Publications


High Electron Mobility and Insights into Temperature-Dependent Scattering Mechanisms in InAsSb Nanowires.

Nano letters 18 (2018) 3703-3710

JL Boland, F Amaduzzi, S Sterzl, H Potts, LM Herz, A Fontcuberta I Morral, MB Johnston

InAsSb nanowires are promising elements for thermoelectric devices, infrared photodetectors, high-speed transistors, as well as thermophotovoltaic cells. By changing the Sb alloy fraction the mid-infrared bandgap energy and thermal conductivity may be tuned for specific device applications. Using both terahertz and Raman noncontact probes, we show that Sb alloying increases the electron mobility in the nanowires by over a factor of 3 from InAs to InAs0.65Sb0.35. We also extract the temperature-dependent electron mobility via both terahertz and Raman spectroscopy, and we report the highest electron mobilities for InAs0.65Sb0.35 nanowires to date, exceeding 16,000 cm2 V-1 s-1 at 10 K.


Hole Transport in Low-Donor-Content Organic Solar Cells.

The journal of physical chemistry letters (2018) 5496-5501

D Spoltore, A Hofacker, J Benduhn, S Ullbrich, M Nyman, O Zeika, S Schellhammer, Y Fan, I Ramirez, S Barlow, M Riede, SR Marder, F Ortmann, K Vandewal

Organic solar cells with an electron donor diluted in a fullerene matrix have a reduced density of donor-fullerene contacts, resulting in decreased free-carrier recombination and increased open-circuit voltages. However, the low donor concentration prevents the formation of percolation pathways for holes. Notwithstanding, high (>75%) external quantum efficiencies can be reached, suggesting an effective hole-transport mechanism. Here, we perform a systematic study of the hole mobilities of 18 donors, diluted at ∼6 mol % in C60, with varying frontier energy level offsets and relaxation energies. We find that hole transport between isolated donor molecules occurs by long-range tunneling through several fullerene molecules, with the hole mobilities being correlated to the relaxation energy of the donor. The transport mechanism presented in this study is of general relevance to bulk heterojunction organic solar cells where mixed phases of fullerene containing a small fraction of a donor material or vice versa are present as well.


Modification of the fluorinated tin oxide/electron-transporting material interface by a strong reductant and its effect on perovskite solar cell efficiency

Molecular Systems Design and Engineering 3 (2018) 741-747

F Pulvirenti, B Wegner, NK Noel, G Mazzotta, R Hill, JB Patel, LM Herz, MB Johnston, MK Riede, HJ Snaith, N Koch, S Barlow, SR Marder

© 2018 The Royal Society of Chemistry. To date, the most efficient hybrid metal halide peroskite solar cells employ TiO2as electron-transporting material (ETM), making these devices unstable under UV light exposure. Replacing TiO2with fullerene derivatives has been shown to result in improved electronic contact and increased device lifetime, making it of interest to assess whether similar improvements can be achieved by using other organic semiconductors as ETMs. In this work, we investigate perylene-3,4:9,10-tetracarboxylic bis(benzimidazole) as a vacuum-processable ETM, and we minimize electron-collection losses at the electron-selective contact by depositing pentamethylcyclopentadienyl cyclopentadienyl rhodium dimer, (RhCp∗Cp)2, on fluorinated tin oxide. With (RhCp∗Cp)2as an interlayer, ohmic contacts can be formed, there is interfacial doping of the ETM, and stabilized power conversion efficiencies of up to 14.2% are obtained.


Engineering interactions in QDs-PCBM blends: A surface chemistry approach

Nanoscale 10 (2018) 11913-11922

M Righetto, A Privitera, F Carraro, L Bolzonello, C Ferrante, L Franco, R Bozio

© 2018 The Royal Society of Chemistry. Here we present a comprehensive study on the photophysics of QDs-fullerene blends, aiming to elucidate the impact of ligands on the extraction of carriers from QDs. We investigated how three different ligands (oleylamine, octadecanethiol and propanethiol) influence the dynamics of charge generation, separation, and recombination in blends of CdSe/CdS core/shell QDs and PCBM. We accessed each relevant process directly by combining the results from both optical and magnetic spectroscopies. Transient absorption measurements revealed a faster interaction dynamics in thiol-capped ligands. Through phenomenological modeling of the interaction processes, i.e., energy transfer and electron transfer, we estimated the suppression of exciton migration and the enhancement of electron transfer processes when alkyl-thiols are employed as ligands. Contextually, we report the profound impact of the ligands' alkyl chain length, leading to strengthened interactions with PCBM acceptors. Quantitatively, we measured a 10-fold increase in the electron transfer rate when oleylamine ligands were exchanged with propanethiol ligands. EPR spectroscopy gave access to subtle details regarding both the enhanced charge generation and lower binding energy of charge-transfer states in blends compared to PCBM alone. Moreover, through pulsed EPR techniques, we inferred the localization of deep electron traps in localized sites close to QDs in the blends. Therefore, our thorough characterization evidenced the essential role of ligands in determining QD interactions. We believe that these discoveries will contribute to the efficient incorporation of QDs in existing organic PV technologies.


Temperature induced crossing in the optical bandgap of mono and bilayer MoS2 on SiO2.

Scientific reports 8 (2018) 5380-5380

Y Park, CCS Chan, RA Taylor, Y Kim, N Kim, Y Jo, SW Lee, W Yang, H Im, G Lee

Photoluminescence measurements in mono- and bilayer-MoS2 on SiO2 were undertaken to determine the thermal effect of the MoS2/SiO2 interface on the optical bandgap. The energy and intensity of the photoluminescence from monolayer MoS2 were lower and weaker than those from bilayer MoS2 at low temperatures, whilst the opposite was true at high temperatures above 200 K. Density functional theory calculations suggest that the observed optical bandgap crossover is caused by a weaker substrate coupling to the bilayer than to the monolayer.


Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications

Zeitschrift fur Physikalische Chemie (2018)

C Falkenberg, M Hummert, R Meerheim, C Schünemann, S Olthof, C Körner, MK Riede, K Leo

© 2018 Walter de Gruyter GmbH, Berlin/Boston 2018. The effciency of organic solar cells is not only determined by their absorber system, but also strongly dependent on the performance of numerous interlayers and charge transport layers. In order to establish new custom-made materials, the study of structure-properties relationships is of great importance. This publication examines a series of naphthalenetetracarboxylic diimide molecules (NTCDI) with varying side-chain length intended for the use as n-dopable electron transport materials in organic solar cells. While all compounds basically share very similar absorption spectra and energy level positions in the desired range, the introduction of alkyl chains has a large impact on thin film growth and charge transport properties: both crystallization and the increase of conductivity by molecular doping are suppressed. This has a direct influence on the series resistance of corresponding solar cells comprising an NTCDI derivative as electron transport material (ETM) as it lowers the power conversion efficiency to 1%. In contrast, using the side-chain free compound it is possible to achive an efficiency of 6.5%, which is higher than the efficiency of a comparable device comprising n-doped C60as standard ETM.


In situ simultaneous photovoltaic and structural evolution of perovskite solar cells during film formation

ENERGY & ENVIRONMENTAL SCIENCE 11 (2018) 383-393

M Alsari, O Bikondoa, J Bishop, M Abdi-Jalebi, LY Ozer, M Hampton, P Thompson, MT Horantner, S Mahesh, C Greenland, JE Macdonald, G Palmisano, HJ Snaith, DG Lidzey, SD Stranks, RH Frienda, S Lilliu


Evidence of Nitrogen Contribution to the Electronic Structure of the CH3 NH3 PbI3 Perovskite.

Chemistry (Weinheim an der Bergstrasse, Germany) 24 (2018) 3539-3544

M Kot, K Wojciechowski, H Snaith, D Schmeißer

Despite fast development of hybrid perovskite solar cells, there are many fundamental questions related to the perovskite film which remain open. For example, there are contradicting theoretical reports on the role of the organic methylammonium cation (CH3 NH3+ ) in the methylammonium lead triiodide (CH3 NH3 PbI3 ) perovskite film. From one side it is reported that the organic cation does not contribute to electronic structure of the CH3 NH3 PbI3 film. From the other side, valence band maximum fluctuations, dependent on the CH3 NH3+ rotation, have been theoretically predicted. The resonant X-ray photoelectron spectroscopy results reported here show experimental evidence of nitrogen contribution to the CH3 NH3 PbI3 electronic structure. Moreover, the observed strong resonances of nitrogen with the I 5s and the Pb 5d-6s levels indicate that the CH3 NH3 PbI3 valence band is extended up to ≈18 eV below the Fermi energy, and therefore one should also consider these shallow core levels while modeling its electronic structure.


Impact of the Organic Cation on the Optoelectronic Properties of Formamidinium Lead Triiodide.

The journal of physical chemistry letters 9 (2018) 4502-4511

CL Davies, J Borchert, CQ Xia, RL Milot, H Kraus, MB Johnston, LM Herz

Metal halide perovskites have proven to be excellent light-harvesting materials in photovoltaic devices whose efficiencies are rapidly improving. Here, we examine the temperature-dependent photon absorption, exciton binding energy, and band gap of FAPbI3 (thin film) and find remarkably different behavior across the β-γ phase transition compared with MAPbI3. While MAPbI3 has shown abrupt changes in the band gap and exciton binding energy, values for FAPbI3 vary smoothly over a range of 100-160 K in accordance with a more gradual transition. In addition, we find that the charge-carrier mobility in FAPbI3 exhibits a clear T-0.5 trend with temperature, in excellent agreement with theoretical predictions that assume electron-phonon interactions to be governed by the Fröhlich mechanism but in contrast to the T-1.5 dependence previously observed for MAPbI3. Finally, we directly observe intraexcitonic transitions in FAPbI3 at low temperature, from which we determine a low exciton binding energy of only 5.3 meV at 10 K.


Nonspiro, Fluorene-Based, Amorphous Hole Transporting Materials for Efficient and Stable Perovskite Solar Cells.

Advanced science (Weinheim, Baden-Wurttemberg, Germany) 5 (2018) 1700811-

Š Daškevičiū Tė, N Sakai, M Franckevičius, M Daškevičienė, A Magomedov, V Jankauskas, HJ Snaith, V Getautis

Novel nonspiro, fluorene-based, small-molecule hole transporting materials (HTMs) V1050 and V1061 are designed and synthesized using a facile three-step synthetic route. The synthesized compounds exhibit amorphous nature with a high glass transition temperature, a good solubility, and decent thermal stability. The planar perovskite solar cells (PSCs) employing V1050 generated an excellent power conversion efficiency of 18.3%, which is comparable to 18.9% obtained with the state-of-the-art Spiro-OMeTAD. Importantly, the devices based on V1050 and V1061 show better stability compared to devices based on Spiro-OMeTAD when aged without any encapsulation under uncontrolled humidity conditions (relative humidity around 60%) in the dark and under continuous full sun illumination.


Imaging Localized Energy States in Silicon-Doped InGaN Nanowires Using 4D Electron Microscopy

ACS ENERGY LETTERS 3 (2018) 476-481

R Bose, A Adhikari, VM Burlakov, G Liu, MA Haque, D Priante, MN Hedhili, N Wehbe, C Zhao, H Yang, TK Ng, A Goriely, OM Bakr, T Wu, BS Ooi, OF Mohammed


Key Tradeoffs Limiting the Performance of Organic Photovoltaics

Advanced Energy Materials (2018)

I Ramirez, M Causa', Y Zhong, N Banerji, M Riede

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 saw the publication of several new material systems that challenge the long-held notion that a driving force is necessary for efficient exciton dissociation in organic photovoltaics (OPVs) and that a loss of ≈0.6 eV between the energy of the charge transfer state E ct and the energy corresponding to open circuit is general. In light of these developments, the authors combine insights from device physics and spectroscopy to review the two key tradeoffs limiting OPV performances. These are the tradeoff between the charge carrier generation efficiency and the achievable open circuit voltage (V oc ) and the tradeoff between device thickness (light absorption) and fill factor. The emergence of several competitive nonfullerene acceptors (NFAs) is exciting for both of these. The authors analyze what makes these materials compare favorably to fullerenes, including the potential role of molecular vibrations, and discuss both design criteria for new molecules and the achievable power conversion efficiencies.


Interplay of Structural and Optoelectronic Properties in Formamidinium Mixed Tin-Lead Triiodide Perovskites

ADVANCED FUNCTIONAL MATERIALS 28 (2018) ARTN 1802803

ES Parrott, T Green, RL Milot, MB Johnston, HJ Snaith, LM Herz


Enabling reliability assessments of pre-commercial perovskite photovoltaics with lessons learned from industrial standards

NATURE ENERGY 3 (2018) 459-465

HJ Snaith, P Hacke


Engineering III-V nanowires for optoelectronics: From epitaxy to terahertz photonics

Proceedings of SPIE - The International Society for Optical Engineering 10543 (2018)

HJ Joyce, C Uswachoke, SA Baig, SO Adeyemo, JL Boland, DA Damry, CL Davies, J Wong-Leung, HH Tan, C Jagadish, LM Herz, MB Johnston

© COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. Nanowires show unique promise as nanoscale building blocks for a multitude of optoelectronic devices, ranging from solar cells to terahertz photonic devices. We will discuss the epitaxial growth of these nanowires in novel geometries and crystallographic phases, and the use of terahertz conductivity spectroscopy to guide the development of nanowire-based devices. As an example, we will focus on the development of nanowire-based polarization modulators for terahertz communications systems.


Enhanced photovoltage for inverted planar heterojunction perovskite solar cells.

Science (New York, N.Y.) 360 (2018) 1442-1446

D Luo, W Yang, Z Wang, A Sadhanala, Q Hu, R Su, R Shivanna, GF Trindade, JF Watts, Z Xu, T Liu, K Chen, F Ye, P Wu, L Zhao, J Wu, Y Tu, Y Zhang, X Yang, W Zhang, RH Friend, Q Gong, HJ Snaith, R Zhu

The highest power conversion efficiencies (PCEs) reported for perovskite solar cells (PSCs) with inverted planar structures are still inferior to those of PSCs with regular structures, mainly because of lower open-circuit voltages (Voc). Here we report a strategy to reduce nonradiative recombination for the inverted devices, based on a simple solution-processed secondary growth technique. This approach produces a wider bandgap top layer and a more n-type perovskite film, which mitigates nonradiative recombination, leading to an increase in Voc by up to 100 millivolts. We achieved a high Voc of 1.21 volts without sacrificing photocurrent, corresponding to a voltage deficit of 0.41 volts at a bandgap of 1.62 electron volts. This improvement led to a stabilized power output approaching 21% at the maximum power point.


Template-Directed Synthesis of a Conjugated Zinc Porphyrin Nanoball.

Journal of the American Chemical Society 140 (2018) 5352-5355

J Cremers, R Haver, M Rickhaus, JQ Gong, L Favereau, MD Peeks, TDW Claridge, LM Herz, HL Anderson

We report the template-directed synthesis of a π-conjugated 14-porphyrin nanoball. This structure consists of two intersecting nanorings containing six and 10 porphyrin units. Fluorescence upconversion spectroscopy experiments demonstrate that electronic excitation delocalizes over the whole three-dimensional π system in less than 0.3 ps if the nanoball is bound to its templates or over 2 ps if the nanoball is empty.


High irradiance performance of metal halide perovskites for concentrator photovoltaics

NATURE ENERGY 3 (2018) 855-861

Z Wang, Q Lin, B Wenger, MG Christoforo, Y-H Lin, MT Klug, MB Johnston, LM Herz, HJ Snaith


Carrier confinement effects of InxGa1-xN/GaN multi quantum disks with GaN surface barriers grown in GaN nanorods

OPTICAL MATERIALS 78 (2018) 365-369

Y Park, CCS Chan, RA Taylor, N Kim, Y Jo, SW Lee, W Yang, H Im


Highly Crystalline Methylammonium Lead Tribromide Perovskite Films for Efficient Photovoltaic Devices

ACS ENERGY LETTERS 3 (2018) 1233-1240

NK Noel, B Wenger, SN Habisreutinger, JB Patel, T Crothers, Z Wang, RJ Nicholas, MB Johnston, LM Herz, HJ Snaith

Pages