Publications associated with Quantum Materials


Depth profiling of 3D skyrmion lattices in a chiral magnet: A story with a twist

AIP Advances AIP Publishing 11 (2021) 015108

G van der Laan, S Zhang, T Hesjedal

From the perspective of surface science, only the topmost atomic layers usually exhibit physical properties that are different to those of the bulk material, whereas the deeper layers are assumed to be bulk-like and remain largely unexplored. Going beyond conventional diffraction and imaging techniques, we have determined the depth dependence of the full 3D spin structure of magnetic skyrmions below the surface of a bulk Cu2OSeO3 sample using the polarization dependence of resonant elastic x-ray scattering (REXS). While the bulk spin configuration showed the anticipated Bloch type structure, it was found that the skyrmion lattice changes to a Néel twisting (i.e., with a different helicity angle) at the surface within a distance of several hundred nm. The exact surface helicity angle and penetration length of this twist have been determined, revealing the detailed internal structure of the skyrmion tube. It was found that the experimental penetration length of the Néel twisting is 7× longer than the theoretical value given by the ratio of J/D. This indicates that apart from the considered spin interactions, i.e., the Heisenberg exchange interaction J and the Dzyaloshinskii-Moriya interaction D, as well as the Zeeman interaction, other effects must play an important role. The findings suggest that the surface reconstruction of the skyrmion lattice is a universal phenomenon, stemming from the breaking of translational symmetry at the interface.


Show full publication list