Publications associated with Quantum Materials


Intrinsic Triple Order in A-site Columnar-Ordered Quadruple Perovskites: Proof of Concept.

Chemphyschem : a European journal of chemical physics and physical chemistry (2018)

AA Belik, DD Khalyavin, L Zhang, Y Matsushita, Y Katsuya, M Tanaka, RD Johnson, K Yamaura

There is an emerging topic in the science of perovskite materials: A-site columnar-ordered A2 A'A''B4 O12 quadruple perovskites, which have an intrinsic triple order at the A sites. However, in many examples reported so far, A' and A'' cations are the same, and the intrinsic triple order is hidden. Here, we investigate structural properties of Dy2 CuMnMn4 O12 (1) and Ho2 MnGaMn4 O12 (2) by neutron and X-ray powder diffraction and prove the triple order at the A sites. The cation distributions determined are [Ho2 ]A [Mn]A' [Ga0.66 Mn0.34 ]A'' [Mn3.66 Ga0.34 ]B O12 and [Dy2 ]A [Cu0.73 Mn0.27 ]A' [Mn0.80 Dy0.20 ]A'' [Mn1.89 Cu0.11 ]B1 [Mn2 ]B2 O12 . There are clear signatures of Jahn-Teller distortions in 1 and 2, and the orbital pattern is combined with an original type of charge ordering in 1. Columnar-ordered quadruple perovskites represent a new playground to study complex interactions between different electronic degrees of freedom. No long-range magnetic order was found in 2 by neutron diffraction, and its magnetic properties in low fields are dominated by an impurity with negative magnetization or magnetization reversal. On the other hand, 1 shows three magnetic transitions at 21, 125, and 160 K.


Show full publication list