Publications


Exciton diffusion length and charge extraction yield in organic bilayer solar cells.

Advanced Materials Wiley 29 (2017) 1604424-

B Siegmund, MT Sajjad, J Widmer, D Ray, C Koerner, M Riede, K Leo, IDW Samuel, K Vandewal

A method for resolving the diffusion length of excitons and the extraction yield of charge carriers is presented based on the performance of organic bilayer solar cells and careful modeling. The technique uses a simultaneous variation of the absorber thickness and the excitation wavelength. Rigorously differing solar cell structures as well as independent photoluminescence quenching measurements give consistent results.


Controlling nucleation and growth of metal halide perovskite thin films for high-Efficiency perovskite solar cells

Small Wiley 13 (2017) 1-8

N Sakai, Z Wang, V Burlakov, J Lim, D McMeekin, S Pathak, H Snaith

Metal halide perovskite thin films can be crystallized via a broad range of solution-based routes. However, the quality of the final films is strongly dependent upon small changes in solution composition and processing parameters. Here, this study demonstrates that a fractional substitution of PbCl2 with PbI2 in the 3CH3 NH3 I:PbCl2 mixed-halide starting solution has a profound influence upon the ensuing thin-film crystallization. The presence of PbI2 in the precursor induces a uniform distribution of regular quadrilateral-shaped CH3 NH3 PbI3 perovskite crystals in as-cast films, which subsequently grow to form pinhole-free perovskite films with highly crystalline domains. With this new formulation of 3CH3 NH3 I:0.98PbCl2 :0.02PbI2 , this study achieves a 19.1% current-voltage measured power conversion efficiency and a 17.2% stabilized power output in regular planar heterojunction solar cells.


Impact of microstructure on the electron–hole interaction in lead halide perovskites

Energy and Environmental Science Royal Society of Chemistry 10 (2017) 1358-1366

A Mahboubi Soufiani, Z Yang, T Young, A Miyata, A Surrente, A Pascoe, K Galkowski, M Abdi-Jalebi, R Brenes, J Urban, N Zhang, V Bulović, O Portugall, Y-B Cheng, R Nicholas, A Ho-Baillie, MA Green, P Plochocka, SD Stranks

Despite the remarkable progress in the performance of devices based on the lead halide perovskite semiconductor family, there is still a lack of consensus on their fundamental photophysical properties. Here, using magneto-optical transmission spectroscopy we elucidate the impact of the microstructure on the Coulomb interaction between photo-created electron-hole pairs in methylammonium lead triiodide (MAPbI 3 ) and the triple-cation lead mixed-halide composition, Cs 0.05 (MA 0.17 FA 0.83 ) 0.95 Pb(I 0.83 Br 0.17 ) 3 (Cs: cesium, MA: methylammonium, FA: formamidinium) by investigating thin films with a wide range of grain sizes from tens of nanometers to microns. At low temperatures, in which thermal fluctuations of the interactions are frozen and the rotational disorder of the organic cation is negligible, the exciton binding energy and reduced effective mass of carriers remain effectively unchanged with grain size. We conclude that the microstructure plays a negligible role in the Coulomb interaction of the photo-created electron-hole pairs, in contrast to previous reports. This renewed understanding of the relationship between these fundamental electronic properties and the microstructure is critical for future fundamental studies and improving device design.


Optoelectronics: Fast silicon photodiodes

Nature Photonics Nature Publishing Group 11 (2017) 268-269

MB Johnston

How much internet traffic did you generate today? Perhaps more than you realise given the increasing popularity of streaming audio or video content, “cloud” data storage, and social media. It is estimated that approximately 1 zettabyte (1021 bytes) of internet traffic was transmitted globally last year,1 which is the equivalent of about 360MB per day per person in the world. Much of the long distance, high volume internet traffic is transmitted via near infrared (NIR) light through optical fibre waveguides. At the end of the optical fibre the optical signal is turned into an electrical signal, typically for use in silicon based integrated circuits. However, presently most receivers for long distance optical fibre communications systems are based on photodiodes made from other semiconductors such as InxGa1-xAs, or Ge which are challenging and costly to integrate with silicon CMOS electronics on a single chip.


Charge-carrier mobilities in metal halide perovskites: Fundamental mechanisms and limits

ACS Energy Letters American Chemical Society (2017)

LM Herz

Perovskite photovoltaic cells have seen a remarkable rise in power conversion efficiencies over a period of only a few years. Much of this performance is underpinned by the favorable chargecarrier mobilities in metal halide perovskites (MHPs), which are remarkably high for materials with such facile and versatile processing routes. This Perspective outlines the mechanisms that set a fundamental upper limit to charge-carrier mobility values in MHPs and reveals how they may be tuned through changes in stoichiometry. In addition, extrinsic effects such as grain size, energetic disorder, and self-doping are discussed for specific MHPs in the context of remedies designed to avoid them.


Spectroscopic Insights into Carbon Dot Systems.

The journal of physical chemistry letters 8 (2017) 2236-2242

M Righetto, A Privitera, I Fortunati, D Mosconi, M Zerbetto, ML Curri, M Corricelli, A Moretto, S Agnoli, L Franco, R Bozio, C Ferrante

The controversial nature of the fluorescent properties of carbon dots (CDs), ascribed either to surface states or to small molecules adsorbed onto the carbon nanostructures, is an unresolved issue. To date, an accurate picture of CDs and an exhaustive structure-property correlation are still lacking. Using two unconventional spectroscopic techniques, fluorescence correlation spectroscopy (FCS) and time-resolved electron paramagnetic resonance (TREPR), we contribute to fill this gap. Although electron micrographs indicate the presence of carbon cores, FCS reveals that the emission properties of CDs are based neither on those cores nor on molecular species linked to them, but rather on free molecules. TREPR provides deeper insights into the structure of carbon cores, where C sp2 domains are embedded within C sp3 scaffolds. FCS and TREPR prove to be powerful techniques, characterizing CDs as inherently heterogeneous systems, providing insights into the nature of such systems and paving the way to standardization of these nanomaterials.


Long Stokes shifts and vibronic couplings in perfluorinated polyanilines

Chemical Communications Royal Society of Chemistry 53 (2017) 2602-2605

P Dallas, I Rasovic, T Puchtler, RA Taylor, K Porfyrakis

We report the effect of surfactant addition on the optical properties of perfluorinated polyanilines synthesized through liquid-liquid interfaces. We obtained very long Stokes shifts, 205 nm, for oligomers derived from a hydrofluoroether-water system in the presence of Triton X-100 as a surfactant, and vibronic fine features from a toluene-water system.


Trends in perovskite solar cells and optoelectronics: Status of research and applications from the PSCO conference

ACS Energy Letters American Chemical Society 2 (2017) 857-861

F De Angelis, D Meggiolaro, E Mosconi, A Petrozza, MK Nazeeruddin, HJ Snaith

Metal halide perovskites(1) are the subject of intensive research efforts due to the impressive performance achieved in photovoltaic and optoelectronic devices.(2, 3) The attraction toward these materials, hereafter simply perovskites, arises for a multitude of reasons. First, they show optimal primary optoelectronic properties, such as direct band gaps, long carrier diffusion lengths, and low exciton binding energies, resulting in the remarkable power conversion efficiency, over 22%, that these materials already deliver in optimized photovoltaic devices. These properites are accompanied by ease of processing via solution or vapor phase (or a combination of the two) techniques, low cost and abundance of base materials, low temperature of processing leading to versatility in terms of what substrates can be used, and the ability to process multiple layers on top of each other.


Two-dimensional excitonic photoluminescence in graphene on a Cu surface

ACS Nano American Chemical Society 11 (2017) 3207-3212

R Taylor, CW Myung, Y Kim, BPL Reid, CC Chan, TJ Puchtler, R Nicholas, Singh, CC Hwang, CY Park, G Lee, KS Kim, Y Park

Despite having outstanding electrical properties, graphene is unsuitable for optical devices because of its zero band gap. Here, we report two-dimensional excitonic photoluminescence (PL) from graphene grown on a Cu(111) surface, which shows an unexpected and remarkably sharp strong emission near 3.16 eV (full width at half-maximum ≤3 meV) and multiple emissions around 3.18 eV. As temperature increases, these emissions blue shift, displaying the characteristic negative thermal coefficient of graphene. The observed PL originates from the significantly suppressed dispersion of excited electrons in graphene caused by hybridization of graphene π and Cu d orbitals of the first and second Cu layers at a shifted saddle point 0.525(M+K) of the Brillouin zone. This finding provides a pathway to engineering optoelectronic graphene devices, while maintaining the outstanding electrical properties of graphene.


MICROSTRUCTURAL CHARACTERIZATION FOR EMERGING PHOTOVOLTAIC MATERIALS Introduction

in , 32 (2017) 1797-1797

D Delongchamp, C Nicklin, M Riede


Intrinsic non-radiative voltage losses in fullerene-based organic solar cells

Nature Energy Springer Nature 2 (2017)

J Benduhn, K Tvingstedt, F Piersimoni, M Tropiano, M Riede

Organic solar cells demonstrate external quantum efficiencies and fill factors approaching those of conventional photovoltaic technologies. However, as compared with the optical gap of the absorber materials, their open-circuit voltage is much lower, largely due to the presence of significant non-radiative recombination. Here, we study a large data set of published and new material combinations and find that non-radiative voltage losses decrease with increasing charge-transfer-state energies. This observation is explained by considering non-radiative charge-transfer-state decay as electron transfer in the Marcus inverted regime, being facilitated by a common skeletal molecular vibrational mode. Our results suggest an intrinsic link between non-radiative voltage losses and electron-vibration coupling, indicating that these losses are unavoidable. Accordingly, the theoretical upper limit for the power conversion efficiency of single-junction organic solar cells would be reduced to about 25.5% and the optimal optical gap increases to 1.45–1.65 eV, that is, 0.2–0.3 eV higher than for technologies with minimized non-radiative voltage losses.


Single n+-i-n+ InP Nanowires for Highly Sensitive Terahertz Detection

Nanotechnology IOP Publishing Ltd 28 (2017) 125202-

K Peng, P Parkinson, Q Gao, J Boland, Z Li, F Wang, S Mokkapati, L Fu, M Johnston, HH Tan, C Jagadish

Developing single-nanowire terahertz (THz) electronics and employing them as sub-wavelength components for highly-integrated THz time-domain spectroscopy (THz-TDS) applications are a promising approach to achieve future low-cost, highly integrable and high-resolution THz tools, which are desirable in many areas spanning from security, industry, environmental monitoring and medical diagnostics to fundamental science. In this work, we present the design and growth of n<sup>+</sup>-i-n<sup>+</sup> InP nanowires. The axial doping profile of the n<sup>+</sup>-i-n<sup>+</sup> InP nanowires has been calibrated and characterized using combined optical and electrical approaches to achieve nanowire devices with low contact resistances, on which the highly-sensitive InP single-nanowire photoconductive THz detectors have been demonstrated. While the n<sup>+</sup>-i-n<sup>+</sup> InP nanowire detector has a only pA-level response current, it has a 2.5 times improved signal-to-noise ratio compared with the undoped InP nanowire detector and is comparable to traditional bulk THz detectors. This performance indicates a promising path to nanowire-based THz electronics for future commercial applications.


Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%

NATURE ENERGY 2 (2017) ARTN 17052

Y Yan, RW Crisp, J Gu, BD Chernomordik, GF Pach, AR Marshall, JA Turner, MC Beard


Optoelectronic and spectroscopic characterization of vapour-transport grown Cu2ZnSnS4 single crystals

JOURNAL OF MATERIALS CHEMISTRY A 5 (2017) 1192-1200

TM Ng, MT Weller, GP Kissling, LM Peter, P Dale, F Babbe, J de Wild, B Wenger, HJ Snaith, D Lane


Solution-processed cesium hexabromopalladate(IV), Cs2PdBr6, for optoelectronic applications

Journal of the American Chemical Society American Chemical Society 139 (2017) 6030-6033

N Sakai, AA Haghighirad, MR Filip, PK Nayak, S Nayak, A Ramadan, Z Wang, F Giustino, HJ Snaith

Lead halide perovskites are materials with excellent optoelectronic and photovoltaic properties. However, some hurdles remain prior to commercialization of these materials, such as chemical stability, phase stability, sensitivity to moisture, and potential issues due to the toxicity of lead. Here, we report a new type of lead-free perovskite related compound, Cs2PdBr6. This compound is solution processable, exhibits long-lived photoluminescence, and an optical band gap of 1.6 eV. Density functional theory calculations indicate that this compound has dispersive electronic bands, with electron and hole effective masses of 0.53 and 0.85 me, respectively. In addition, Cs2PdBr6 is resistant to water, in contrast to lead-halide perovskites, indicating excellent prospects for long-term stability. These combined properties demonstrate that Cs2PdBr6 is a promising novel compound for optoelectronic applications.


Unraveling the exciton binding energy and the dielectric constant in single-crystal methylammonium lead triiodide perovskite

Journal of Physical Chemistry Letters American Chemical Society 8 (2017) 1851-1855

Z Yang, A Surrente, K Galkowski, N Bruyant, DK Maude, AA Haghighirad, HJ Snaith, P Plochocka, R Nicholas

We have accurately determined the exciton binding energy and reduced mass of single crystals of methylammonium lead triiodide using magneto-reflectivity at very high magnetic fields. The single crystal has excellent optical properties with a narrow line width of ∼3 meV for the excitonic transitions and a 2s transition that is clearly visible even at zero magnetic field. The exciton binding energy of 16 ± 2 meV in the low-temperature orthorhombic phase is almost identical to the value found in polycrystalline samples, crucially ruling out any possibility that the exciton binding energy depends on the grain size. In the room-temperature tetragonal phase, an upper limit for the exciton binding energy of 12 ± 4 meV is estimated from the evolution of 1s-2s splitting at high magnetic field.


Spatially resolved studies of the phases and morphology of methylammonium and formamidinium lead tri-halide perovskites

Nanoscale Royal Society of Chemistry 2017 (2017) 3222-3230

K Galkowski, AA Mitioglu, A Surrente, Z Yang, DK Maude, P Kossacki, GE Eperon, JT Wang, HJ Snaith, P Plochocka, R Nicholas

The family of organic-inorganic tri-halide perovskites including MA (MethylAmmonium)PbI3, MAPbI3-xClx, FA (FormAmidinium)PbI3 and FAPbBr3 are having a tremendous impact on the field of photovoltaic cells due to the combination of their ease of deposition and high energy conversion efficiencies. Device performance, however, is known to be still significantly affected by the presence of inhomogeneities. Here we report on a study of temperature dependent micro-photoluminescence which shows a strong spatial inhomogeneity related to the presence of microcrystalline grains, which can be both bright and dark. In all of the tri-iodide based materials there is evidence that the tetragonal to orthorhombic phase transition observed around 160 K does not occur uniformly across the sample with domain formation related to the underlying microcrystallite grains, some of which remain in the high temperature, tetragonal, phase even at very low temperatures. At low temperature the tetragonal domains can be significantly influenced by local defects in the layers or the introduction of residual levels of chlorine in mixed halide layers or dopant atoms such as aluminium. We see that improvements in room temperature energy conversion efficiency appear to be directly related to reductions in the proportions of the layer which remain in the tetragonal phase at low temperature. In FAPbBr3 a more macroscopic domain structure is observed with large numbers of grains forming phase correlated regions.


Dopant-free planar n-i-p perovskite solar cells with steady-state efficiencies exceeding 18%

ACS Energy Letters American Chemical Society 2 (2017) 622–628-

S Habisreutinger, B Wenger, HJ Snaith, RJ Nicholas

In this Letter, we demonstrate a planar n–i–p perovskite solar cell design with a steady-state efficiency of up to 18.8% in the absence of any electronic dopants. In the device stack, solution-processed SnO2 is used as an electron-accepting n-type layer. The absorber layer is a perovskite with both mixed organic A-site cations and mixed halides (FA0.83MA0.17Pb(I0.83Br0.17)3). The hole-transporting p-type layer is a double-layer structure of polymer-wrapped single-walled carbon nanotubes and undoped spiro-OMeTAD. We show that this approach can deliver steady-state efficiencies as high as and even higher than those of traditionally doped spiro-OMeTAD, providing a pathway for dopant-free perovskite solar cells crucial for long-term stability.


The influence of surfaces on the transient terahertz conductivity and electron mobility of GaAs nanowires

Journal of Physics D: Applied Physics IOP Publishing 50 (2017) 224001

H Joyce, P Parkinson, C Davies, J Boland, H Hoe Tan, C Jagadish, L Herz, M Johnston

Bare unpassivated GaAs nanowires feature relatively high electron mobilities (400–2100 cm2 V−1 s−1) and ultrashort charge carrier lifetimes (1–5 ps) at room temperature. These two properties are highly desirable for high speed optoelectronic devices, including photoreceivers, modulators and switches operating at microwave and terahertz frequencies. When engineering these GaAs nanowire-based devices, it is important to have a quantitative understanding of how the charge carrier mobility and lifetime can be tuned. Here we use optical-pump–terahertz-probe spectroscopy to quantify how mobility and lifetime depend on the nanowire surfaces and on carrier density in unpassivated GaAs nanowires. We also present two alternative frameworks for the analysis of nanowire photoconductivity: one based on plasmon resonance and the other based on Maxwell–Garnett effective medium theory with the nanowires modelled as prolate ellipsoids. We find the electron mobility decreases significantly with decreasing nanowire diameter, as charge carriers experience increased scattering at nanowire surfaces. Reducing the diameter from 50 nm to 30 nm degrades the electron mobility by up to 47%. Photoconductivity dynamics were dominated by trapping at saturable states existing at the nanowire surface, and the trapping rate was highest for the nanowires of narrowest diameter. The maximum surface recombination velocity, which occurs in the limit of all traps being empty, was calculated as 1.3  ×  106 cm s−1. We note that when selecting the optimum nanowire diameter for an ultrafast device, there is a trade-off between achieving a short lifetime and a high carrier mobility. To achieve high speed GaAs nanowire devices featuring the highest charge carrier mobilities and shortest lifetimes, we recommend operating the devices at low charge carrier densities.


Interplay between many body effects and Coulomb screening in the optical bandgap of atomically thin MoS2

Nanoscale Royal Society of Chemistry 9 (2017) 10647-10652

Y Park, SW Han, CCS Chan, BPL Reid, R Taylor, N Kim, Y Jo, H Im, KS Kim

Due to its unique layer-number dependent electronic band structure and strong excitonic features, atomically thin MoS2 is an ideal 2D system where intriguing photoexcited-carrier-induced phenomena can be detected in excitonic luminescence. We perform micro-photoluminescence (PL) measurements and observe that the PL peak redshifts nonlinearly in mono- and bi-layer MoS2 as the excitation power is increased. The excited carrier-induced optical bandgap shrinkage is found to be proportional to n4/3, where n is the optically-induced free carrier density. The large exponent value of 4/3 is explicitly distinguished from a typical value of 1/3 in various semiconductor quantum well systems. The peculiar n4/3 dependent optical bandgap redshift may be due to the interplay between bandgap renormalization and reduced exciton binding energy.

Pages