Wave Optics

Propagation, interference and diffraction of waves

Axel Kuhn, Oxford 2016

Paul Ewart’s lecture notes and problem sets:

https://www2.physics.ox.ac.uk/research/combustion-physics-and-non-linear-optics/teaching

Wave Optics – Literature

- Brooker, Modern Classical Optics
- Hecht, Optics
- Klein and Furtak, Optics
- Smith, King & Wilkins, Optics and Photonics
- Born and Wolf, Principles of Optics

Wave Optics – Outline

- What’s it all about?
- Revision of geometrical optics
- Propagation of waves
- Fourier methods
 - Fresnel-Kirchhoff integral, theory of imaging
- Diffraction-based optical instruments
 - 2-slit, grating, Michelson and Fabry-Perot Interferometer
- Dielectric surfaces and boundaries
 - multilayer (anti)reflection coatings
- Polarized Light

What’s it all about?

- Imaging
- Visualization (projection, lithography)
- Spectroscopy
- Matter-wave propagation & imaging
- Lasers and applications
- Modern devices
 (opto-electronics, display technology, optical coatings, telecommunication, consumer electronics)
What’s it all about?

Astronomical observatory, Hawaii, 4200m above sea level.

What’s it all about?

Hubble space telescope, 2.4 m mirror

What’s it all about?

Optical Microscope

fruit fly
What’s it all about?

CD/DVD player optical pickup system

What’s it all about?

cutting & welding

photo lithography

What’s it all about?

Coherent Light ➔ Laser Physics

- spectroscopy
- metrology (clocks)
- quantum optics
- quantum computing
- laser nuclear ignition
- medical applications
- engineering
- telecommunication

Geometrical Optics – Revision

- Fermat’s principle (shortest path)
- reflection & refraction
- spherical & thin lenses
- paraxial approximation
- lensmaker’s formula
- combining lenses
- principal planes
- optical instruments
- Aperture and field stops
- Pinhole camera ➔ wave optics
Revision of Geometrical Optics

- Light rays → straight lines
- Reflection: \(\Theta = \Phi \)

Refraction

Snell's law
\[n_1 \sin \Theta_1 = n_2 \sin \Theta_2 \]

Speed of light \(V = \frac{c}{n} \)
\((n = \text{Refractive index})\)
Fermat's Principle

Light takes 'shortest' optical path from A to B

\[\text{OPL} = n \times \text{Real path length} \]

\[\text{OPL} = \sqrt{h^2 + x^2} + \sqrt{h^2 + (L-x)^2} \]

\[\frac{d}{dx}(\text{OPL}) = 0 \quad \therefore \quad x = \frac{L}{2} \quad \therefore \quad \theta = \phi \]

→ Snell's law in similar manner
Simple Imaging → lenses

1. Spherical surface

\[\frac{h}{R} = \sin \Theta = n \sin \phi \approx n (\Theta - \frac{h}{R}) = n \left(\frac{h}{R} - \frac{h}{f} \right) \]

\[\Rightarrow \quad \frac{n}{f} = (n-1) \frac{1}{R} \quad \text{Single sph. surface} \]

Node: Symmetric →

* focal points on a sphere
* image from sphere to sphere
also: \[\frac{1}{u} + \frac{1}{v} = \frac{1}{f} = (n-1) \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \]

Paraxial approximation
- small angles: \(\theta \approx \sin \theta \) etc.
- neglect curvature of focal or image planes

Thin lens
- neglect propagation inside
- two curved surfaces

Lensmaker's equation
basic lens properties

1. central rays not refracted
2. rays parallel to optic axis go through focal point on other side
3. parallel bundles of rays travelling under angle 2 on one side all go through the same point in the focal plane on the other side:

\[y = \frac{2}{d} \cdot f \]
Lens thickness from Fermat’s principle

(Form follows function)

\[\overrightarrow{\text{Fermat: shortest OPL from } A \text{ to } B} \]

\[\overrightarrow{\text{B image of } A \text{ if all OPL's of same length}} \]

\[\rightarrow \text{ lens thickness } d(h) = d_0 - \Delta(h) \]

\[\text{OPL}(h) = \sqrt{h^2 + u^2} + \sqrt{h^2 + v^2} + (n-1)(d_0 - \Delta(h)) \]

\[= \text{OPL}(0) = u + v + (n-1)d_0 \]

= const. \((h \text{ independent}) \)
\[\Delta(h) \cdot (n-1) = \sqrt{h^2u^2 + h^2v^2} - u - v \]

\[
\frac{1}{2R} (n-1) \approx \frac{h^2}{2u} + \frac{h^2}{2v}
\]

Oracle: plano-convex lens

\[\Delta = h \left(\sqrt{h^2 + R^2} - R \right) = \frac{h^2}{2R} \]

Therefore: \[\frac{1}{R} (n-1) = \frac{1}{u} + \frac{1}{v} \]

Widespread use: [microscopes, telescopes, cameras + projectors, magnifying glasses, eyepiece, etc.]

\[\text{Imaging - Magnification - Observation - Lithography} \]
Angle subtended by virtual image:

\[\theta = \frac{h}{u} = \frac{h'}{D} \]

\[\frac{1}{\theta} = \frac{1}{u} + \frac{1}{v} = \frac{1}{u} + \frac{1}{-D} \]

\[\frac{1}{D} + \frac{1}{D} = \frac{1}{u} \rightarrow \theta = \frac{h}{\theta} + \frac{h'}{D} \]

Naked eye -- object at D:

Angle \(\theta' = \frac{h'}{D} \)

Magnification:

\[M = \frac{\theta}{\theta'} = \frac{D}{u} + 1 \]
Fermat’s Principle

Light propagating between two points follows a path, or paths, for which the time taken is an extremum (minimum).

- Ignoring the wave nature of light
- Basic theory for optical instruments

Geometrical Optics – Revision

- Geometric focussing with spherical surfaces
- Parallel bundles
- Image sphere
- Object sphere
- Image sphere

Thin lens formula

\[
\frac{1}{u} + \frac{1}{v} = \frac{1}{f}
\]

Geometrical Optics – Instruments

- Principal planes
- Location of equivalent thin lens
- First Principal Plane
- Back Focal Plane
Thin lens equation applies with \(u \) and \(v \) measured from the two principal planes.

Geometrical Optics – Instruments

Principal planes

Front Focal Plane
Second Principal Plane

Objective magnification = \(v/u \)
Eyepiece magnifies real image of object

Angular magnification = \(\beta/\alpha = f_0/f_E \)
Image brightness

light collected \sim D^2 \\
(\text{less area })

object area \sim d^2

Image area \sim (2df)^2

\therefore \text{brightness} \sim

\frac{\text{lens area}}{\text{image area}} \sim \frac{D^2}{(2df)^2} \sim \left(\frac{f}{D}\right)^{-2} = (f\text{-no.})^{-2}

f\text{-no.} = \frac{\text{local length}}{\text{pupil diameter}}
Combining two lenses

\[u = \frac{1}{f_1} \quad v = \frac{1}{f_2} \]

\[\frac{1}{u} + \frac{1}{v} = \frac{1}{f_1} + \frac{1}{f_2} = \frac{1}{f} \text{ if lenses are close} \]

\(\frac{1}{f} \) is the power of the lens, measured in dioptries: \([\text{dioptries}] = [\text{m}^{-1}]\)
Ray transfer matrices

Ray vector \(\left(\begin{array}{c} y \\ \theta \end{array} \right) \) ← dist. from axis
← angle to axis

\[
\left(\begin{array}{c} y_2 \\ \theta_2 \end{array} \right) = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \left(\begin{array}{c} y_1 \\ \theta_1 \end{array} \right)
\]

Transfer

\[
S_d = \begin{pmatrix} 1 & d \\ 0 & 1 \end{pmatrix}
\]

\[
y_2 = y_1 + \theta_1 d \\
\theta_2 = \theta_1
\]

\[
S_l = \begin{pmatrix} 1 & 0 \\ -1/f & 1 \end{pmatrix}
\]

\[
y_2 = y_1 \\
\theta_2 = \theta_1 - \frac{y_1}{f}
\]

Ray transfer through optical system

\[
\left(\begin{array}{c} y_e \\ \theta_e \end{array} \right) = S_{d_4} S_{d_3} S_{d_2} S_{d_1} S_{d_0} \left(\begin{array}{c} y_s \\ \theta_s \end{array} \right)
\]

System transfer
1.3.4 Telescope (Galilean)

\[\text{angular magnification} = \frac{\beta}{\alpha} = \frac{f_o}{f_E} \]

Figure 1.6

1.3.5 Telescope (Newtonian)

Figure 1.7

1.3.6 Compound Microscope

Figure 1.8

Apertures and Field Stops

\[\text{f\,no.} = \frac{\text{focal length}}{\text{entrance pupil diameter}} \]

The Wave Nature of Light

- Maxwell’s equations \(\rightarrow \) waves
- equivalence to matter waves
- plane and spherical waves
- energy flow / intensity
- Huygen’s principle

Camera Obscura

optimum pinhole size
contradicts expectations from geometrical optics

from Hecht, Optics
Wave Nature of Light

Maxwell with $\mathbf{B} = 0$ and $\mathbf{J} = 0$

\[\nabla \cdot \mathbf{B} = 0 \quad \nabla \times \mathbf{H} = \frac{1}{\varepsilon} \frac{\partial \mathbf{D}}{\partial t} \]
\[\nabla \cdot \mathbf{D} = 0 \quad \nabla \times \mathbf{E} = -\frac{1}{\varepsilon} \frac{\partial \mathbf{B}}{\partial t} \]

\[\mathbf{D} = \varepsilon_0 \mathbf{E} \]
\[\mathbf{B} = \mu_0 \mu_r \mathbf{B} \]
\[-\nabla \times \nabla \times \mathbf{E} = \mu_0 \varepsilon_0 \mu_r \varepsilon_r \frac{\partial^2 \mathbf{E}}{\partial t^2} \]
\[-\nabla(\nabla \cdot \mathbf{E}) + \nabla \cdot (\nabla \mathbf{E}) = \frac{1}{c^2} \eta^2 \frac{\partial^2 \mathbf{E}}{\partial t^2} \]

= 0

\[\nabla^2 \mathbf{E} = \left(\frac{\eta}{c} \right)^2 \frac{\partial^2 \mathbf{E}}{\partial t^2} \]

→ Wave eqn. in each component of \mathbf{E} (or \mathbf{H})

\[c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \quad \text{and} \quad \eta = \sqrt{\mu_r \varepsilon_r} = \sqrt{\varepsilon_r} \]
Ansatz: $E = E_0 e^{-i\omega t}$

(or $H = H_0 e^{-i\omega t}$)

Note: Real components $= \frac{1}{2} (E + E^*)$

For each E component:

$\Delta E = \left(\frac{n}{\lambda} \right)^2 \frac{\partial^2}{\partial x^2} E = -\omega^2 \left(\frac{n}{\lambda} \right)^2 E$

\uparrow

$(\Delta + n^2 k_0^2) E = 0$

or $(\Delta + \lambda^2) E = 0$

Wavevector $k = \frac{2\pi}{\lambda} = n k_0 = n \frac{2\pi}{\lambda_0} = n \frac{\omega}{c}$

Note: This also holds for matter waves.
\[\nabla^2 \Psi = \left(-\frac{\hbar^2}{2m} \Delta + V \right) \Psi = E \Psi \]

\[L \to \left(\Delta + 2m \frac{E - V}{\hbar^2} \right) \Psi = 0 \]

with \[2m E_{\text{kinetic}} = p^2 = \hbar^2 k^2 \]

\[L \to \left(\Delta + k^2 \right) \Psi = 0 \]

- Looks familiar
- \(\hbar^2 k^2 = 2m \left(E - V \right) \) for matter waves

Back to light \((\Delta + \hbar^2) u = 0 \)

\(u = \) general amplitude \(\sim E \) or \(\hbar \)

\[\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \]
Assume \(u(x,t) = u_0 \cdot e^{i(k \cdot x - \omega t)} \)

with \(|k| = nk_z = n \frac{\omega}{c} = \frac{\omega}{\nu_p} \)

\((\nu_p = \frac{c}{n} = \text{phase velocity}) \)

\[\rightarrow \text{solve the wave equation} \]

\[\rightarrow \text{Plane Wave} \]

propagating with \(\nu_p = \)

![Diagram showing a plane wave with wavefronts perpendicular to \(k \).]

defined by planes of constant phase

\[\frac{d}{dt}(k \cdot x - \omega t) = 0 \]
\[\text{Observe assume } k = \left(\begin{array}{c} 0 \\ \kappa \end{array} \right) \]

\[\Rightarrow k \frac{dz}{dt} = \omega \]

\[\Rightarrow z = t \frac{\omega}{k} + \text{const.} = t V_p \text{ const.} \]

\(\omega \) wavefronts propagate with \(V_p \)

Field direction?

\[E(x,t) = E_0 e^{-i(kx - \omega t)} \]

--- into Maxwell's equations:

\[\omega B = k \times E \quad \text{and} \quad -\omega D = k \times H \]

\[k \cdot B = 0 \quad \text{and} \quad k \cdot D = 0 \]

\[\Rightarrow \quad \boxed{B \perp k \quad D \parallel k} \quad \boxed{B \perp E \quad D \parallel H} \]

\[\Rightarrow \text{EM waves mostly transverse!} \]
Energy density + Intensity

\[S_{EM} = \frac{1}{2} (E \cdot D + B \cdot H) \]

Energy flow \rightarrow Poynting vector

\[\mathbf{S} = \mathbf{E} \times \mathbf{H} \parallel \mathbf{k} \]

\[[S] = \text{W/m}^2 \]

(Henry Poynting, 1884)

Intensity \[I = \langle S \rangle_t \]

\[= \frac{1}{2} \varepsilon_0 \varepsilon_r E_0^2 \sqrt{\mu_r \mu_0} \approx \frac{1}{2} \varepsilon_0 \varepsilon_r E_0^2 \frac{c}{n} \]

\[\mu_r = 1 \quad \Rightarrow \quad S_{11} N_p \]
Other Solutions?

\[\Delta = \frac{1}{r^2} \frac{d^2}{dr^2} r + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \]

This yields

\[u(r) = \frac{u_0}{r} e^{\pm ikr - i\omega t} \]

\[\pm ikr = \text{out}\text{-}or\text{ ingoing} \]

- Huygen's wavelets
Maxwell’s Equations

\[\nabla \cdot \vec{B} = 0 \quad \nabla \times \vec{H} = \frac{d}{dt} \vec{D} \\
\nabla \cdot \vec{D} = 0 \quad \nabla \times \vec{E} = -\frac{d}{dt} \vec{B} \]

\[\vec{D} = \varepsilon_r \varepsilon_0 \vec{E} \quad \vec{B} = \mu_r \mu_0 \vec{H} \]

linear isotropic medium

Huygen’s Principle

Every point on a wave front can be considered as a source of secondary spherical waves

\[u(\vec{R}) \propto \int u(\vec{r}) e^{i k |\vec{R} - \vec{r}|} dS \]

Plane and Spherical Waves

(\Delta + k^2)u = 0 \quad u \rightarrow \text{amplitude of } E, H, \psi \ldots

plane wave

\[u(\vec{r}, t) = u_0 e^{i(k\vec{r} - \omega t)} \]

spherical wave

\[u(\vec{r}, t) = u_0 e^{i(k\vec{r} - \omega t)}/r \]

\[n = \sqrt{\varepsilon_r \mu_r} \quad c = 1/\sqrt{\varepsilon_0 \mu_0} \quad v_p = c/n = \omega/k = \nu \lambda \quad \vec{S} = \vec{E} \times \vec{H} \]

Interference of Waves

Huygens’ wavelet
Huygens' Principle

- Assume \(u_0(z) \) is known in an optical plane.
- \(u(R) \) is the superposition of spherical wavelets emanating from all points of the plane.

\[
u(R) = \int_{S} \frac{u(R)}{|R - \xi|} e^{-ik|R - \xi|} dS
\]

Special case: Surface \(S @ z = 0 \)

- \(\xi = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \) \(R = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} \)

\[
u(R) = \int \frac{u(x, y, 0)}{\sqrt{(x' - x)^2 + (y' - y)^2 + z'^2}} e^{ik\sqrt{s}} dS
\]

Fresnel - Kirchhoff integral