. In real ferro-
electric crystals, the macroscopic dipole moment is compensated by free surface charges, and
there is no electric field outside the crystal. However, ferroelectrics insulators can be “switched”
by the application of an external electric field, resulting in a current pulse between the two sur-
faces of the crystal. Since the polarisation P is a polar (conventional) vector, there must not
be any symmetry operator in the point groups of a ferroelectric crystal that changes the di-
rection of P . At the very least, the point group of the crystal must not contain the inver-
sion. It turns out that there are only 10 crystal classes that allow a macroscopic polarisation:
1, 2,m,mm2, 4, 4mm, 3, 3m, 6, 6mm. A phase transition to one of these crystal classes will
result in the development of ferroelectricity.

2.2.2 Magnetisation and ferromagnetism

The magnetisation M is an axial (or pseudo-) vector, which explains why ferromagnetic mate-
rials are not (usually) ferroelectric at the same time and why centrosymmetric ferromagnets can
exist (pseudo-vectors are parity-even). However, there are much fewer restrictions on the crystal
classes of ferromagnets. Ferromagnets cannot be truly cubic, since the direction of M in itself
breaks the cubic symmetry. For example, iron is ferromagnetic with M in the< 111 > direction,
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and in the magnetic state one can measure a very slight rhombohedral distortion away from cu-
bic — an effect known as magnetostriction. However, ferromagnets with point group 4/mmm

can exist provided that M is along the c-axis, a classic example being magnetite (Fe3O4, SG
I4/amd), the oldest known ferromagnetic material. The key to this apparent contradiction lies
in the already-mentioned property of time reversal. M is the resultant of microscopic circulat-
ing currents. Therefore, its direction is reversed if one “runs the film backwards”— an operation
that clearly leaves the crystal structure unchanged. Therefore, M can break the symmetry in a
way that leaves the crystal structure invariant. In the aforementioned case of I4/amd, the true
point-group symmetry in the magnetic state for M ‖ c is 4/mm′m′, where the symmetry oper-
ation m′ involves taking a mirror image and reversing the arrow of time simultaneously. For all
intents and purposes, 4/mm′m′ looks like 4/mmm as far as the crystal structure is concerned.

2.3 Order parameters

Let us consider for the sake of discussion a phase transition driven by a Γ = 0 optical phonon(i.e.,
all unit cells in phase) in a crystal containing an array of square molecules yielding the displace-
ment patterns described in Lecture 8 (Figs 1 and 5). Excluding mode Γ4, which has zero energy,
it is apparent that any of the modes in Fig 1 can be described by a single displacement param-
eter, so that a phase transition driven by any of these modes requires a single order parameter
η. The situation in Fig 5 is more complex since each row contains two symmetry equivalent
modes. Based on what we said here above, we expect each of these two modes to “freeze” in
a separate domain. Furthermore, in Lecture 8, we simply stated without proof that these were
the normal modes of the molecule, but the only thing we know for sure is that the normal modes
are linear combination of these (since mixing modes with different transformation properties is
not allowed). Note that this is not an issue for quantum excitations, because of the superposition
principle (the modes are clearly degenerate), but it clearly becomes an issue as soon as the modes
freeze and become classical displacements. We here briefly mention the solution to this problem:
one needs to introduce an array of order parameters [ηj], of length equal to the dimension of the
linear space spanned by the symmetry-equivalent modes. In some cases, it will be necessary to
consider complex order parameters. In the remainder, we will only be concerned with the first
case.

3 The Landau theory of phase transitions

One of the most significant contributions of Lev Davidovich Landau (1908-1968) — one of the
great physicists of the 20th century — has been the theory of phase transitions bearing his name.
Landau theory is of central importance in many fields of condensed matter physics, including
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structural phase transitions, magnetism and superconductivity (the latter through a modification
of the original theory known as Ginsgburg-Landau theory — see a later part of the C3 course).

The essential feature of Landau theory is that it is a phenomenological theory. This means
that, unlike a microscopic theory, it is not concerned with the details of the interactions at the
atomic level that ultimately should govern the behaviour of any system. For a structural phase
transitions, microscopic interactions would be ionic and covalent bonding, Coulomb interactions,
Van der Waals interactions etc.; for a magnetic system, exchange and dipole interactions; for
a superconductor, pairing interactions, etc. Instead, Landau theory is chiefly concerned with
symmetry — in fact, it only applies to phase transitions entailing a change in symmetry. One of
the upshots of this is that systems with similar symmetries — even very different systems, which
we might expect to have very different microscopic theories — would look very similar within
Landau theory. This connection between very distant branches of physics might be thought
of as the origin of the idea of universality, which was to play a fundamental role in further
developments of Landau theory.

3.1 The Landau free energy

The central idea of Landau theory is the construction of a quantity, known as Landau free energy
or F , which describes the energetics of the system in the vicinity of a phase transition. F , which
can be usually thought of as an approximation to the Helmholtz or Gibbs free energy per unit
volume, is of course a real quantity, and depends on temperature, pressure and any other relevant
external parameter (e.g., electric or magnetic field, stress, etc.). Crucially, the Landau free
energy also depends on the order parameters of all the relevant modes of the system.

For a given set of external parameters, the stable state of the system is the one for which
the Landau free energy is minimal as a function of all internal degrees of freedom.

As we just mentioned, F depends on the internal variables of the system through the order
parameters of the various modes. It should be clear from our discussion that the modes describe
the systematic lowering of the symmetry of the system from a “high-symmetry” state, which
is almost always the high-temperature state. In the Landau construction, one thus implicitly
assumes the existence of a high-symmetry phase somewhere in the phase diagram, most likely
at high temperatures. In this state, all the order parameters are zero. One can therefore naturally
decompose F as:

F = F0 + ∆F(ηi) (1)

where F0 does not depend on the order parameter (and therefore has no influence on the phase
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transition), while ∆F(ηi) is small in the vicinity of the phase transition. As we stated before, we
will only consider simple real modes, so the ηi here are distinct order parameters of symmetry-
inequivalent modes that are candidate to drive the phase transition. In eq. 1, we are therefore
testing how each mode affects the free energy.

3.2 The symmetry of the Landau free energy

The following statement is the point of departure for the Landau analysis:

For any value of the order parameters, ∆F is invariant by any element g of the high-
symmetry group G0. In addition ∆F may possess the additional symmetries of free space
(most notably, parity and time reversal), provided that the external fields are transformed
as well.

We will not give here a full justification for this rather intuitive statements, which is connected to
the crystal symmetries and the overall rotational invariance of the “complete” system, including
the sources of the fields.

3.3 The Taylor expansion

Having recognised that ∆F is “small” near the phase transition (i.e., where all the order parame-
ters are zero), the next natural step is to perform a Taylor expansion of ∆F(ηi) in powers of ηi.
For example, in the case of a simple real, one dimensional order parameter, the expansion will
look like this:

∆F = −ηH +
a

2
η2 +

c

3
η3 +

b

4
η4 + o(η5) (2)

The odd-power terms are strongly restricted by symmetry, and are never present, for instance, if
there is a transformation η → −η. Finding the stable states will in any case entail minimising
the free energy ∆F as a function of the order parameter(s). From now on, we will continue with
this simple free energy example, all but ignoring all the issues related to the dimensionality of
the order parameter and the vector nature of the external fields. These issues introduce some
complications, but do not change the essence of the discussion.

In eq. 2, we have used the arbitrariness in the definition of the order parameter η in such a way
that the coefficient of the coupling term −ηH to the ‘generalised” external field H is −1. Here
below, we shall examine some of the terms in the expansion.
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3.3.1 The linear term in η

In the Landau free energy there is never any linear term in the order parameters that does
not couple to the external fields. (as we have seen, ther can be bilinear terms involving order
parameters with the same symmetry). The reason for this is simple: ∆F must be invariant by all
elements of the high-symmetry group, and so must be each term of the expansion. However, if
η were to be invariant by all symmetry operator, then the corresponding mode could not break
any symmetry and could not be involved in a symmetry-breaking transition. Linear terms in a
totally-symmetric mode parameter can therefore be incorporated in F0.

The term −ηH is not always present. For example, the linear coupling term to an external
field is permitted only if η is translationally invariant. Finally, η must transform by rotation
in such a way that −ηH is an invariant. If these conditions are met, the phase transition is
ferroic. Ferromagnetic, Ferroelectric and Ferroelastic transitions are classic examples of ferroic
transitions. In these case, we can write:

P = −∂F
∂H

= η (3)

where P is a generalised polarisation. In other words, for a ferroic transition, the order
parameter is the generalised polarisation (electrical polarisation, magnetisation, strain etc.)

3.3.2 The quadratic term in η

This term is always allowed and has the following structure:

∑
i

κi(ηi)2 (4)

where all the ηi’s have different symmetries (we do not have bilinear terms like ηiηj). To ensure
that the high-symmetry phase is the stable phase at high temperature, one must have κi > 0 for
T > Tc (so that all the second derivatives are positive for η = 0).

In the Landau theory, phase transitions occur when one of the coefficients of the quadratic
term in the order parameter expansion changes sign (from positive to negative, e.g., as a
function of temperature), whilst all the other coefficients remain positive. If the driving
parameter is temperature, the sign-changing term is usually written a′(T − Tc)η2, where
Tc is the transition (or critical) temperature. Clearly, the simultaneous change or two or
more coefficient in the expansion in eq. 4 can only be accidental. This is why only a single
mode (or more precisely a single symmetry) drives each phase transition.
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If there are no higher-order coupling terms between different order parameters for T < Tc,
ηi = 0 is still the stable state for all order parameters except for one order parameter (and
the ones with the same symmetry). The startling conclusion is therefore that:

Many Landau phase transitions involve only one order parameter, i.e., a group of coupled modes
with the same symmetry.

This is clearly an extraordinary simplification, which is, however, very well obeyed in many
phase transitions.

3.3.3 The cubic term in η

Landau free energies would be ill-conditioned if the Taylor expansion were to stop at an odd-
order term, because it would be unbound from below. Nevertheless, the cubic terms are very
important in the context of the Landau expansion, because if present, they always force the
transition to be first-order. This is left as an exercise, and can be shown by analysing the point
of extrema of the free energy and the signs of the second derivatives.

However, in many cases, cubic terms are not allowed by symmetry. For example, in an expansion
as in eq. 2, the cubic term (or any other odd-order term) would not be allowed if a transformation
η → −η existed.

One of the conditions for a phase transition to be continuous is that the cubic term in the Taylor
expansion is not allowed by symmetry — this is called the Landau condition for continuity.

3.3.4 The quartic term and higher-order terms in η

In the absence of higher-order terms, the quartic term is essential in producing a well-conditioned
free energy, the requirement being that → +∞ as |η| → ∞. In the simple, one-dimensional
case, this is satisfied if b > 0. If higher-order terms are present (for instance, the 6th order
term is always allowed by symmetry), the quartic term can be negative. One can see that, for
appropriate values of the parameters, a Landau free energy with a negative quartic term can
produce a first-order phase transition. In fact, a change in sign of the quartic term is the easiest
mechanism to produce a change in character (from second to first order) of the phase transition.
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3.4 Analysis of a simple Landau free energy

In this section, we will analyse the simple, “classic” form of the Landau free energy, i.e., eq. 2
without the odd-order terms.

∆F = −ηH +
a

2
η2 +

b

4
η4 + o(η4) (5)

This form of Landau free energy describes a continuous phase transition. Our purpose is to
extract a few relevant thermodynamic parameters both above and below the phase transition.

3.4.1 The order parameter (generalised polarisation)

As we have seen, the order parameter is identical to the generalised polarisation in the case of a
ferroic transitions. By minimising ∆F with respect to η we obtain:

−H + a′(T − Tc)η + bη3 = 0 (6)

In zero field, P(H = 0) = η(H = 0) is known as the spontaneous generalised polarisation.
Eq. 6 has the simple solutions:

η = 0

η = ±
√
a′

b
(Tc − T )

1
2 (7)

where the solutions on the second line are present only below Tc. It is easy to show that, for
T > Tc, η = 0 is a global minimum, while for T < Tc is a local maximum. The situation is
depicted schematically in fig. 1

The case H 6= 0 is analysed in details in [1]); here it will suffice to say that, if H 6= 0, η 6= 0

both above and below Tc. In other words, the external field breaks the symmetry and there is
no longer a “true” phase transition.
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Figure 1: Two examples of the temperature dependence of the Landau free energy. Top: the
simple form with quadratic and quartic terms produces a 2nd-order phase transition. Bottom:
adding a cubic term produces a 1st-order phase transition.

3.4.2 The generalised susceptibility

The generalised susceptibility (magnetic susceptibility for a ferromagnetic transition, dielectric
constant for a ferroelectric transition, etc) can also be calculated from the Landau free energy as

χ =
∂P
∂H

=
∂η

∂H
(8)

Writing F = −ηH + ∆F ′(η), the quantity

∂F
∂η

= −H +
∂∆F ′

∂η
= 0 (9)

is zero for all values of the field. By taking the total derivative of eq. 9 with respect to H , one
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finds

−1 +
∂2∆F ′

∂η2
∂η

∂H
= 0 (10)

whence the general formula:

χ−1 =
∂2∆F ′

∂η2
(11)

which, in the specific case of eq. 5 yields:

χ−1 = a′(T − Tc) + 3η2b (12)

Eq. 12 is can be evaluated for all values of the field, but it is particularly easy to calculate at
H = 0 (low-field susceptibility), where it produces different temperature dependences above
and below Tc:

χ−1(H = 0) = a′(T − Tc) for T > Tc

χ−1(H = 0) = 2a′(Tc − T ) for T < Tc (13)

Note that the zero-field susceptibility diverges at the critical temperature. In fact, above Tc,
eq. 13 gives the Curie-Weiss law for the susceptibility.

The negative-power-law behaviour of the generalised polarisation and the divergence of the sus-
ceptibility near the transition are essentially universal properties of all continuous phase tran-
sitions. However, the critical exponents (β for the generalised polarisation, γ and γ′ for the
susceptibility above and below Tc), are very often quite different from the Landau predictions
of β = 1/2 and γ = γ′ = 1. The exact critical exponents can be recovered in the framework of a
more complex theory that takes into account the effect of fluctuations.

3.4.3 The specific heat

It is easy to see that, within Landau theory, the zero-field entropy for a given value of η is:

∆S = S − S0 = − ∂F
∂T

∣∣∣∣
V

= −∂F
∂η

∂η

∂T
(14)
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where

∂F
∂η

= a′(T − Tc)η + bη3 (15)

and S0 is the component of the entropy not related to the phase transition. By employing eq. 7,
one finds that ∆S = 0 and ∆cv = 0 above Tc, whereas below Tc

∆S = −a′(T − Tc)

(√
a′

b
(Tc − T )1/2

)(
−1

2

√
a′

b
(Tc − T )−1/2

)
= −a

′2

2b
(Tc − T ) (16)

The specific heat below Tc is:

∆cv|T<Tc = −T ∂2F
∂T 2

∣∣∣∣
V

=
a′2

2b
T (17)

Therefore, at Tc, cv has a simple discontinuity given by ∆cv = Tca
′2/2b. In reality, in most phase

transition cv has a divergent behaviour (known as a “λ” anomaly) — again a clear indication
that Landau theory needs to be supplemented by fluctuation to obtain the correct quantitative
behaviour of the thermodynamic quantities.

4 Displacive transitions and soft modes

Up to this point, we have discussed the Landau theory of phase transitions in a completely gen-
eral way, without any concern about what happens to the crystal structure at the microscopic
level. Our 2-dimensional example on the Escher drawing suggest that some phase transitions
(order-disorder) can be driven by scalar fields, such as changes in occupancy of certain crystal-
lographic sites. However, as anticipated, a large class of phase transitions are displacive, i.e., are
driven by displacements of atoms or ions. Naturally, the relevant modes will be displacive, i.e.,
in displacive phase transitions, the modes that drive the transitions are the same phonon
modes driving the lattice dynamics. Note that this is not at all an obvious result, as we are
discussing very different timescales: phase transitions typically occur in a matter of seconds,
whereas typical phonon frequencies are in the THz range. Nevertheless, this observation cannot
be coincidental. Indeed

Most displacive phase transitions have a dynamical character, and are caused by softening
and “freezing” of a particular phonon.
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What this means is that the frequency of a particular phonon — either an optical zone-centre
phonon or an acoustic zone-boundary phonon, as we shall see briefly — starts to decrease as
the phase transition is approached (the phonon “softens”), until the frequency reaches zero at the
phase transition. At this point, the phonon is “frozen”, i.e., it is no longer dynamical. It has, in
fact, transformed into a static displacement pattern — exactly the mode we need to describe
a symmetry lowering through the phase transition. Exactly at the phase transition, the phonons
become highly anharmonic at the precise Brillouin zone point, but the crystal as a whole remains
rather harmonic, and the thermal expansion anomalies are typically small. As we cool below
the phase transition, something must happen to restore the quasi-harmonic character of all lattice
vibrations, and this depends one the details of the phase transition:

• Zone-centre phonons: in this case, the optical zone-centre phonon softens completely at the
phase transition, and then hardens again below it, as the system finds a new dynamical
equilibrium around the distorted structure. The periodicity of the structure is unchanged
through the phase transition.

• Zone-boundary phonons: When the distortion is driven by a zone-boundary phonon, the
distorted structure will have a larger unit cell (the translational symmetry is broken). The
zone boundary point will then “fold” to the new zone center, and the soft phonon will
harden below the phase transition to become a new zone center phonon.

In 1960, W. Cochran (Advan. Phys. 9 387 (1960)) proposed a simple relation between the soft
phonon frequency and the Landau parameters:

ω2 ∝ χ−1 (18)

Eq. 18, combined with eq. 13, gives the temperature dependence of the soft phonon frequency.

4.1 PbTiO3: a classic example of a displacive soft-mode transition

PbTiO3 has been considered for a long time a classic example of a displacive soft-mode transition
at the Γ point (zone centre). Its crystal structure is that of the perovskite (see Lecture 3). In the
high-temperature phase (T > Tc, with Tc ≈ 492 K), it is cubic with space group Pm3̄m.
Below the phase transition, it becomes tetragonal, with space group P4mm (same unit cell),
and acquires a spontaneous ferroelectric polarisation. The phase transition is driven by a
single zone-centre mode, shown in fig. 2, whereby both Ti and O displace along the c axis in
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one direction and Pb displaces in the opposite direction. Although the symmetry analysis of this
mode is quite complex, The Landau free energy can be reduced to the simple form of eq. 5, with
the order parameter being the amplitude of the mode, or, more precisely, its dipole moment, so
that the electrical polarization P is indeed proportional to the order parameter.

Figure 2: Crystal structures of PbTiO3 above (left, space group Pm3̄m) and below (right, space
group P4mm) the ferroelectric Curie temperature. The displacements are exaggerated for clarity
(in reality, they are about 0.1 fractional units for oxygen and 0.02 fractional units for Ti and
Pb). The relevant mode is dipole active and, upon freezing, is responsible for the spontaneous
polarisation.

The polarisation and dielectric constant, together with the specific heat, were measured by J.P.
Remeika and A.P. Glass, Mat. Res. Bull. 5, 37, (1970), and are reproduced in fig. 3. One can
notice the divergence of the dielectric constant at the transition and the onset of spontaneous
polarisation below the ferroelectric Curie temperature TC . Note the discrepancy between the
Curie temperature (492 K) and the zero intercept of the inverse susceptibility (T0 = 450 K),
indicating that the Curie law is not exactly obeyed and (possible) a slight first-order nature of the
transition.

The phonon dispersion of PbTiO3 was measured by G. Shirane et al., Phys. Rev B 2, 155 (1970)
and reproduced in fig. 4. The left panel shows the “soft” TO phonon branch above the transition
(510 K). The right panel shows the temperature dependence of the phonon energy at the Γ point.
One can clearly see that the square of the TO phonon frequency is linear with temperature. Also,
the intercept is very close to T0 — the zero intercept of the inverse susceptibility. This indicates
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Figure 3: Dielectric properties of PbTiO3, as measured by .P. Remeika and A.P. Glass, Mat. Res.
Bull. 5, 37, (1970). Top: the dielectric constant and (inset) its inverse. Middle: the spontaneous
polarisation and its temperature derivative (proportional to the measured pyroelectric currents);
Bottom: the specific heat, showing a clear λ-type anomaly at the phase transition.

that the Cochran relation is obeyed very well in this material.

5 Bibliography

Landau & Lifshitz - Statistical Physics [1] is part of the classic series on theoretical physics.
Definitely worth learning from the old masters.

References

[1] L.D. Landau, E.M. Lifshitz, et al. Statistical Physics: Volume 5 (Course of Theoretical
Physics), 3rd edition, Butterworth-Heinemann, Oxford, Boston, Johannesburg, Melbourn,
New Delhi, Singapore, 1980.

15



Figure 4: Phonon dispersion in PbTiO3, as measured by G. Shirane et al., Phys. Rev B 2, 155
(1970). Left Phonon dispersion curves along the [100] direction. The “soft” phonon is the TO
mode at the zone centre (Γ point). Right: The square of the phonon energy (in meV2) versus
temperature. The linear Cochran relation is obeyed within the (rather large) error bars.

[2] M.S. Dresselhaus, G. Dresselhaus and A. Jorio, Group Theory - Application to the Physics
of Condensed Matter, Springer-Verlag Berlin Heidelberg (2008).

[3] http://radaelli.physics.ox.ac.uk/documents/teaching/mt-2010/all walpapers.pdf

16


