Quantum logic operations in 40Ca and 43Ca$^{+}$ trapped-ion qubits

Mixed Species Experiment

Goals
- Two ion entanglement using a geometric phase gate
- High-fidelity laser gates
- Classical AND gate by controlled relaxation (useful for practical error correction schemes)

Details
- Qubit stored in ground state manifold (T_1 very large)
- Only one set of lasers needed as isotope shifts can be spanned with EOMs
- RF (40Ca) and microwaves (43Ca) used for single-qubit rotations
- Isotope shift of ~1 GHz allows individual addressing of the different isotopes and sympathetic cooling
- Simultaneous readout of both isotopes implemented

43Ca$^{+}$ Field–Insensitive Qubit

- Intermediate-field clock qubits preferable to zero-field clock qubit as Zeeman shift lifts state degeneracies
- Until now intermediate-field states only demonstrated in 40Ca and 43Ca$^{+}$ (NIST)
- 43Ca$^{+}$ has the following advantages:
 - No UV lasers which can change up the trap
 - Laser dipoles available at all required wavelengths
 - D-states for electron shielding (high웠로 쿨링)
 - However there is no closed cooling transition (see below)

State preparation

The ion is initialised in $F=4$,$M_F=4$ by several cycles of optical pumping and microwave ‘remapping’ pulses, giving good state preparation with impure optical polaronisation. 3 microwave pulses (green) are then used to prepare the ‘clock’ qubit (red).

Doppler Cooling at 146G

- S_u-P_u-D_u system has 64 states and no closed transitions.
- Optical Bloch equations used to simulate the system.
- Straightforward cooling solution found:
 - Polarizations chosen so that only a few states populated
 - Needs only one sideband on cooling laser (from EOM)
 - Single frequency 866nm repumping laser
 - P_u level population of up to ~0.15 simulated and achieved (50000 s$^{-1}$ total)

Towards Microwave-driven Entanglement

Proposed (2008) and demonstrated (Nature 471, 155, 2011) byospelkaus and coworkers at NIST.

Gate driven by oscillating microwave, rather than optical, field gradient. Ion is trapped in the near-field ~100μm from a microwave conductor to obtain high enough gradients.

Advantages
- Microwave electronics more mature and scalable technology than lasers
- No photon scattering as in laser-driven Raman gates
- No requirement for sub-Doppler cooling

Disadvantages
- Microwave field not as well localised as laser field (cross-talk)
- Careful nulling of microwave field at ion to suppress AC Zeeman shifts
- Fast gates (~10μs) will require small traps and high microwave current densities

The Ion Trap

- Macroscopic linear Paul trap (RF applied to ‘blades’ (blue) for radial confinement, DC applied to “end-caps” (red) for axial confinement)
- ‘Innsbruck’ style stainless steel ‘blade’ type
- Ion-electrode distance 0.5 mm
- Typical trap parameters:
 - Trap RF drive: 30 MHz
 - Axial secular frequency: 2 MHz
 - Radial secular frequency: 4 MHz

Cooling Results

- Doppler cooling to $m_F < 6$
- Pulsed sideband cooling of crystal’s two axial modes to $m_F < 0.1$
- Heating rate ~5 quanta/s at $f = 2$ MHz
- Mixed crystal sympathetic Doppler cooling

Readout

Trapped-ion qubits

Trap Design

Trap is gold on sapphire for good thermal conductivity. The trap region is in the centre of a half-wave microwave resonator to increase currents. Quarter-wave coupling sections provide a good 50Ω impedance match.

Towards Microwave-driven Entanglement

Network analyser data shows that >75% of input microwave power is coupled into the trap.

Advantages
- Microwave electronics more mature and scalable technology than lasers
- No photon scattering as in laser-driven Raman gates
- No requirement for sub-Doppler cooling

Disadvantages
- Microwave field not as well localised as laser field (cross-talk)
- Careful nulling of microwave field at ion to suppress AC Zeeman shifts
- Fast gates (~10μs) will require small traps and high microwave current densities

Raman Laser System

- Pair of injection-locked frequency-doubled amplified diode lasers gives up to 40 mW at 397 nm in each Raman beam.
- Photon scattering error for single qubit rotation predicted to be ~10$^{-7}$ at $D_u = 2n = 500$ kHz.
- System can be switched between addressing 40Ca and 43Ca in 100μs by switching injection path.
- Beat-note between Raman beams at ions sub-Hertz width

State preparation

The ion is initialised in $F=4,M_F=4$ by several cycles of optical pumping and microwave ‘remapping’ pulses, giving good state preparation with impure optical polaronisation. 3 microwave pulses (green) are then used to prepare the ‘clock’ qubit (red).

Comparison of experiment and theory for a frequency scan of the 866nm repumping laser

- S_u-P_u-D_u system has 64 states and no closed transitions.
- Optical Bloch equations used to simulate the system.
- Straightforward cooling solution found:
 - Polarizations chosen so only a few states populated
 - Needs only one sideband on cooling laser (from EOM)
 - Single frequency 866nm repumping laser
 - P_u level population of up to ~0.15 simulated and achieved (50000 s$^{-1}$ total)

Towards Microwave-driven Entanglement

Proposed (2008) and demonstrated (Nature 471, 155, 2011) byospelkaus and coworkers at NIST.

Gate driven by oscillating microwave, rather than optical, field gradient. Ion is trapped in the near-field ~100μm from a microwave conductor to obtain high enough gradients.

Advantages
- Microwave electronics more mature and scalable technology than lasers
- No photon scattering as in laser-driven Raman gates
- No requirement for sub-Doppler cooling

Disadvantages
- Microwave field not as well localised as laser field (cross-talk)
- Careful nulling of microwave field at ion to suppress AC Zeeman shifts
- Fast gates (~10μs) will require small traps and high microwave current densities

Towards Microwave-driven Entanglement

Proposed (2008) and demonstrated (Nature 471, 155, 2011) byospelkaus and coworkers at NIST.

Gate driven by oscillating microwave, rather than optical, field gradient. Ion is trapped in the near-field ~100μm from a microwave conductor to obtain high enough gradients.

Advantages
- Microwave electronics more mature and scalable technology than lasers
- No photon scattering as in laser-driven Raman gates
- No requirement for sub-Doppler cooling

Disadvantages
- Microwave field not as well localised as laser field (cross-talk)
- Careful nulling of microwave field at ion to suppress AC Zeeman shifts
- Fast gates (~10μs) will require small traps and high microwave current densities

Towards Microwave-driven Entanglement

Proposed (2008) and demonstrated (Nature 471, 155, 2011) byospelkaus and coworkers at NIST.

Gate driven by oscillating microwave, rather than optical, field gradient. Ion is trapped in the near-field ~100μm from a microwave conductor to obtain high enough gradients.

Advantages
- Microwave electronics more mature and scalable technology than lasers
- No photon scattering as in laser-driven Raman gates
- No requirement for sub-Doppler cooling

Disadvantages
- Microwave field not as well localised as laser field (cross-talk)
- Careful nulling of microwave field at ion to suppress AC Zeeman shifts
- Fast gates (~10μs) will require small traps and high microwave current densities

Towards Microwave-driven Entanglement

Proposed (2008) and demonstrated (Nature 471, 155, 2011) byospelkaus and coworkers at NIST.

Gate driven by oscillating microwave, rather than optical, field gradient. Ion is trapped in the near-field ~100μm from a microwave conductor to obtain high enough gradients.

Advantages
- Microwave electronics more mature and scalable technology than lasers
- No photon scattering as in laser-driven Raman gates
- No requirement for sub-Doppler cooling

Disadvantages
- Microwave field not as well localised as laser field (cross-talk)
- Careful nulling of microwave field at ion to suppress AC Zeeman shifts
- Fast gates (~10μs) will require small traps and high microwave current densities

Towards Microwave-driven Entanglement

Proposed (2008) and demonstrated (Nature 471, 155, 2011) byospelkaus and coworkers at NIST.

Gate driven by oscillating microwave, rather than optical, field gradient. Ion is trapped in the near-field ~100μm from a microwave conductor to obtain high enough gradients.

Advantages
- Microwave electronics more mature and scalable technology than lasers
- No photon scattering as in laser-driven Raman gates
- No requirement for sub-Doppler cooling

Disadvantages
- Microwave field not as well localised as laser field (cross-talk)
- Careful nulling of microwave field at ion to suppress AC Zeeman shifts
- Fast gates (~10μs) will require small traps and high microwave current densities

Towards Microwave-driven Entanglement

Proposed (2008) and demonstrated (Nature 471, 155, 2011) byospelkaus and coworkers at NIST.

Gate driven by oscillating microwave, rather than optical, field gradient. Ion is trapped in the near-field ~100μm from a microwave conductor to obtain high enough gradients.

Advantages
- Microwave electronics more mature and scalable technology than lasers
- No photon scattering as in laser-driven Raman gates
- No requirement for sub-Doppler cooling

Disadvantages
- Microwave field not as well localised as laser field (cross-talk)
- Careful nulling of microwave field at ion to suppress AC Zeeman shifts
- Fast gates (~10μs) will require small traps and high microwave current densities

Towards Microwave-driven Entanglement

Proposed (2008) and demonstrated (Nature 471, 155, 2011) byospelkaus and coworkers at NIST.

Gate driven by oscillating microwave, rather than optical, field gradient. Ion is trapped in the near-field ~100μm from a microwave conductor to obtain high enough gradients.

Advantages
- Microwave electronics more mature and scalable technology than lasers
- No photon scattering as in laser-driven Raman gates
- No requirement for sub-Doppler cooling

Disadvantages
- Microwave field not as well localised as laser field (cross-talk)
- Careful nulling of microwave field at ion to suppress AC Zeeman shifts
- Fast gates (~10μs) will require small traps and high microwave current densities