# Publications

## Characterizing the phase diagram of finite-size dipolar Bose-Hubbard systems

Physical Review A American Physical Society **101** (2020) 013616

We use state-of-the-art density matrix renormalization group calculations in the canonical ensemble to determine the phase diagram of the dipolar Bose-Hubbard model on a finite cylinder. We consider several observables that are accessible in typical optical lattice setups and assess how well these quantities perform as order parameters. We find that, especially for small systems, the occupation imbalance is less susceptible to boundary effects than the structure factor in uncovering the presence of a periodic density modulation. By analyzing the nonlocal correlations, we find that the appearance of supersolid order is very sensitive to boundary effects, which may render it difficult to observe in quantum gas lattice experiments with a few tens of particles. Finally, we show that density measurements readily obtainable on a quantum gas microscope allow distinguishing between superfluid and solid phases using unsupervised machine-learning techniques.

## Controlling magnetic correlations in a driven Hubbard system far from half-filling

Physical Review A American Physical Society **101** (2020) 53634

We propose using ultracold fermionic atoms trapped in a periodically shaken optical lattice as a quantum simulator of the t−J Hamiltonian, which describes the dynamics in doped antiferromagnets and is thought to be relevant to the problem of high-temperature superconductivity in the cuprates. We show analytically that the effective Hamiltonian describing this system for off-resonant driving is the t−J model with additional pair hopping terms, whose parameters can all be controlled by the drive. We then demonstrate numerically using tensor network methods for a one-dimensional (1D) lattice that a slow modification of the driving strength allows near-adiabatic transfer of the system from the ground state of the underlying Hubbard model to the ground state of the effective t−J Hamiltonian. Finally, we report exact diagonalization calculations illustrating the control achievable on the dynamics of spin-singlet pairs in 2D lattices utilizing this technique with current cold-atom quantum-simulation technology. These results open new routes to explore the interplay between density and spin in strongly correlated fermionic systems through their out-of-equilibrium dynamics.

## Variational quantum algorithms for nonlinear problems

Physical Review A American Physical Society **101** (2020) 010301(R)

We show that nonlinear problems including nonlinear partial di↵erential equations can be e- ciently solved by variational quantum computing. We achieve this by utilizing multiple copies of variational quantum states to treat nonlinearities eciently and by introducing tensor networks as a programming paradigm. The key concepts of the algorithm are demonstrated for the nonlinear Schr¨odinger equation as a canonical example. We numerically show that the variational quantum ansatz can be exponentially more ecient than matrix product states and present experimental proof-of-principle results obtained on an IBM Q device.

## Stationary state degeneracy of open quantum systems with non-abelian symmetries

JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL **53** (2020) ARTN 215304

## Fluctuations of work in realistic equilibrium states of quantum systems with conserved quantities

SciPost Physics Proceedings SciPost **3** (2020)

The out-of-equilibrium dynamics of quantum systems is one of the most fascinating problems in physics, with outstanding open questions on issues such as relaxation to equilibrium. An area of particular interest concerns few-body systems, where quantum and thermal fluctuations are expected to be especially relevant. In this contribution, we present numerical results demonstrating the impact of conserved quantities (or ‘charges’) in the outcomes of out-of-equilibrium measurements starting from realistic equilibrium states on a few-body system implementing the Dicke model.

## Ultracold polar molecules as qudits

New Journal of Physics IOP Publishing **22** (2020) 013027-013027

## Quantum synchronisation enabled by dynamical symmetries and dissipation

New Journal of Physics IOP Publishing **22** (2019) 013026-

In nature, instances of synchronisation abound across a diverse range of environments. In the quantum regime, however, synchronisation is typically observed by identifying an appropriate parameter regime in a specific system. In this work we show that this need not be the case, identifying symmetry-based conditions which, when satisfied, guarantee completely synchronous, entangled limit cycles between the individual constituents of a generic open quantum system - no restrictions are placed on its microscopic details. We describe these systems as posssessing a strong dynamical symmetry and we prove that, to first order, they are completely robust to symmetry-breaking perturbations. Using these ideas we identify two central examples where synchronisation arises via this qualitatively new mechanism: a chain of quadratically dephased spin-1s and the many-body charge-dephased Hubbard model. In both cases, due to their dynamical symmetries, perfect phase-locking occurs throughout the system, regardless of the specific microscopic parameters or initial states. Furthermore, when these systems are perturbed, their non-linear responses elicit long-lived signatures of both phase and frequency-locking.

## Efficient microwave-to-optical conversion using Rydberg atoms

PHYSICAL REVIEW A **99** (2019) ARTN 023832

## Mott polaritons in cavity-coupled quantum materials

New Journal of Physics IOP Publishing (2019)

## Quantum impurity models coupled to Markovian and non-Markovian baths.

The Journal of chemical physics **151** (2019) 044102-044102

We develop a method to study quantum impurity models, small interacting quantum systems bilinearly coupled to an environment, in the presence of an additional Markovian quantum bath, with a generic nonlinear coupling to the impurity. We aim at computing the evolution operator of the reduced density matrix of the impurity, obtained after tracing out all the environmental degrees of freedom. First, we derive an exact real-time hybridization expansion for this quantity, which generalizes the result obtained in the absence of the additional Markovian dissipation and which could be amenable to stochastic sampling through diagrammatic Monte Carlo. Then, we obtain a Dyson equation for this quantity and we evaluate its self-energy with a resummation technique known as the noncrossing approximation. We apply this novel approach to a simple fermionic impurity coupled to a zero temperature fermionic bath and in the presence of Markovian pump, losses, and dephasing.

## Spectral functions and negative density of states of a driven-dissipative nonlinear quantum resonator

NEW JOURNAL OF PHYSICS **21** (2019) UNSP 043040

## Emergent finite frequency criticality of driven-dissipative correlated lattice bosons

PHYSICAL REVIEW B **99** (2019) ARTN 064511

## Heating-Induced Long-Range η Pairing in the Hubbard Model

Physical Review Letters American Physical Society **123** (2019) 030603

We show how, upon heating the spin degrees of freedom of the Hubbard model to infinite temperature, the symmetries of the system allow the creation of steady states with long-range correlations between η pairs. We induce this heating with either dissipation or periodic driving and evolve the system towards a nonequilibrium steady state, a process which melts all spin order in the system. The steady state is identical in both cases and displays distance-invariant off-diagonal η correlations. These correlations were first recognized in the superconducting eigenstates described in Yang’s seminal Letter [Phys. Rev. Lett. 63, 2144 (1989)], which are a subset of our steady states. We show that our results are a consequence of symmetry properties and entirely independent of the microscopic details of the model and the heating mechanism.

## Complex coherent quantum many-body dynamics through dissipation

Nature Communications Springer Nature **10** (2019) 1730

The assumption that physical systems relax to a stationary state in the long-time limit underpins statistical physics and much of our intuitive understanding of scientific phenomena. For isolated systems this follows from the eigenstate thermalization hypothesis. When an environment is present the expectation is that all of phase space is explored, eventually leading to stationarity. Notable exceptions are decoherence-free subspaces that have important implications for quantum technologies. These have been studied for systems with a few degrees of freedom only. Here we identify simple and generic conditions for dissipation to prevent a quantum many-body system from ever reaching a stationary state. We go beyond dissipative quantum state engineering approaches towards controllable long-time non-stationary dynamics typically associated with macroscopic complex systems. This coherent and oscillatory evolution constitutes a dissipative version of a quantum time-crystal. We discuss the possibility of engineering such complex dynamics with fermionic ultracold atoms in optical lattices.

## Exact large deviation statistics and trajectory phase transition of a deterministic boundary driven cellular automaton.

Physical review. E **100** (2019) 020103-

We study the statistical properties of the long-time dynamics of the rule 54 reversible cellular automaton (CA), driven stochastically at its boundaries. This CA can be considered as a discrete-time and deterministic version of the Fredrickson-Andersen kinetically constrained model (KCM). By means of a matrix product ansatz, we compute the exact large deviation cumulant generating functions for a wide range of time-extensive observables of the dynamics, together with their associated rate functions and conditioned long-time distributions over configurations. We show that for all instances of boundary driving the CA dynamics occurs at the point of phase coexistence between competing active and inactive dynamical phases, similar to what happens in more standard KCMs. We also find the exact finite size scaling behavior of these trajectory transitions, and provide the explicit "Doob-transformed" dynamics that optimally realizes rare dynamical events.

## Dissipation induced nonstationarity in a quantum gas

Physical Review Letters American Physical Society **123** (2019) 260401

Nonstationary longtime dynamics was recently observed in a driven two-component Bose-Einstein condensate coupled to an optical cavity [N. Dogra, M. Landini, K. Kroeger, L. Hruby, T. Donner, and T. Esslinger, arXiv:1901.05974] and analyzed in mean-field theory. We solve the underlying model in the thermodynamic limit and show that this system is always dynamically unstable—even when mean-field theory predicts stability. Instabilities always occur in higher-order correlation functions leading to squeezing and entanglement induced by cavity dissipation. The dynamics may be understood as the formation of a dissipative time crystal. We use perturbation theory for finite system sizes to confirm the nonstationary behavior.

## Symmetries and conservation laws in quantum trajectories: Dissipative freezing

Physical Review A American Physical Society **100** (2019) 042113

In driven-dissipative systems, the presence of a strong symmetry guarantees the existence of several steady states belonging to different symmetry sectors. Here we show that, when a system with a strong symmetry is initialized in a quantum superposition involving several of these sectors, each individual stochastic trajectory will randomly select a single one of them and remain there for the rest of the evolution. Since a strong symmetry implies a conservation law for the corresponding symmetry operator on the ensemble level, this selection of a single sector from an initial superposition entails a breakdown of this conservation law at the level of individual realizations. Given that such a superposition is impossible in a classical, stochastic trajectory, this is a a purely quantum effect with no classical analogue. Our results show that a system with a closed Liouvillian gap may exhibit, when monitored over a single run of an experiment, a behaviour completely opposite to the usual notion of dynamical phase coexistence and intermittency, which are typically considered hallmarks of a dissipative phase transition. We discuss our results with a simple, realistic model of squeezed superradiance.

## Manipulating quantum materials with quantum light (vol 99, 085116, 2019)

PHYSICAL REVIEW B **99** (2019) ARTN 099907

## Manipulating quantum materials with quantum light

Physical Review B American Physical Society **99** (2019) 085116-

We show that the macroscopic magnetic and electronic properties of strongly correlated electron systems can be manipulated by coupling them to a cavity mode. As a paradigmatic example we consider the Fermi-Hubbard model and find that the electron-cavity coupling enhances the magnetic interaction between the electron spins in the ground-state manifold. At half filling this effect can be observed by a change in the magnetic susceptibility. At less than half filling, the cavity introduces a next-nearest-neighbor hopping and mediates a long-range electron-electron interaction between distant sites. We study the ground-state properties with tensor network methods and find that the cavity coupling can induce a phase characterized by a momentum-space pairing effect for electrons.

## Collimated UV light generation by two-photon excitation to a Rydberg state in Rb vapor

OPTICS LETTERS **44** (2019) 2931-2934