Publications


Spin resonance in the superconducting state of Li1-xFexODFe1-ySe observed by neutron spectroscopy

PHYSICAL REVIEW B 94 (2016) ARTN 144503

NR Davies, MC Rahn, HC Walker, RA Ewings, DN Woodruff, SJ Clarke, AT Boothroyd


Surface Monocrystallization of Copper Foil for Fast Growth of Large Single-Crystal Graphene under Free Molecular Flow.

Advanced materials (Deerfield Beach, Fla.) 28 (2016) 8968-8974

H Wang, X Xu, J Li, L Lin, L Sun, X Sun, S Zhao, C Tan, C Chen, W Dang, H Ren, J Zhang, B Deng, AL Koh, L Liao, N Kang, Y Chen, H Xu, F Ding, K Liu, H Peng, Z Liu

Wafer-sized single-crystalline Cu (100) surface can be readily achieved on stacked polycrystalline Cu foils via simple oxygen chemisorption-induced reconstruction, enabling fast growth of large-scale millimeter-sized single-crystalline graphene arrays under molecular flow. The maximum growth rate can reach 300 μm min(-1) , several orders of magnitude higher than previously reported values for millimeter-sized single-crystalline graphene growth on Cu foils.


Organic Transistors: Universal Magnetic Hall Circuit Based on Paired Spin Heterostructures (Adv. Electron. Mater. 6/2015)

Advanced Electronic Materials 1 (2016)

S Zhang, AA Baker, JY Zhang, G Yu, S Wang, T Hesjedal


Modulated spin helicity stabilized by incommensurate orbital density waves in a quadruple perovskite manganite

PHYSICAL REVIEW B 93 (2016) ARTN 180403

RD Johnson, DD Khalyavin, P Manuel, A Bombardi, C Martin, LC Chapon, PG Radaelli


Evidence for unidirectional nematic bond ordering in FeSe

Physical Review B - Condensed Matter and Materials Physics American Physical Society (2016)

MD Watson, TK Kim, LC Rhodes, M Eschrig, M Hoesch, AA Haghighirad, AI Coldea

The lifting of $d_{xz}$-$d_{yz}$ orbital degeneracy is often considered a hallmark of the nematic phase of Fe-based superconductors, including FeSe, but its origin is not yet understood. Here we report a high resolution Angle-Resolved Photoemission Spectroscopy study of single crystals of FeSe, accounting for the photon-energy dependence and making a detailed analysis of the temperature dependence. We find that the hole pocket undergoes a fourfold-symmetry-breaking distortion in the nematic phase below 90~K, but in contrast the changes to the electron pockets do not require fourfold symmetry-breaking. Instead, there is an additional separation of the existing $d_{xy}$ and $d_{xz/yz}$ bands - which themselves are not split within resolution. These observations lead us to propose a new scenario of "unidirectional nematic bond ordering" to describe the low-temperature electronic structure of FeSe, supported by a good agreement with 10-orbital tight binding model calculations.


Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family.

Nature materials 15 (2016) 27-31

ZK Liu, LX Yang, Y Sun, T Zhang, H Peng, HF Yang, C Chen, Y Zhang, YF Guo, D Prabhakaran, M Schmidt, Z Hussain, S-K Mo, C Felser, B Yan, YL Chen

Topological Weyl semimetals (TWSs) represent a novel state of topological quantum matter which not only possesses Weyl fermions (massless chiral particles that can be viewed as magnetic monopoles in momentum space) in the bulk and unique Fermi arcs generated by topological surface states, but also exhibits appealing physical properties such as extremely large magnetoresistance and ultra-high carrier mobility. Here, by performing angle-resolved photoemission spectroscopy (ARPES) on NbP and TaP, we directly observed their band structures with characteristic Fermi arcs of TWSs. Furthermore, by systematically investigating NbP, TaP and TaAs from the same transition metal monopnictide family, we discovered their Fermiology evolution with spin-orbit coupling (SOC) strength. Our experimental findings not only reveal the mechanism to realize and fine-tune the electronic structures of TWSs, but also provide a rich material base for exploring many exotic physical phenomena (for example, chiral magnetic effects, negative magnetoresistance, and the quantum anomalous Hall effect) and novel future applications.


Polarization memory in the nonpolar magnetic ground state of multiferroic CuFeO2

PHYSICAL REVIEW B 94 (2016) ARTN 144411

J Beilsten-Edmands, SJ Magorrian, FR Foronda, D Prabhakaran, PG Radaelli, RD Johnson


Magnetostriction-driven ground-state stabilization in 2H perovskites

PHYSICAL REVIEW B 94 (2016) ARTN 134404

DG Porter, MS Senn, DD Khalyavin, A Cortese, N Waterfield-Price, PG Radaelli, P Manuel, H-C zur-Loye, C Mazzoli, A Bombardi


Free-standing millimetre-long Bi2Te3 sub-micron belts catalyzed by TiO2 nanoparticles.

Nanoscale research letters 11 (2016) 308-

P Schönherr, F Zhang, D Kojda, R Mitdank, M Albrecht, SF Fischer, T Hesjedal

Physical vapour deposition (PVD) is used to grow millimetre-long Bi2Te3 sub-micron belts catalysed by TiO2 nanoparticles. The catalytic efficiency of TiO2 nanoparticles for the nanostructure growth is compared with the catalyst-free growth employing scanning electron microscopy. The catalyst-coated and catalyst-free substrates are arranged side-by-side, and overgrown at the same time, to assure identical growth conditions in the PVD furnace. It is found that the catalyst enhances the yield of the belts. Very long belts were achieved with a growth rate of 28 nm/min. A ∼1-mm-long belt with a rectangular cross section was obtained after 8 h of growth. The thickness and width were determined by atomic force microscopy, and their ratio is ∼1:10. The chemical composition was determined to be stoichiometric Bi2Te3 using energy-dispersive X-ray spectroscopy. Temperature-dependent conductivity measurements show a characteristic increase of the conductivity at low temperatures. The room temperature conductivity of 0.20 × 10(5) S m (-1) indicates an excellent sample quality.


Making hybrid [n]-rotaxanes as supramolecular arrays of molecular electron spin qubits.

Nature communications 7 (2016) 10240-

A Fernandez, J Ferrando-Soria, EM Pineda, F Tuna, IJ Vitorica-Yrezabal, C Knappke, J Ujma, CA Muryn, GA Timco, PE Barran, A Ardavan, REP Winpenny

Quantum information processing (QIP) would require that the individual units involved--qubits--communicate to other qubits while retaining their identity. In many ways this resembles the way supramolecular chemistry brings together individual molecules into interlocked structures, where the assembly has one identity but where the individual components are still recognizable. Here a fully modular supramolecular strategy has been to link hybrid organic-inorganic [2]- and [3]-rotaxanes into still larger [4]-, [5]- and [7]-rotaxanes. The ring components are heterometallic octanuclear [Cr7NiF8(O2C(t)Bu)16](-) coordination cages and the thread components template the formation of the ring about the organic axle, and are further functionalized to act as a ligand, which leads to large supramolecular arrays of these heterometallic rings. As the rings have been proposed as qubits for QIP, the strategy provides a possible route towards scalable molecular electron spin devices for QIP. Double electron-electron resonance experiments demonstrate inter-qubit interactions suitable for mediating two-qubit quantum logic gates.


Evolution of the Valley Position in Bulk Transition-Metal Chalcogenides and Their Monolayer Limit.

Nano letters 16 (2016) 4738-4745

H Yuan, Z Liu, G Xu, B Zhou, S Wu, D Dumcenco, K Yan, Y Zhang, S-K Mo, P Dudin, V Kandyba, M Yablonskikh, A Barinov, Z Shen, S Zhang, Y Huang, X Xu, Z Hussain, HY Hwang, Y Cui, Y Chen

Layered transition metal chalcogenides with large spin orbit coupling have recently sparked much interest due to their potential applications for electronic, optoelectronic, spintronics, and valleytronics. However, most current understanding of the electronic structure near band valleys in momentum space is based on either theoretical investigations or optical measurements, leaving the detailed band structure elusive. For example, the exact position of the conduction band valley of bulk MoS2 remains controversial. Here, using angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES), we systematically imaged the conduction/valence band structure evolution across representative chalcogenides MoS2, WS2, and WSe2, as well as the thickness dependent electronic structure from bulk to the monolayer limit. These results establish a solid basis to understand the underlying valley physics of these materials, and also provide a link between chalcogenide electronic band structure and their physical properties for potential valleytronics applications.


Robustness of superconductivity to competing magnetic phases in tetragonal FeS

PHYSICAL REVIEW B 94 (2016) ARTN 134509

FKK Kirschner, F Lang, CV Topping, PJ Baker, FL Pratt, SE Wright, DN Woodruff, SJ Clarke, SJ Blundell


Modeling the angle-dependent magnetoresistance oscillations of Fermi surfaces with hexagonal symmetry

PHYSICAL REVIEW B 93 (2016) ARTN 245105

JCA Prentice, AI Coldea


Muon-spin relaxation study of the double perovskite insulators Sr2 BOsO6 (B  =  Fe, Y, ln).

Journal of physics. Condensed matter : an Institute of Physics journal 28 (2016) 076001-

RC Williams, F Xiao, IO Thomas, SJ Clark, T Lancaster, GA Cornish, SJ Blundell, W Hayes, AK Paul, C Felser, M Jansen

We present the results of zero-field muon-spin relaxation measurements made on the double perovskite insulators Sr2 BOsO6 (B = Fe,Y, In). Spontaneous muon-spin precession indicative of quasistatic long range magnetic ordering is observed in Sr2FeOsO6 within the AF1 antiferromagnetic phase for temperatures below [Formula: see text] K. Upon cooling below T2≈67 K the oscillations cease to be resolvable owing to the coexistence of the AF1 and AF2 phases, which leads to a broader range of internal magnetic fields. Using density functional calculations we identify a candidate muon stopping site within the unit cell, which dipole field simulations show to be consistent with the proposed magnetic structure. The possibility of incommensurate magnetic ordering is discussed for temperatures below TN = 53 K and 25 K for Sr2YOsO6 and Sr2InOsO6, respectively.


Detailed crystallographic analysis of the ice VI to ice XV hydrogen ordering phase transition.

The Journal of chemical physics 145 (2016) 204501-

CG Salzmann, B Slater, PG Radaelli, JL Finney, JJ Shephard, M Rosillo-Lopez, J Hindley

The D2O ice VI to ice XV hydrogen ordering phase transition at ambient pressure is investigated in detail with neutron diffraction. The lattice constants are found to be sensitive indicators for hydrogen ordering. The a and b lattice constants contract whereas a pronounced expansion in c is found upon hydrogen ordering. Overall, the hydrogen ordering transition goes along with a small increase in volume, which explains why the phase transition is more difficult to observe upon cooling under pressure. Slow-cooling ice VI at 1.4 GPa gives essentially fully hydrogen-disordered ice VI. Consistent with earlier studies, the ice XV obtained after slow-cooling at ambient pressure is best described with P-1 space group symmetry. Using a new modelling approach, we achieve the atomistic reconstruction of a supercell structure that is consistent with the average partially ordered structure derived from Rietveld refinements. This shows that C-type networks are most prevalent in ice XV, but other structural motifs outside of the classifications of the fully hydrogen-ordered networks are identified as well. The recently proposed Pmmn structural model for ice XV is found to be incompatible with our diffraction data, and we argue that only structural models that are capable of describing full hydrogen order should be used.


de Haas–van Alphen study of role of electrons in antiferromagnetic as compared to its nonmagnetic analog

Physical Review B 94 (2016)

SF Blake, H Hodovanets, A McCollam, SL Bud'ko, PC Canfield, AI Coldea


Bimetallic MOFs (H3O)x[Cu(MF6)(pyrazine)2]·(4 - x)H2O (M = V4+, x = 0; M = Ga3+, x = 1): co-existence of ordered and disordered quantum spins in the V4+ system.

Chemical communications (Cambridge, England) 52 (2016) 12653-12656

JL Manson, JA Schlueter, KE Garrett, PA Goddard, T Lancaster, JS Möller, SJ Blundell, AJ Steele, I Franke, FL Pratt, J Singleton, J Bendix, SH Lapidus, M Uhlarz, O Ayala-Valenzuela, RD McDonald, M Gurak, C Baines

The title compounds are bimetallic MOFs containing [Cu(pyz)2]2+ square lattices linked by MF6n- octahedra. In each, only the Cu2+ spins exhibit long-range magnetic order below 3.5 K (M = V4+) and 2.6 K (M = Ga3+). The V4+ spins remain disordered down to 0.5 K.


Tuning Chemical Potential Difference across Alternately Doped Graphene p-n Junctions for High-Efficiency Photodetection.

Nano letters 16 (2016) 4094-4101

L Lin, X Xu, J Yin, J Sun, Z Tan, AL Koh, H Wang, H Peng, Y Chen, Z Liu

Being atomically thin, graphene-based p-n junctions hold great promise for applications in ultrasmall high-efficiency photodetectors. It is well-known that the efficiency of such photodetectors can be improved by optimizing the chemical potential difference of the graphene p-n junction. However, to date, such tuning has been limited to a few hundred millielectronvolts. To improve this critical parameter, here we report that using a temperature-controlled chemical vapor deposition process, we successfully achieved modulation-doped growth of an alternately nitrogen- and boron-doped graphene p-n junction with a tunable chemical potential difference up to 1 eV. Furthermore, such p-n junction structure can be prepared on a large scale with stable, uniform, and substitutional doping and exhibits a single-crystalline nature. This work provides a feasible method for synthesizing low-cost, large-scale, high efficiency graphene p-n junctions, thus facilitating their applications in optoelectronic and energy conversion devices.


La2SrCr2O7F2: A Ruddlesden-Popper Oxyfluoride Containing Octahedrally Coordinated Cr(4+) Centers.

Inorganic chemistry 55 (2016) 3169-3174

R Zhang, G Read, F Lang, T Lancaster, SJ Blundell, MA Hayward

The low-temperature fluorination of the n = 2 Ruddlesden-Popper phase La2SrCr2O7 yields La2SrCr2O7F2 via a topochemical fluorine insertion reaction. The structure-conserving nature of the fluorination reaction means that the chromium centers of the initial oxide phase retain an octahedral coordination environment in the fluorinated product, resulting in a material containing an extended array of apex-linked Cr(4+)O6 units. Typically materials containing networks of octahedrally coordinated Cr(4+) centers can only be prepared at high pressure; thus, the preparation of La2SrCr2O7F2 demonstrates that low-temperature topochemical reactions offer an alternative synthesis route to materials of this type. Neutron diffraction, magnetization, and μ(+)SR data indicate that La2SrCr2O7F2 undergoes a transition to an antiferromagnetic state below TN ≈ 140 K. The structure-property relations of this phase and other Cr(4+) oxide phases are discussed.


Nanoscale depth-resolved polymer dynamics probed by the implantation of low energy muons

POLYMER 105 (2016) 516-525

FL Pratt, T Lancaster, PJ Baker, SJ Blundell, T Prokscha, E Morenzoni, A Suter, HE Assender

Pages