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was performed, where a change in external forcing resulted 
in changes to the regime structure of the attractor. The 
temporally correlated stochastic schemes captured these 
changes well.
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1 Introduction

The presence of regimes is a characteristic of non-linear, 
chaotic systems (Lorenz 2006). In the atmosphere, regimes 
emerge as familiar persistent circulation patterns such as 
the Pacific/North American (PNA) pattern, the North Atlan-
tic Oscillation (NAO) and Scandinavian Blocking events. 
More generally, a regime can be defined as “a region 
of state space that is more populated than neighbouring 
regions” (Stephenson et al. 2004). Identifying this localised 
clustering in state space is a non-trivial statistical problem 
(Stephenson et al. 2004), but can be achieved using a clus-
tering algorithm such as k-means clustering (Dawson et al. 
2012; Pohl and Fauchereau 2012; Straus et al. 2007) or by 
estimating the pdf of the distribution and searching for mul-
tiple maxima (Kimoto and Ghil 1993a, b; Corti et al. 1999).

In recent years there has been much interest in the 
problem of identifying and studying atmospheric regimes 
(Charney and DeVore 1979; Palmer 1993, 1999; Selten and 
Branstator 2004). In particular, there is much interest in 
how the climate system responds nonlinearly to an external 
forcing (such as anthropogenic greenhouse gas emissions) 
through a modification of its regime behaviour (Branstator 
and Selten 2009). An attractor with regime structure could 
respond to a forcing in two possible ways. Hasselmann 

Abstract Representing model uncertainty is important 
for both numerical weather and climate prediction. Sto-
chastic parametrisation schemes are commonly used for 
this purpose in weather prediction, while perturbed param-
eter approaches are widely used in the climate community. 
The performance of these two representations of model 
uncertainty is considered in the context of the idealised 
Lorenz ’96 system, in terms of their ability to capture the 
observed regime behaviour of the system. These results 
are applicable to the atmosphere, where evidence points to 
the existence of persistent weather regimes, and where it is 
desirable that climate models capture this regime behav-
iour. The stochastic parametrisation schemes considerably 
improve the representation of regimes when compared to 
a deterministic model: both the structure and persistence 
of the regimes are found to improve. The stochastic para-
metrisation scheme represents the small scale variability 
present in the full system, which enables the system to 
explore a larger portion of the system’s attractor, improv-
ing the simulated regime behaviour. It is important that 
temporally correlated noise is used in the stochastic para-
metrisation—white noise schemes performed similarly to 
the deterministic model. In contrast, the perturbed param-
eter ensemble was unable to capture the regime structure of 
the attractor, with many individual members exploring only 
one regime. This poor performance was not evident in other 
climate diagnostics. Finally, a ‘climate change’ experiment 
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(1999) discusses the climate attractor in terms of a field 
with several potential wells, each of which represents a dif-
ferent atmospheric regime. The first possible response to an 
external forcing would be a change in the relative depths of 
the potential wells. This would lead to changes in both the 
relative residence times in the wells, and to the transition 
frequencies between regimes. Studying 20th Century rea-
nalysis data indicates greenhouse gas forcing leads, in part, 
to this response in the climate system. Corti et al. (1999) 
observed changes in the frequency of Northern Hemisphere 
intraseasonal–interannual regimes between 1949 and 1994, 
though the structure of the regimes remained relatively 
unchanged over this time period.

The second possible response to an external forcing is a 
change in regime properties, such as centroid location and 
number of regimes (i.e. the position and number of poten-
tial wells). In addition to observing changes in frequency 
of regimes over the time period 1948–2002, Straus et al. 
(2007) observe this second type of response in the reanaly-
sis data; the structure of the Pacific trough regime is statis-
tically significantly different at the end of the time period 
than at the beginning.

The importance of regimes in observed trends over the 
past 50–100 years indicates that in order to predict anthro-
pogenic climate change, our climate models must be able 
to accurately represent natural circulation regimes, their 
statistics and variability. Dawson et al. (2012) show that 
while numerical weather prediction (NWP) models are 
able to capture the regime behaviour of the climate system 
with reasonable accuracy, the same model run at climate 
resolution does not show any statistically significant regime 
structure. However, the model used in this study has no 
representation of model uncertainty; a single deterministic 
integration is made from each starting date.

It is now well established that representing model uncer-
tainty as well as initial condition uncertainty is important 
for both reliable weather forecasts (Ehrendorfer 1997) and 
for indicating uncertainty in climate projections. Many 
possible methods for representing model uncertainty 
have been proposed, such as multi-model ensembles (e.g. 
DEMETER: Palmer et al. 2004) and multiparametrisation 
schemes (e.g. Houtekamer et al. 1996). Additionally, sto-
chastic parametrisation schemes have also been developed 
and shown to improve the skill of weather forecast models 
(Wilks 2005; Crommelin and Vanden-Eijnden 2008; Berner 
et al. 2009; Palmer et al. 2009; Frenkel et al. 2012; Kwas-
niok 2012; Arnold et al. 2013). It is possible that including 
stochastic physics as a representation of model uncertainty 
could enable a climate simulator to explore larger regions 
of the climate attractor, including other flow regimes. An 
alternative but commonly used representation of model 
uncertainty is a perturbed parameter scheme, whereby 
physical parameters in subgrid parametrisation schemes 

are perturbed about their optimal value (Murphy et al. 
2004; Stainforth et al. 2005; Rougier et al. 2009). Perturb-
ing parameters gives a greater control over the ensemble 
than multi-model or multiparametrisation ensembles, and 
has been used as a representation of model uncertainty in 
climate prediction (Stainforth et al. 2005; Rougier et al. 
2009). The impact of perturbed parameter representations 
of model uncertainty on the ability of a climate model 
to represent regime behaviour has not previously been 
studied.

This paper seeks to investigate the effect of including 
representations of model uncertainty on the regime behav-
iour of a simulator. A deterministic parametrisation scheme 
will be compared to stochastic parametrisation approaches 
and a perturbed parameter ensemble. An idealised chaotic 
model of the atmosphere, the Lorenz (1996) system, will be 
used to study regime behaviour (Lorenz 2006).

2  Data and methods

2.1  The Lorenz ’96 system

The Lorenz ’96 system is often used as a testbed for the 
development and testing of parametrisation schemes (Wilks 
2005; Crommelin and Vanden-Eijnden 2008; Kwasniok 
2012). There are many benefits of performing proof of con-
cept experiments in a simple chaotic system before mov-
ing to a global circulation model (GCM): such systems are 
computationally cheap to run, allow for the robust defini-
tion of “truth” required for forecast verification, and yet 
are able to mimic certain properties of the atmosphere. The 
results from these studies can then be used to inform future 
developments in the atmospheric modelling community 
(Dorrestijn et al. 2012).

This paper uses the second model proposed in Lorenz 
(1996), henceforth the L96 system, which consists of a set 
of coupled equations in two variables; the large scale, low 
frequency Xk variables are each coupled to many small 
scale, high frequency Yj variables. The governing equations 
for these variables are given by (1),

where the variables have cyclic boundary conditions; 
Xk+K = Xk and Yj+JK = Yj. The interpretation of the 

(1)

dXk

dt
= −Xk−1(Xk−2 − Xk+1) − Xk + F · · ·

−
hc

b

kJ
∑

j=J(k−1)+1

Yj; k = 1, ..., K

dYj

dt
= −cbYj+1(Yj+2 − Yj−1) − cYj · · ·

+
hc

b
Xint[(j−1)/J]+1; j = 1, ..., JK ,
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parameters in these equations, and the values used in this 
study, are shown in Table 1. The scaling of the variables is 
such that one model time unit is equal to five atmospheric 
days, deduced by comparing the error doubling time of 
the model to that observed in the atmosphere (Lorenz 
1996).

A simulator of the L96 system was constructed by 
assuming that only the X variables are resolved. The effect 
of the sub-gridscale Y  variables on the X variables must be 
parametrised in terms of the resolved X variables:

where Up is the parametrised subgrid tendency. The sim-
plest parametrisation scheme assumes a deterministic rela-
tionship between the unresolved tendency and the resolved 
grid-scale variables:

where the parameter values, (b0, b1, b2, b3), are determined 
by a least squares fit to the (X , U) truth data. The fitted val-
ues are shown in Table 2.

However, in the full set of governing equations, the state 
of the X variables does not uniquely determine the behav-
iour of the Y variables. The forecasts made using Eq. (3) will 
include an error due to the truncation and parametrisation of 
the L96 equations. A probabilistic forecast model, including 
a representation of model uncertainty, can give an indication 
of how large the forecaster predicts this error could be.

Two fundamentally different representations of model 
uncertainty are considered and are outlined below. For 
more details on the methodology, and for experiments 

(2)

dXk

dt
= −Xk−1(Xk−2 − Xk+1) − Xk + F − Up(Xk);

k = 1, ..., K ,

(3)Up(Xk) = Udet(Xk) = b0 + b1Xk + b2X2
k + b3X3

k ,

using more complicated stochastic simulators, refer to 
Arnold et al. (2013).

2.1.1  Stochastic parametrisation schemes

Two different stochastic parametrisation schemes will be 
discussed here, summarised in Table 3. Both include a sto-
chastic term into the deterministic parametrisation scheme, 
Eq. (3), to represent the subgrid-scale variability due to the 
truncated Y  variables.

The first scheme considered is an additive noise para-
metrisation scheme:

where the stochastic additive term, ek(t), for each of the Xk 
is modelled as a first order autoregressive (AR(1)) process,

where zk is a normally distributed random variable with 
unit variance. The optimal magnitude, σ and the temporal 
autocorrelation, φ of the stochastic term can be measured 
from the “truth” time series (σmeas, φmeas): the residual, r(t), 
between the true tendency, U(X), and the parametrised ten-
dency is calculated as

and the characteristics of the stochastic term ek(t) are 
designed to represent the residuals rk(t). The measured val-
ues of the parameters are shown in Table 3.

The second scheme considered here is a multiplicative 
noise scheme. This scheme was motivated by the multipli-
cative Stochastically Perturbed Parametrisation Tendencies 
(SPPT) scheme operationally in use at the European Centre 
for Medium-Range Weather Forecasts (ECMWF), and which 
has been shown to be skilful (Palmer et al. 2009). The para-
metrisation proposed is

where ek(t) is modelled as an AR(1) process. In a similar 
way to the additive scheme, the parameters in the model, 
(σ , φ) can be estimated from the truth time series to give 
(σmeas, φmeas), shown in Table 3.

(4)Up(Xk) = Udet(Xk) + ek(t),

(5)ek(t) = φek(t − �t) + σ(1 − φ2)
1
2 zk(t),

(6)rk(t) = U(Xk) − Udet(Xk),

(7)Up(Xk) = (1 + ek(t))Udet(Xk),

Table 1  Parameter settings used for the L96 system

Parameter Symbol Value

# X variables K 8

# Y variables per X variable J 32

Coupling constant h 1

Forcing term F 20

Spatial scale ratio b 10

Timescale ratio c 10

Table 2  Measured parameters defining the cubic polynomial, 
(bmeas

0
, bmeas

1
, bmeas

2
, bmeas

3
), and the variability of these parameters, 

σ(b
samp
i ), calculated by sampling from the truth time series

b0 b1 b2 b3

µ 0.341 1.30 −0.136 −0.00235

σ 0.146 0.0381 0.00901 0.000650

Table 3  Stochastic parametrisations of the sub-grid tendency, U, 
used in this experiment, and the values of the model parameters fitted 
from the truth time series

Parametrisation Measured parameters

Additive (A) φ = 0.986

σ = 1.99

Multiplicative (M) φ = 0.940

σ = 0.469
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Three parameter settings are of particular interest and 
will be considered in the following experiments:

1. The deterministic parametrisation (DET): σ = 0.
2. The white additive (WA) or white multiplicative (WM) 

stochastic parametrisations: σ = σmeas, φ = 0 for each 
case.

3. The measured AR(1) red additive or multiplicative 
(RA and RM respectively) stochastic parametrisations: 
σ = σmeas, φ = φmeas for each case.

2.1.2  Perturbed parameter scheme

An alternative representation of model uncertainty is a per-
turbed parameter scheme. This explores the uncertainty 
due to assumptions built into the physical parametrisa-
tion schemes by varying the values of uncertain param-
eters within their physical range, generating an ensemble 
of deterministic parametrisations. A perturbed parameter 
ensemble is also tested as a representation of model uncer-
tainty in the Lorenz ’96 system. The skill of this represen-
tation of model uncertainty is evaluated as for the stochas-
tic parametrisations.

Following Stainforth et al. (2005), each of the four 
parameters defining the cubic polynomial, 
(bmeas

0 , bmeas
1 , bmeas

2 , bmeas
3 ), is set to one of three values: low 

(L), medium (M) or high (H). The degree to which the 
parameters should be varied was estimated from the truth 
time series: the measured U(X) was split into sections 3 
model time units (MTU) long,1 and a cubic polynomial fit-
ted to each section. The measured variability in each of the 
parameters was then calculated as the standard deviation of 
the parameters fitted to each section σ(b

samp
i ). The meas-

ured standard deviations are shown in Table 2. The low, 
medium and high values of the parameters are given by:

1 One model time unit corresponds to approximately 5 atmospheric 
days (Lorenz 1996).

There are 34 = 81 possible permutations of the param-
eter settings, from which a subset of 40 permutations was 
selected to sample the uncertainty. The selected permuta-
tions are shown in Table 4.

The same “truth” model is used as for the stochastic para-
metrisations, and the simulator is constructed in an analo-
gous way: only the X variables are assumed resolved, and the 
effects of the unresolved sub-gridscale Y variables are repre-
sented by an ensemble of deterministic parametrisations:

where the values of the perturbed parameters, bp, vary 
between ensemble members.

2.2  Defining regimes in simple systems

Firstly, it needs to be established whether the L96 two-scale 
model exhibits regime behaviour. Lorenz (2006) carried out 
a series of experiments using the one-scale Lorenz ’96 sys-
tem (hereafter L96 1D), which describes the evolution of 
the L96 Xk variables, without the influence of the smaller 
scale Yj variables (Lorenz 1996):

Lorenz (2006) defines a dynamical system as having 
regime behaviour if:

1. The phase space of the dynamical system has two sep-
arate regions, A and B.

2. Both transitions A–B and B–A are observed.
3. For both modes, the average length of time between 

transitions must be long compared to some other sig-
nificant oscillation of the system.

(8)

L = bmeas
i − σ(b

samp
i )

M = bmeas
i

H = bmeas
i + σ(b

samp
i ),

(9)Upp(Xk) = b
p
0 + b

p
1Xk + b

p
2X2

k + b
p
3X3

k ,

(10)

dXk

dt
= −Xk−1(Xk−2 − Xk+1) − Xk + F; k = 1, · · · , K

Table 4  Chosen permutations 
for the perturbed parameter 
experiment

H, M and L represent the High, 
Medium and Low settings 
respectively

Selected permutations

# b0 b1 b2 b3 # b0 b1 b2 b3 # b0 b1 b2 b3 # b0 b1 b2 b3

1 H H H H 11 H L H L 21 M M L H 31 L H L L

2 H H H L 12 H L M M 22 M M L L 32 L M H M

3 H H M M 13 H L L H 23 M L H M 33 L M M H

4 H H L H 14 H L L L 24 M L M H 34 L M M L

5 H H L L 15 M H H M 25 M L M L 35 L M L M

6 H M H M 16 M H M H 26 M L L M 36 L L H H

7 H M M H 17 M H M L 27 L H H H 37 L L H L

8 H M M L 18 M H L M 28 L H H L 38 L L M M

9 H M L M 19 M M H H 29 L H M M 39 L L L H

10 H L H H 20 M M H L 30 L H L H 40 L L L L
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Lorenz performed extended numerical runs and examined 
the resultant time series of total energy.

Figure 1 shows the time series for the L96 1D system for 
different values of the forcing parameter, F. From his cri-
teria, Lorenz identified regimes in the time series for F = 
5.05–5.25.

Figure 2a shows the time series of total energy for 
the L96 System. The time series shows drops in the total 
energy of the system which persist for a few model time 
units, which could indicate the presence of regimes: it looks 

(11)E =
1

2

K
∑

k=1

X2
k

qualitatively similar to the series for F = 5.25 in Fig. 1, for 
the L96 1D system.

Lorenz (2006) also considers the spatial distribution of 
the X variables as a test for the presence of regimes. Fig-
ure 3 a shows profiles of the L96 system Xk variables at 
6 h intervals taken from 60 MTU after the start of the data-
set in Fig. 2, when the total energy of the system tends to 
be higher with large oscillations. Figure 3 b shows profiles 
from 50 MTU after the start of the dataset, when the total 
energy of the system has dropped to a lower, more qui-
escent state. The two sets of profiles are different: since 
these two samples are characterised by physically different 
states, it is reasonable to interpret them as coming from two 
different regimes.

The difference in structure between the two regimes is 
most clearly revealed by consideration of the covariance 
matrix of the X variables, shown in Fig. 4. It is conveni-
ent to define Regimes A and B in terms of this covariance 

Fig. 1  The time series of total energy for the L96 1D system, where 
total energy is defined as E =

1
2

∑

X2
k . The labels [4.95–5.25] indi-

cate the value of the forcing, F, in (10). Taken from Lorenz (2006) 
(Fig. 3). ©American Meteorological Society. Used with permission
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Fig. 2  a The time series of total energy for the L96 System, where 
total energy is defined as E =

1
2

∑

X2
k . Total energy is not conserved 

as the system is forced and dissipative. b The covariance diagnos-
tic evaluated for the data shown in a. If the diagnostic is positive, a 
wave-2 pattern dominates the behaviour of the X variables, whereas 
if it is negative, a wave-1 pattern is dominant. See text for details. 
c The same data set, interpreted in terms of two regimes—A and 
B—defined using the covariance diagnostic. If the diagnostic is posi-
tive, the system is interpreted as being in Regime A
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matrix C, calculated using samples of the time series 
1 MTU long, where C(m, n) represents the covariance 
between Xm and Xn:

In other words, the system is defined to be in Regime A 
if opposite X variables are in phase (for K = 8), and in 
Regime B if opposite X variables are out of phase. The 
time series of this “covariance diagnostic” and the resultant 
identified regimes are shown in Fig. 2b, c respectively.

Lorenz’s third criterion for regimes requires their dura-
tion to be longer than some other significant oscillation of 
the system. In the L96 system for the chosen parameter set-
tings, the dominant oscillation of the X variables has a time 
period of approximately 0.5 MTU. Figure 5 shows a pdf of 
the duration of each regime. The mean duration of Regime 

(12)

Regime = A : (C(1, 5) + C(2, 6) + C(3, 7) + C(4, 8)) > 0

Regime = B : (C(1, 5) + C(2, 6) + C(3, 7) + C(4, 8)) < 0

A is 7.12 MTU, and the mean duration of Regime B is 1.55 
MTU. The average duration of both regimes is greater than 
0.5 MTU, so we can conclude that, for the case where the 
ratio of time scales equals ten, the L96 system does indeed 
exhibit regime behaviour, and is a suitable model for use in 
this investigation.

The predictability of the regime behaviour of the L96 
system will be studied using the same techniques used for 
atmospheric data. Firstly, it has been suggested that the 
time series should be temporally smoothed to help identify 
the regimes (Straus et al. 2007; Stephenson et al. 2004). 
For example, consider the well-known Lorenz (1963) sys-
tem (the “butterfly attractor”): the system clearly has two 
regimes corresponding to the two lobes of the attractor, but 
these regimes are only apparent in a pdf of the system if the 
time series is first temporally averaged (Corti et al. 1999; 
Stephenson et al. 2004).2 In the L96 system, the modal resi-
dence time in Regime B is ∼0.4 MTU (Fig. 5), so a running 
time average over 0.4 MTU will be used to smooth the time 
series.

When studying atmospheric data sets, the dimensional-
ity of the problem is usually reduced using an empirical 
orthogonal function (EOF) analysis on the temporally 
smoothed data series (Selten and Branstator 2004; Straus 
et al. 2007). Due to the symmetry of the L96 system, the 
leading EOFs are simply the dominant harmonics, as seen 
in Fig. 6. The first two EOFs are degenerate, and are π

4
 out 

of phase wavenumber two oscillations, i.e. are in phase 
quadrature. The third and fourth EOFs are similarly in 
phase quadrature, and are π

2
 out of phase wavenumber one 

oscillations. Consideration of Fig. 6 shows that EOF1 and 
EOF2 are likely to dominate in Regime A, whereas EOF3 
and EOF4 dominate in Regime B. The principal compo-
nents (PCs) were calculated for each EOF. Due to the 

2 The time series must not be too heavily smoothed as this will cause 
the pdf to tend towards a Gaussian distribution (following the central 
limit theorem).
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Fig. 3  Profiles of the K = 8 Xk variables for the L96 system. The 
profiles are taken from a 60 MTU and b 50 MTU after the start of 
the time series shown in Fig. 2. The labelling on the Y-axis indicates 
the number of “atmospheric days” since the first profile. The profiles 
from Regime A show a wave-2 type behaviour, while those from 
Regime B show a dominant wave-1 pattern
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Fig. 4  The covariance matrix, C(m, n), for the covariance between 
Xm and Xn calculated from a 1 MTU sample, a 60 MTU and b 50 
MTU after the start of the time series shown in Fig. 2. a The domi-
nant feature is a wave-2 pattern, with the ‘opposite’ X variables in 
phase with each other. b The dominant feature is a wave-1 pattern, 
with the ‘opposite’ X variables out of phase with each other
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Fig. 5  The probability distribution function (pdf) for the duration of 
a Regime A and b Regime B. Regime A events are observed to be 
longer lasting on average than Regime B events
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degeneracies of the EOFs, the magnitude of the principal 
component vectors, ||PC1, PC2]|| and ||[PC3, PC4]||, will 
be considered and the pdf of the system plotted in this 
space.3 The corresponding eigenvalues show that EOF1 
and EOF2 account for 68.7 % of the variance, while EOF3 
and EOF4 account for a further 14.4 %.

3  The true attractor

Starting from initial conditions on the attractor, the full set 
of L96 equations is integrated forward for 50,000 MTU 

∼ 700 “atmospheric years” to ensure the attractor is fully 
sampled. This full system is defined to be the “true” sys-
tem which the simulators seek to represent. The truth 
time series is temporally smoothed with a running aver-
age over 0.4 MTU. For comparison, the raw, unsmoothed 
time series is also considered. An EOF decomposition 
is carried out on both the raw and smoothed time series, 
and the PCs calculated. The dimensionality of the space is 
further reduced by considering only the magnitude of the 
PC vectors ||[PC1, PC2]|| and ||[PC3, PC4]|| as a func-
tion of time. The state vector pdf for the full truth model is 
shown in Fig. 7 for (a) the unsmoothed time series and (b) 
the smoothed time series. Temporally smoothing the time 
series helps to identify the two regimes. The maximum of 
the pdf in both (a) and (b) is located at large ||[PC1, PC2]|| 
and small ||[PC3, PC4]||, corresponding to the more com-
mon wave-2 “Regime A” state of the system. However, in 
(b) the pdf is elongated away from this maximum towards 
large ||[PC3, PC4]|| and small ||[PC1, PC2]||, where there 

3 This is equivalent to considering complex EOFs, which are used to 
capture propagating modes. In this study, EOF1 and EOF2 together 
represent the first complex EOF, and EOF3 and EOF4 represent the 
second complex EOF, and therefore ||[PC1, PC2]|| = ||CPC1||, 
where CPC1 is the PC of the first complex EOF, etc.

is a small but distinct subsidiary peak; this corresponds to 
the less common “Regime B”. Figure 7a is also elongated, 
but does not have a distinct second peak, so does not indi-
cate the presence of regimes.

Figure 7c and d show the mean residence time of tra-
jectories within local areas of phase space. For each point 
in PC space, a circular region with radius R is defined, and 
the average residence time of trajectories within that region 
is calculated, following Frame et al. (2013) [(equivalent to 
the technique presented in Branstator and Berner (2005)]. 
Here R = 2, and the displayed circle indicates the size of 
the region for comparison. For both (c) the unsmoothed and 
(d) the smoothed time series, two regions of high residence 
time can be identified. The longest residence times occur 
at large ||[PC1, PC2]|| and small ||[PC3, PC4]||, corre-
sponding to Regime A. There is a further peak in residence 
time at large ||[PC3, PC4]|| and small ||[PC1, PC2]||, cor-
responding to Regime B. These two distinct peaks provide 
further evidence for the regime nature of the L96 system: 
there are two regions in phase space which the system pref-
erentially occupies for extended periods of time, and transi-
tions between these regions are more rapid. This diagnostic 
confirms that Regime A is more persistent than Regime B, 
as expected from Fig. 5.

Figure 7e and f show the mean velocity of the system’s 
motion through phase space, following Frame et al. (2013). 
The colour indicates mean speed, and arrows indicate mean 
direction. A region with radius 0.5 is defined centred on 
each point in phase space, and the net displacement of tra-
jectories starting within this region is calculated over 0.05 
MTU, before the average magnitude and direction is cal-
culated. Both figures (e) and (f) show two centres of rota-
tion in phase space corresponding to the two regimes. The 
centres of rotation approximately coincide with the max-
ima of the pdfs shown in (c) and (d), as expected (Berner 
and Branstator 2007). On average, trajectories circle these 
centres, resulting in persistent conditions (cf. the Lorenz 
’63 ‘butterfly attractor’). The structure of the flow field is 
different for the smoothed time series—the second centre 
is less clearly defined, but coincides with a maximum in 
the average magnitude of displacement: trajectories oscil-
late vertically about this centre during a persistent Regime 
B phase, resulting in a large average magnitude, but small 
average displacement vector. Both Fig. 7e and f provide 
conclusive evidence of the existence of regimes in the 
L96 system, which can be detected in both the raw and 
smoothed data.

4  Simulating the attractor

Section 3 demonstrated that the full L96 system exhibits 
regime behaviour. In this Section, the skill of the truncated 
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Fig. 6  The first four Empirical Orthogonal Functions (EOFs) cal-
culated from the truth time series: EOF1 (crosses), EOF2 (squares), 
EOF3 (circles), EOF4 (triangles). Due to the symmetry of the sys-
tem, the EOFs correspond to the leading harmonics
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L96 simulators at reproducing this regime behaviour will 
be evaluated. Each simulator is integrated for 50,000 MTU 
as for the full L96 system. For the perturbed parameter 
experiment, each of the 40 deterministic models are inte-
grated for 50,000 MTU. While regime behaviour can be 
detected in both the raw and smoothed truth time series, 
the results in Sect. 3 indicate that it is easier to detect the 
presence of regimes in the smoothed time series pdf, as was 
suggested by Straus et al. (2007). Therefore, the time series 
are temporally smoothed with a running average over 0.4 
MTU. The four leading order truth EOFs are used to cal-
culate the PCs of the simulated time series to ensure a fair 
comparison (Corti et al. 1999). The dimensionality of the 
space is further reduced by considering only the magnitude 
of the PC vectors [PC1, PC2] and [PC3, PC4] as a function 
of time. The state vector pdfs for each of the simulators 
considered are shown in Fig. 8; the pdf for the full “truth” 
model has also been reproduced for ease of comparison.

Panel (a) in Fig. 8 corresponds to the full “truth” Eq. 
(1), reproduced from Fig. 7, and shows two distinct peaks 
corresponding to the two regimes, A and B. The simulators 
are unable to capture accurately the subsidiary peak corre-
sponding to Regime B. The DET, WA and WM models all 
assign too little weight to this area of phase space. How-
ever, the AR(1) stochastic models show a large improve-
ment—Regime B is explored more frequently than by the 
deterministic or white stochastic models, though not as fre-
quently as by the full truth system. The attractor of the per-
turbed parameter model, Fig. 8c, shows a distinct peak for 
Regime B, unlike the other simulators. However, the attrac-
tor has a very different structure to that for the truth time 
series—Regime B is visited too frequently.

In fact, the PP attractor in Fig. 8c consists of the aver-
age of 40 constituent members, shown in Fig. 9. The 
contour colours are consistent with Fig. 8. Many of the 
40 different perturbed parameter ensemble members 

Fig. 7  Regime characteris-
tics of the full L96 system. 
Both the raw and temporally 
smoothed time series are 
considered, where the smooth-
ing is a running average over 
0.4 MTU. Each diagnostic is 
shown in the space of pairs of 
leading PCs, ||[PC1, PC2]|| 
and ||[PC3, PC4]||. See text for 
details. a Raw and b smoothed 
pdfs. c Raw and d smoothed 
mean residence times (MTU): 
the mean length of time a trajec-
tory remains within 2 units of 
each location. A circle of radius 
two is indicated. e Raw and f 
smoothed magnitude (colour) 
and orientation (arrows) of the 
average displacement in phase 
space over 0.05 MTU, averaged 
over trajectories passing within 
0.5 units of each position in 
phase space
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show very different regime behaviour compared to the 
true attractor. While some ensemble members (e.g. num-
bers 11, 17, 18 and 21) look reasonable, many remain in 
Regime A and do not explore Regime B (e.g. numbers 
6, 15, 16 and 27), while some predominantly explore 
Regime B (e.g. numbers 5, 37–39). Perturbed param-
eter ensembles are often used for climate prediction. 

However, if individual members only explore one region 
of the true climate attractor, how can the effect of forc-
ing on the frequency of occurance of different regimes be 
established?

The perturbed parameter ensemble also displays inter-
esting behaviour which was not observed in the ‘true’ sys-
tem, and which can be interpreted in terms of ‘attractor 

Fig. 8  Ability of different 
parametrisation models to 
reproduce the true attractor (a). 
The pdf of the state vector for 
the L96 system is plotted in the 
space of pairs of leading EOFs. 
See text for details. Six different 
forecasting models are shown. 
b Deterministic parametrisation 
scheme; c perturbed parameter 
scheme; additive stochastic 
parametrisation with d white 
and e red noise; multiplica-
tive stochastic parametrisation 
with f white and g red noise. 
The degree of perturbation 
of the perturbed parameters, 
and the standard deviation and 
autocorrelation in the sto-
chastic parametrisations have 
been estimated from the truth 
time series. The same EOFs 
determined from the full truth 
data set are used in each panel, 
and the colour of the contours is 
also consistent

(a) TRU

|| [PC 1, PC 2] ||
|| 

[P
C

 3
, P

C
 4

] |
|

0 5 10 15
0

2

4

6

8

10

0

0.02

0.04

0.06

0.08

(b) DET

|| [PC 1, PC 2] ||

|| 
[P

C
 3

, P
C

 4
] |

|

0 5 10 15
0

2

4

6

8

10
(c) PP

|| [PC 1, PC 2] ||

|| 
[P

C
 3

, P
C

 4
] |

|

0 5 10 15
0

2

4

6

8

10

(d) WA

|| [PC 1, PC 2] ||

|| 
[P

C
 3

, P
C

 4
] |

|

0 5 10 15
0

2

4

6

8

10
(e) RA

|| [PC 1, PC 2] ||

|| 
[P

C
 3

, P
C

 4
] |

|

0 5 10 15
0

2

4

6

8

10

(f) WM

|| [PC 1, PC 2] ||

|| 
[P

C
 3

, P
C

 4
] |

|

0 5 10 15
0

2

4

6

8

10
(g) RM

|| [PC 1, PC 2] ||

|| 
[P

C
 3

, P
C

 4
] |

|

0 5 10 15
0

2

4

6

8

10



H. M. Christensen et al.

1 3

|| 
[P

C
 3

, P
C

 4
] |

|
1

0

5

10
2 3 4 5

0

0.05

|| 
[P

C
 3

, P
C

 4
] |

|

6

0

5

10
7 8 9 10

|| 
[P

C
 3

, P
C

 4
] |

|

11

0

5

10
12 13 14 15

|| 
[P

C
 3

, P
C

 4
] |

|

16

0

5

10
17 18 19 20

|| 
[P

C
 3

, P
C

 4
] |

|

21

0

5

10
22 23 24 25

|| 
[P

C
 3

, P
C

 4
] |

|

26

0

5

10
27 28 29 30

|| 
[P

C
 3

, P
C

 4
] |

|

31

0

5

10
32 33 34 35

|| [PC 1, PC 2] ||

|| 
[P

C
 3

, P
C

 4
] |

|

36

0 5 10 15
0

5

10

|| [PC 1, PC 2] ||

37

0 5 10 15

|| [PC 1, PC 2] ||

38

0 5 10 15

|| [PC 1, PC 2] ||

39

0 5 10 15

|| [PC 1, PC 2] ||

40

0 5 10 15

Fig. 9  Ability of the perturbed parameter scheme to reproduce 
the true attractor. The pdf of the state vector for the L96 system is 
plotted in the space of pairs of leading EOFs, [EOF1, EOF2] and 
[EOF3, EOF4] for each of the forty perturbed parameter ensemble 
members (numbered). The attractors of individual ensemble members 

appear very different to the true attractor, with some members only 
exploring one of the two regimes present in the full system. The fig-
ure numbers correspond to the numbering of the ensemble members 
in Table 4. The same colour bar is used as in Fig. 8. Note that many 
of the ensemble members saturate this colour bar
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ruins’ (Itoh and Kimoto 1996, 1997). Figure 9 shows that 
PP ensemble member 1 is not chaotic, and instead follows 
a stable periodic orbit. Similarly, ensemble members 5, 8, 
9 etc. also follow a quasi-stable orbit on a neighbouring 
attractor. On varying the parameters, the system begins to 
move among the ruins of these attractors, exploring both 
regimes. The ‘true’ system can now be interpreted simi-
larly as moving between the ruins of two attractors, each of 
which represents a distinct observed regime.

To ease comparison, the 2D Fig. 8 is decomposed 
into two, 1D pdfs for each of the simulators considered 
(Fig. 10a, b). The Kolmogorov–Smirnov Statistic, Dks, and 
Hellinger distance, DHell, are calculated as quantitative 
measures of the difference between the true and simulated 
pdfs for each case:

(13)Dks = max
x

|P(x) − Q(x)|,

where P and Q are the simulated and truth cumulative PDFs 
respectively, and p(x) and q(x) are the simulated and truth 
PDFs respectively. For both Dks and DHell, the smaller the 
measure, the closer the simulated pdf is to the true pdf. 
The results are shown in Table 5. The RM simulator is the 
most skilful for each case according to the Hellinger dis-
tance. The RA scheme also scores well for both cases, and 
is the most skilful representation of ||[PC1, PC2]|| accord-
ing to Dks. The PP ensemble performs similarly to the 
DET, WA and WM simulations for the ||[PC3, PC4]|| case, 
but is considerably poorer than the DET scheme for the 
||[PC1, PC2]|| pdf.

However, as illustrated above, a PP ensemble must be 
interpreted carefully. Since each member of the ensemble is 

(14)(DHell)
2 =

1

2

∫

(

√

p(x) −
√

q(x)
)2

dx,
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Fig. 10  Ability of different parametrisation models to reproduce the 
true attractor. The pdf of the state vector for the L96 system is plotted 
for a the magnitude of [PC1, PC2], b the magnitude of [PC3, PC4], 
and c the pdf in X space. Four different forecasting models are shown 
on each panel (coloured lines) together with that for the truth data. 

White noise, whether additive or multiplicative, is indistinguishable 
from the deterministic case, so has not been shown. It is easier to dis-
tinguish between the parametrisation schemes if the regime behaviour 
is considered

Table 5  The skill of different parametrisation schemes at reproducing the structure of the Truth attractor along each of two directions defined by 
the dominant EOFs for F = 20, and for a changed climate, where F = 23

The Kolmogorov–Smirnov distance Dks, and Hellinger distance Dhell, are used to measure the similarity between the true and simulated pdfs. 
The smaller each of these measures, the closer the simulated pdf is to the true pdf. The best simulator according to each measure is shown in 
bold

Parametrisation F = 20 F = 23

[PC1,PC2] [PC3,PC4] [PC1,PC2] [PC3,PC4]

Dks Dhell Dks Dhell Dks Dhell Dks Dhell

Deterministic 0.082 0.120 0.106 0.110 0.102 0.102 0.047 0.074

WA Stochastic 0.091 0.128 0.113 0.117 0.053 0.064 0.025 0.058

RA Stochastic 0.030 0.057 0.048 0.054 0.025 0.021 0.035 0.047

WM Stochastic 0.086 0.122 0.108 0.112 0.066 0.071 0.025 0.061

RM Stochastic 0.034 0.053 0.037 0.043 0.019 0.018 0.029 0.038

Pert. Parameters 0.245 0.261 0.151 0.142 0.149 0.146 0.074 0.090
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a physically distinct model of the system, the simulated cli-
matology of each member should be assessed individually. 
The 1D pdfs of ||[PC1, PC2]|| and ||[PC3, PC4]|| were cal-
culated for each ensemble member, and DHell between the 
simulated and true pdfs evaluated for each case. For com-
parison, the deterministic and stochastic simulations were 
also split into 40 sections, each 1,250 MTU long, and DHell 
evaluated for each section as for the PP ensemble. This 
allows the effect of sampling error to be considered. The 
distribution of DHell for each case is shown in Fig. 11. The 
spread of skill is largest for the PP ensemble, with some 
members showing very poor climatologies, while others 
are more skilful. The WA and WM schemes do not show a 
significant difference from the DET simulation, while the 
RA and RM schemes significantly outperform the other 
schemes.

Figure 10c shows the pdf of the X variables for each par-
ametrisation scheme tested (the WA and WM schemes per-
formed very similarly to the DET scheme, so have not been 
shown). This is a conventional definition of climate, includ-
ing information about both the mean and expected varia-
bility of the variable of interest. This diagnostic indicates 
that all parametrisation schemes perform well—it is hard 
to distinguish between the different schemes if only the dis-
tribution of the X variables is taken into account. However, 
Fig. 10a, b show clearly how poorly the PP scheme repro-
duces the attractor of the system. Defining the climate of 
the system in terms of its regime behaviour has unveiled 

more information about the system, and is a harsher test of 
the performance of the different simulators.

5  Simulating regime statistics

While reproducing the pdf of the true system is important 
for capturing regime behaviour, it is also necessary for a 
climate simulator to represent the temporal characteristics 
of the regimes. This is evaluated using the distribution of 
persistence of each regime (Dawson et al. 2012; Pohl and 
Fauchereau 2012; Frame et al. 2013), and will be consid-
ered using two techniques.

Firstly, the behaviour of the system in PC space is used 
to examine the temporal characteristics of the system, fol-
lowing Frame et al. (2013). The mean residence time of 
trajectories in phase space is calculated. For each point in 
PC space, a circular region with radius R is defined, and 
the average residence time of trajectories within that region 
is calculated, as for Fig. 7c, d. Figure 12 shows the mean 
residence time of trajectories when R = 2 PC units. Two 
regions of high residence time can be identified in the truth 
simulation shown in panel (a). The longest residence times 
occur at large ||[PC1, PC2]|| and small ||[PC3, PC4]||, cor-
responding to Regime A. There is a smaller peak in resi-
dence time at large ||[PC3, PC4]|| and small ||[PC1, PC2]||, 
corresponding to Regime B.

The simulators are able to capture the temporal charac-
teristics of the true system. They show two distinct peaks 
in residence time of the correct magnitude. However, there 
are subtle differences between the different simulators. In 
Fig. 12, the DET, PP, WA and WM simulators have regimes 
that are too persistent—the two peaks in residence time 
are too high, particularly for Regime A. The RA and RM 
schemes perform better, and capture the average residence 
time for Regime B particularly well.

It is important to recall that the PP ensemble consists of 
40 physically distinct representations of the system. The 
residence time pdfs are plotted for each perturbed param-
eter ensemble member in Fig. 13 for the R = 2 case. The 
individual ensemble members have vastly different tempo-
ral characteristics. Many ensemble members have persis-
tent regimes with few transitions, including some which 
had realistic pdfs in Fig. 8 (e.g. numbers 11, 21). The same 
colour scale is used as for Fig. 12, but has saturated for sev-
eral panels. For example, the maximum residence time of 
Regime A for ensemble member 6 is 0.72 MTU, which is 
almost double the maximum residence time observed in 
the full system. Considered individually, the PP ensemble 
members are a poor representation of the regime behaviour 
of the true system.

The second technique used to study the regime statistics 
uses the definition of Regimes A and B given by (12). The 
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Fig. 11  The distribution of Hellinger distance calculated for the dif-
ference between forecast and observed EOF climatologies. The pdf 
for the magnitude of a [PC1, PC2] and b [PC3, PC4] is calculated. 
For the deterministic and stochastic models, the time series is split 
into 40 sections, 250 MTU long, and the pdfs calculated for each. 
For the perturbed parameter ensemble, the pdfs are calculated for 
each ensemble member separately. The Hellinger distance between 
each forecast pdf and the true pdf is evaluated, and the distribution of 
Hellinger distance represented by a box and whisker plot. The median 
value is marked by a horizontal red line. The 25th and 75th percen-
tiles are indicated by the edges of the box, and the whiskers extend to 
the minimum and maximum value in each case, unless there are outli-
ers, which are marked by a red cross. An outlier is defined as a value 
smaller than 1.5 times the inter-quartile range (IQR) below the lower 
quartile, or greater than 1.5 IQR above the upper quartile
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Fig. 12  Mean residence time 
in model time units. The mean 
length of time trajectories 
remain within 2 units of each 
position in PC space. A circle 
of radius 2 units is shown for 
comparison in a
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Fig. 13  Mean residence time in model time units for each member of the perturbed parameter ensemble. The mean length of time trajectories 
remain within 2 units of each position in PC space. The figure numbers correspond to the numbering of the ensemble members in Table 4
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definition is used to determine the regime at each time step, 
and the pdf of persistence of each regime calculated as for 
Fig. 5. Figure 14 compares the persistence pdfs for the full 
L96 system with that of the different simulators. The AR(1) 
stochastic parametrisation schemes (red and magenta lines) 
improve significantly over the white stochastic schemes 
and the deterministic scheme (green)—the distribution of 
regime durations more closely matches the true distribution 
for the AR(1) noise cases.

As before, it is helpful to consider the climatology of 
each perturbed parameter ensemble member separately. 
The Hellinger distance between the truth and each per-
turbed parameter persistence pdf was calculated. For com-
parison, the deterministic and stochastic simulations were 
split into 40 sections, and the pdfs of persistence calculated 
for each section, and the distribution of DHell considered 
(not shown). As before, the WA and WM schemes perform 
very similarly to the DET scheme, with similar median and 
range in DHell. The red AR(1) stochastic schemes are sig-
nificantly more skilful at predicting the regime statistics 
than the deterministic and white stochastic schemes, espe-
cially when considering Regime A: both schemes have a 
significantly lower median and smaller range of DHell val-
ues. The skill of the PP ensemble shows the greatest vari-
ability. While the median score is only slightly greater than 
the median for the deterministic ensemble, some PP ensem-
ble members score very large Hellinger distances. Twelve 
PP ensemble members underwent no regime transition, so 
were excluded from this analysis.

Table 6 shows the overall proportion of time spent in 
each regime for each simulator. This also improves when 
red stochastic schemes are considered; the DET, WA and 
WM schemes visit Regime B too rarely, whereas the pro-
portion of time spent in Regime B by the AR(1) stochastic 
schemes is close to the truth.

6  Climate change experiments

The results presented above indicate that stochastic para-
metrisation schemes which include a temporally corre-
lated noise term significantly improve the representation of 
regimes in the L96 system. However the question remains, 
do they also improve the ability of a simulator to capture 
changes in regime behaviour due to an external forcing? 
In the introduction, two possible responses to forcing were 
outlined, where the climate attractor is considered as a field 
with several potential wells (Hasselmann 1999).

1. A change in the relative depths of the potential wells, 
leading to changes in both the relative residence times 
and transition frequencies

2. A change in regime properties, such as centroid loca-
tion and number of regimes

In the L96 system, the regime structure of the attractor 
can be altered by changing the constant forcing term, F, in 
(1). It was found that a moderate change from F = 20 to 
F = 23 resulted in significant changes to the regime struc-
ture of the system. A “climate change” experiment was per-
formed. The truth model and different simulators were each 
integrated for 500,000 MTU with F = 20, before the con-
stant forcing term was increased linearly from F = 20 to 
F = 23 over 500,000 MTU. The integration then continued 
for 500,000 MTU with the new higher forcing term.

Figure 15a shows the difference between the 2D pdf 
at the start and end of the climate change experiment for 
the true system, where the 2D pdf is calculated using a 
50,000 MTU sample taken from within each of the F = 20 
and F = 23 portions of the time series. The attractor has 
responded to the change in forcing in both of the ways 
outlined above: the centroid location for the rarer regime 
has shifted towards higher values of ||[PC1, PC2]|| and 
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Fig. 14  Predicting the distribution of persistence of a Regime A and 
b Regime B. The true distribution is shown in black, and the six dif-
ferent simulators shown as coloured lines. The results for the white 
additive and multiplicative schemes are very similar to the determin-
istic scheme, so have not been shown

Table 6  Predictability of regime frequencies by different simulators

The deterministic and white stochastic schemes all underpredict the 
proportion of time spent in the rarer Regime B, while the AR(1) sto-
chastic schemes explore this region of phase space with the correct 
frequency

For reference, the true regime frequencies are shown in bold

Parametrisation p(A) p(B)

Truth 0.8199 0.1801

Deterministic 0.9294 0.0706

WA Stochastic 0.8879 0.1121

RA Stochastic 0.8017 0.1983

WM Stochastic 0.9015 0.0985

RM Stochastic 0.7780 0.2220

Perturbed Parameters 0.4197 0.5803
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Fig. 15  Ability of different parametrisation models to reproduce the 
true attractor for a changed climate (F = 23) compared to the origi-
nal system (F = 20). The difference between the F = 23 and F = 20 
pdfs of the state vector for the L96 system is plotted in the space of 
pairs of leading EOFs. The results from six different simulators are 
shown. b Deterministic parametrisation scheme; c perturbed param-

eter scheme; additive stochastic parametrisation with d white and e 
red noise; multiplicative stochastic parametrisation with f white and 
g red noise. The same EOFs determined from the F = 20 full truth 
data set are used in each panel, and the colour of the contours is also 
consistent
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||[PC3, PC4]||, and the proportion of time spent in the rarer 
regime (B) has increased.

It is interesting to analyse how successfully the differ-
ent simulators capture these changes. The change in struc-
ture of the attractor can be analysed by considering the 
difference in 2D pdf for each simulator in the same space 
spanned by the leading EOFs of the true attractor. The 
deterministic, white additive and white multiplicative simu-
lators each show a strong increase in the secondary peak in 
the pdf at (5,8), corresponding to the rarer Regime B, how-
ever this peak is in a similar position to that for the F = 20 
case. In contrast, the secondary peak for the true attrac-
tor has shifted to (7,8), and is less distinct. The red addi-
tive and multiplicative parametrisation schemes accurately 
capture the changes to the structure of the pdf, including 
the new location and depth of the second regime. As for the 
F = 20 case, the perturbed parameter ensemble members 
do not necessarily explore both regimes, with some occu-
pying only one, resulting in a distorted composite pdf.

As before, for ease of comparison, the 2D pdf can be 
decomposed into two, 1D pdfs for each of the simulators, 
and the Kolmogorov–Smirnov Statistic, Dks, and Hellinger 
distance, DHell, calculated as measures of the difference 
between the true pdf and the simulated pdf for each case. 
Table 5 gives the results for the different simulators tested. 
The AR(1) multiplicative stochastic simulator is most skil-
ful overall at reproducing the attractor according to these 

measures, though the white stochastic models also improve 
on the deterministic attractor.

The proportion of time spent in the rarer regime B, p(B),  
is calculated following (12), and is a useful scalar sum-
mary for considering how well the different simulators 
capture the change in regime statistics and the changing 
nature of the climate attractor. Figure 16 shows the pro-
portion of time spent in Regime B over the course of the 
climate change experiment. The plotted proportion was 
averaged over 50,000 MTU sections of the time series. The 
full truth model shows a smooth transition from p(B) = 0.2 
to p(B) = 0.4, where the initial increase is observed to be 
more rapid than at later times.

No simulator captures this rate of change of p(B) accu-
rately. However, the stochastic simulators do capture the 
smooth transition in regime properties. In particular, the red 
stochastic models also give a good indication of the overall 
change in p(B) between the two forcing scenarios, whereas 
the white stochastic models indicate a larger change occurs 
than is observed in the truth run. The deterministic model 
does not capture the smooth transition in regime properties: 
for certain values of F the simulated regime properties are 
completely dissimilar to those observed in the true system, 
though the final indicated value of p(B) is a good estimate 
of the truth. The perturbed parameter ensemble members 
behave similarly to the deterministic model, undergoing 
sudden changes in behaviour as F is varied.
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Fig. 16  The proportion of time spent in regime B, p(B), and the 
applied external forcing as a function of time for the climate change 
experiment. a the results from the full ‘truth’ model are compared to 

those from each simulator. b the behaviour of individual perturbed 
parameter ensemble members (pale grey) is compared to the ensem-
ble mean (dark grey) and the results from the full ‘truth’ system
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7  Discussion and conclusions

Regime behaviour, commonly observed in the atmosphere, 
is also observed in the L96 system. It is argued that the 
L96 system has two regimes for the parameters considered 
here (F = 20)—the system is in Regime A 82 % of the 
time, while the less common Regime B occurs 18 % of the 
time. The regime behaviour of this system makes it a useful 
testbed for analysing the ability of different simulators to 
reproduce regime behaviour. Three types of simulator were 
considered: one which used a deterministic parametrisation 
scheme, simulators including stochastic parametrisation 
schemes with additive or multiplicative noise, and a per-
turbed parameter ensemble. The L96 system mimics cer-
tain properties of the atmosphere, including chaotic motion 
and interaction of scales, so conclusions drawn from these 
experiments can indicate useful avenues of research in full 
complexity GCMs.

Each simulator was tested on its ability to reproduce the 
attractor of the full system, defined in a reduced space based 
on an EOF decomposition of the truth time series. None of 
the simulators accurately captures the less common Regime 
B, though a significant improvement is observed over the 
deterministic parametrisation when a temporally correlated 
stochastic parametrisation is used instead—the AR(1) sto-
chastic simulators were able to capture the structure of the 
attractor well. The deterministic parametrisation scheme 
represents the mean effects of the unresolved subgrid scale 
motions, but is insufficient for capturing the regime behav-
iour of the system. These results suggest that it is the varia-
bility of the unresolved motion, represented by the stochastic 
parametrisation scheme, which plays a leading role in deter-
mining the structure of regimes in this system. The varying 
sub-grid scale forcing enables the system to explore a larger 
region of the attractor in the same way in which a ball-bear-
ing in a potential well will explore around its equilibrium 
position when subjected to a random forcing.

In this study, it was found that the critical beneficial 
characteristic of the stochastic parametrisation scheme is 
not the method used to include the stochastic term (since 
the additive and multiplicative schemes performed very 
similarly), but instead it is the characteristics of the stochas-
tic noise itself. Namely, in order to recover regime behav-
iour, the noise term must be temporally correlated. This 
reinforces this conclusion made by Arnold et al. (2013), 
where it was concluded that parametrisation schemes 
must go beyond representing sub-gridscale variability and 
instead should represent the effects of the unresolved sub-
grid motions on spatial and temporal scales greater than the 
truncation level. Due to the coupling of scales in complex 
systems, such schemes were found to produce the most 
skilful ‘weather’ forecasts, and showed improvements in 
the climatological pdf of the system.

However, unlike in Arnold et al. (2013) where an 
improvement in skill was observed when first white then 
red stochastic terms were included in the parametrisation 
scheme, in this work there is a negligible improvement 
when white stochastic terms are included into a determinis-
tic parametrisation scheme. This implies that, while it is the 
unresolved terms which are responsible for determining the 
regime behaviour of the system, it is the organised nature 
of these unresolved terms which triggers regime changes 
and allows the system to explore the whole attractor. The 
temporally correlated stochastic schemes mimic the tem-
poral organisation of the unresolved forcing, so better cap-
tures the regime structure of the system. This was observed 
as an improvement in both the statistics describing the per-
sistence of the regimes and their frequency of occurrence 
when the red noise stochastic parametrisations were used 
instead of the deterministic scheme. The deterministic and 
white stochastic schemes tended to have regimes which 
were too persistent. The temporally correlated stochastic 
parametrisation was able to provide the ‘activation energy’ 
required to excite regime transitions, and improved the 
mean residence time for the two regimes.

Recent work by Dawson and Palmer (2014), described 
in a companion paper, has demonstrated the improvement 
in simulated regime behaviour in the GCM operationally 
used at ECMWF. The introduction of stochastic physics 
into the model resulted in an improvement in the spatial 
pattern of North Atlantic weather regimes, as well as on 
the climatological frequency and occurence of the regimes. 
This indicates that the results presented here from the 
Lorenz ’96 system are generalisable to a full complexity 
atmospheric general circulation model.

The “climate change” experiment indicates that stochas-
tic parametrisation schemes improve the response of the 
system to an external forcing. In particular, the red noise 
stochastic schemes skilfully indicated the change in pro-
portion of time spent in each regime which occured as a 
result of the forcing. This kind of experiment can most eas-
ily be carried out in a ‘toy model’ setting, where the true 
regime behaviour of the system can be calculated before 
and after the external forcing is applied. The results pre-
sented here motivate further testing of stochastic parametri-
sation schemes in models of intermediate complexity, and 
indicate that temporally correlated stochastic parametrisa-
tion schemes should be incorporated into the next genera-
tion of climate models, due to their beneficial impact on the 
mean state of the modelled climate.

The results from the “climate change” experiment indi-
cate a certain robustness to the results presented for the 
F = 20 case—the red stochastic schemes are skilful at 
reproducing the climate of related attractors to the L96, 
F = 20 system. Additionally, it is important to recall that 
the stochastic and perturbed parameter schemes were 
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derived for the F = 20 case, and were not re-tuned to be 
optimal for the changed climate—the same values of σ , φ 
and bi are used throughout the integration period. The 
deterministic parametrisation schemes was able to capture 
the structure of the attractor for which it was developed, but 
performed poorly at reproducing the F = 23 attractor. In 
contrast, the stochastic schemes, by representing the pos-
sible error in a deterministic scheme, are better suited to 
be used in situations which they have not been tuned for—
they are more robust than deterministic schemes.

The attractor for the perturbed parameter ensemble 
shows a distinct peak corresponding to Regime B, though 
this peak is considerably more pronounced than in the truth 
attractor. When considered individually, the 40 constitu-
ent members of the perturbed parameter ensemble differ 
greatly from the true attractor, with many only showing one 
dominant regime with very rare transitions. This poor per-
formance is observed despite estimating the degree of per-
turbation of the parameters from the ‘truth’ time series, and 
using fairly moderate perturbations. A perturbed param-
eter ensemble where the selected parameters vary in time 
could be more skilful, as it would allow each ensemble 
member to sample the parameter uncertainty, thus allow-
ing each individual ensemble member to capture the regime 
behaviour.

The regime behaviour of a climate system provides con-
siderable added information to that available from the pdf. 
The pdf of the perturbed parameter ensemble in X space, 
while not as skilful as the red noise stochastic parametrisa-
tion schemes, shows considerable skill for the case where 
the ratio of time scales equals ten, and would not cause 
concern regarding the climatology of the model. However 
by performing an EOF decomposition and considering 
the regime behaviour of the ensemble, the vastly different 
dynamical behaviour of the perturbed parameter ensemble 
is revealed. In order to correctly simulate the statistics of 
the weather (for example, the duration of blocking events 
over Europe), a climate simulator must accurately repre-
sent regime behaviour. It is therefore important that cli-
mate models are explicitly tested on this ability. The results 
presented here indicate that certain members of perturbed 
parameter ensembles currently used for climate prediction 
are at risk of failing this test. However, the results presented 
in this paper also strongly motivate the development of sto-
chastic climate simulators alongside the stochastic numeri-
cal weather prediction models currently operationally in 
use.
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