Measurement of the bulk and surface bands in Dirac line-node semimetal ZrSiS

CHINESE PHYSICS B 27 (2018) ARTN 017105

G-H Hong, C-W Wang, J Jiang, C Chen, S-T Cui, H-F Yang, A-J Liang, S Liu, Y-Y Lv, J Zhou, Y-B Chen, S-H Yao, M-H Lu, Y-F Chen, M-X Wang, L-X Yang, Z-K Liu, Y-L Chen

Nodal multigap superconductivity in KCa2Fe4As4F2

Physical Review B 97 (2018) 060509(R)

M Smidman, FKK Kirschner, DT Adroja, AD Hillier, F Lang, Z-C Zhang, G-H Cao, SJ Blundell

Implications of bond disorder in a S=1 kagome lattice.

Scientific reports 8 (2018) 4745-4745

JL Manson, J Brambleby, PA Goddard, PM Spurgeon, JA Villa, J Liu, S Ghannadzadeh, F Foronda, J Singleton, T Lancaster, SJ Clark, IO Thomas, F Xiao, RC Williams, FL Pratt, SJ Blundell, CV Topping, C Baines, C Campana, B Noll

Strong hydrogen bonds such as F···H···F offer new strategies to fabricate molecular architectures exhibiting novel structures and properties. Along these lines and, to potentially realize hydrogen-bond mediated superexchange interactions in a frustrated material, we synthesized [H2F]2[Ni3F6(Fpy)12][SbF6]2 (Fpy = 3-fluoropyridine). It was found that positionally-disordered H2F+ ions link neutral NiF2(Fpy)4 moieties into a kagome lattice with perfect 3-fold rotational symmetry. Detailed magnetic investigations combined with density-functional theory (DFT) revealed weak antiferromagnetic interactions (J ~ 0.4 K) and a large positive-D of 8.3 K with ms = 0 lying below ms = ±1. The observed weak magnetic coupling is attributed to bond-disorder of the H2F+ ions which leads to disrupted Ni-F···H-F-H···F-Ni exchange pathways. Despite this result, we argue that networks such as this may be a way forward in designing tunable materials with varying degrees of frustration.

Probing α-RuCl_{3} Beyond Magnetic Order: Effects of Temperature and Magnetic Field.

Physical review letters 120 (2018) 077203-

SM Winter, K Riedl, D Kaib, R Coldea, R Valentí

Recent studies have brought α-RuCl_{3} to the forefront of experimental searches for materials realizing Kitaev spin-liquid physics. This material exhibits strongly anisotropic exchange interactions afforded by the spin-orbit coupling of the 4d Ru centers. We investigate the dynamical response at finite temperature and magnetic field for a realistic model of the magnetic interactions in α-RuCl_{3}. These regimes are thought to host unconventional paramagnetic states that emerge from the suppression of magnetic order. Using exact diagonalization calculations of the quantum model complemented by semiclassical analysis, we find a very rich evolution of the spin dynamics as the applied field suppresses the zigzag order and stabilizes a quantum paramagnetic state that is adiabatically connected to the fully polarized state at high fields. At finite temperature, we observe large redistributions of spectral weight that can be attributed to the anisotropic frustration of the model. These results are compared to recent experiments and provide a road map for further studies of these regimes.

Extreme Sensitivity of a Topochemical Reaction to Cation Substitution: SrVO2H versus SrV1- xTi xO1.5H1.5.

Inorganic chemistry 57 (2018) 2890-2898

M Amano Patino, D Zeng, SJ Blundell, JE McGrady, MA Hayward

The anion-ordered oxide-hydride SrVO2H is an antiferromagnetic insulator due to strong correlations between vanadium d electrons. In an attempt to hole-dope SrVO2H into a metallic state, a strategy of first preparing SrV1- xTi xO3 phases and then converting them to the corresponding SrV1- xTi xO2H phases via reaction with CaH2 was followed. This revealed that the solid solution between SrVO3 and SrTiO3 is only stable at high temperature. In addition, reactions between SrV0.95Ti0.05O3 and CaH2 were observed to yield SrV0.95Ti0.05O1.5H1.5 not SrV0.95Ti0.05O2H. This dramatic change in reactivity for a very modest change in initial chemical composition is attributed to an electronic destabilization of SrVO2H on titanium substitution. Density functional theory calculations indicate that the presence of an anion-ordered, tetragonal SrMO2H phase is uniquely associated with a d2 electron count and that titanium substitution leads to an electronic destabilization of SrV1- xTi xO2H phases, which, ultimately, drives further reaction of SrV1- xTi xO2H to SrV1- xTi xO1.5H1.5. The observed sensitivity of the reaction products to the chemical composition of initial phases highlights some of the difficulties associated with electronically doping metastable materials prepared by topochemical reactions.

LaSr3 NiRuO4 H4 : A 4d Transition-Metal Oxide-Hydride Containing Metal Hydride Sheets.

Angewandte Chemie (International ed. in English) (2018)

L Jin, M Lane, D Zeng, FKK Kirschner, F Lang, P Manuel, SJ Blundell, JE McGrady, MA Hayward

The synthesis of the first 4d transition metal oxide-hydride, LaSr3 NiRuO4 H4 , is prepared via topochemical anion exchange. Neutron diffraction data show that the hydride ions occupy the equatorial anion sites in the host lattice and as a result the Ru and Ni cations are located in a plane containing only hydride ligands, a unique structural feature with obvious parallels to the CuO2 sheets present in the superconducting cuprates. DFT calculations confirm the presence of S=1/2  Ni+ and S=0, Ru2+ centers, but neutron diffraction and μSR data show no evidence for long-range magnetic order between the Ni centers down to 1.8 K. The observed weak inter-cation magnetic coupling can be attributed to poor overlap between Ni 3dz2 and H 1s in the super-exchange pathways.

Real-Space Observation of Skyrmionium in a Ferromagnet-Magnetic Topological Insulator Heterostructure.

Nano letters ACS 18 (2018) 1057-1063

S Zhang, F Kronast, G van der Laan, T Hesjedal

The combination of topological insulators, i.e., bulk insulators with gapless, topologically protected surface states, with magnetic order is a love-hate relationship that can unlock new quantum states and exotic physical phenomena, such as the quantum anomalous Hall effect and axion electrodynamics. Moreover, the unusual coupling between topological insulators and ferromagnets can also result in the formation of topological spin textures in the ferromagnetic layer. Skyrmions are topologically-protected magnetization swirls that are promising candidates for spintronics memory carriers. Here, we report on the observation of skyrmionium in thin ferromagnetic films coupled to a magnetic topological insulator. The occurrence of skyrmionium, which appears as a soliton composed of two skyrmions with opposite winding numbers, is tied to the ferromagnetic state of the topological insulator. Our work presents a new combination of two important classes of topological materials and may open the door to new topologically inspired information-storage concepts in the future.

Direct Observation of Twisted Surface skyrmions in Bulk Crystals.

Physical review letters 120 (2018) 227202-

SL Zhang, G van der Laan, WW Wang, AA Haghighirad, T Hesjedal

Magnetic skyrmions in noncentrosymmetric helimagnets with D_{n} symmetry are Bloch-type magnetization swirls with a helicity angle of ±90°. At the surface of helimagnetic thin films below a critical thickness, a twisted skyrmion state with an arbitrary helicity angle has been proposed; however, its direct experimental observation has remained elusive. Here, we show that circularly polarized resonant elastic x-ray scattering is able to unambiguously measure the helicity angle of surface skyrmions, providing direct experimental evidence that a twisted skyrmion surface state also exists in bulk systems. The exact surface helicity angles of twisted skyrmions for both left- and right-handed chiral bulk Cu_{2}OSeO_{3}, in the single as well as in the multidomain skyrmion lattice state, are determined, revealing their detailed internal structure. Our findings suggest that a skyrmion surface reconstruction is a universal phenomenon, stemming from the breaking of translational symmetry at the interface.

Observation of topological surface states and strong electron/hole imbalance in extreme magnetoresistance compound LaBi


J Jiang, NBM Schroter, S-C Wu, N Kumar, C Shekhar, H Peng, X Xu, C Chen, HF Yang, C-C Hwang, S-K Mo, C Felser, BH Yan, ZK Liu, LX Yang, YL Chen

Investigation of a Spin Transition in a LaCoO3 Single Crystal by the Method of X-Ray Magnetic Circular Dichroism at the Cobalt K- and L (2,3)-Edges

PHYSICS OF THE SOLID STATE 60 (2018) 288-291

VV Sikolenko, IO Troyanchuk, DV Karpinsky, A Rogalev, F Wilhelm, R Rosenberg, D Prabhakaran, EA Efimova, VV Efimov, SI Tiutiunnikov, IA Bobrikov

Two-gap superconductivity with line nodes in CsCa2Fe4As4F2

PHYSICAL REVIEW B 97 (2018) ARTN 060506

FKK Kirschner, DT Adroja, Z-C Wang, F Lang, M Smidman, PJ Baker, G-H Cao, SJ Blundell

Magnetic edge states and coherent manipulation of graphene nanoribbons.

Nature 557 (2018) 691-695

M Slota, A Keerthi, WK Myers, E Tretyakov, M Baumgarten, A Ardavan, H Sadeghi, CJ Lambert, A Narita, K Müllen, L Bogani

Graphene, a single-layer network of carbon atoms, has outstanding electrical and mechanical properties 1 . Graphene ribbons with nanometre-scale widths2,3 (nanoribbons) should exhibit half-metallicity 4 and quantum confinement. Magnetic edges in graphene nanoribbons5,6 have been studied extensively from a theoretical standpoint because their coherent manipulation would be a milestone for spintronic 7 and quantum computing devices 8 . However, experimental investigations have been hampered because nanoribbon edges cannot be produced with atomic precision and the graphene terminations that have been proposed are chemically unstable 9 . Here we address both of these problems, by using molecular graphene nanoribbons functionalized with stable spin-bearing radical groups. We observe the predicted delocalized magnetic edge states and test theoretical models of the spin dynamics and spin-environment interactions. Comparison with a non-graphitized reference material enables us to clearly identify the characteristic behaviour of the radical-functionalized graphene nanoribbons. We quantify the parameters of spin-orbit coupling, define the interaction patterns and determine the spin decoherence channels. Even without any optimization, the spin coherence time is in the range of microseconds at room temperature, and we perform quantum inversion operations between edge and radical spins. Our approach provides a way of testing the theory of magnetism in graphene nanoribbons experimentally. The coherence times that we observe open up encouraging prospects for the use of magnetic nanoribbons in quantum spintronic devices.

Reciprocal space tomography of 3D skyrmion lattice order in a chiral magnet.

Proceedings of the National Academy of Sciences of the United States of America 115 (2018) 6386-6391

S Zhang, G van der Laan, J Müller, L Heinen, M Garst, A Bauer, H Berger, C Pfleiderer, T Hesjedal

It is commonly assumed that surfaces modify the properties of stable materials within the top few atomic layers of a bulk specimen only. Exploiting the polarization dependence of resonant elastic X-ray scattering to go beyond conventional diffraction and imaging techniques, we have determined the depth dependence of the full 3D spin structure of skyrmions-that is, topologically nontrivial whirls of the magnetization-below the surface of a bulk sample of Cu2OSeO3 We found that the skyrmions change exponentially from pure Néel- to pure Bloch-twisting over a distance of several hundred nanometers between the surface and the bulk, respectively. Though qualitatively consistent with theory, the strength of the Néel-twisting at the surface and the length scale of the variation observed experimentally exceed material-specific modeling substantially. In view of the exceptionally complete quantitative theoretical account of the magnetic rigidities and associated static and dynamic properties of skyrmions in Cu2OSeO3 and related materials, we conclude that subtle changes of the materials properties must exist at distances up to several hundred atomic layers into the bulk, which originate in the presence of the surface. This has far-reaching implications for the creation of skyrmions in surface-dominated systems and identifies, more generally, surface-induced gradual variations deep within a bulk material and their impact on tailored functionalities as an unchartered scientific territory.

Imposing long-range ferromagnetic order in rare-earth-doped magnetic topological-insulator heterostructures


LB Duffy, A Frisk, DM Burn, N-J Steinke, J Herrero-Martin, A Ernst, G van der Laan, T Hesjedal

Proposal for the detection of magnetic monopoles in spin ice via nanoscale magnetometry

PHYSICAL REVIEW B 97 (2018) ARTN 140402

FKK Kirschner, F Flicker, A Yacoby, NY Yao, SJ Blundell

Tracking a hysteretic and disorder-broadened phase transition via the electromagnon response in improper ferroelectrics


CDW Mosley, D Prabhakaran, J Lloyd-Hughes

Manipulation of skyrmion motion by magnetic field gradients.

Nature communications 9 (2018) 2115-

SL Zhang, WW Wang, DM Burn, H Peng, H Berger, A Bauer, C Pfleiderer, G van der Laan, T Hesjedal

Magnetic skyrmions are particle-like, topologically protected magnetisation entities that are promising candidates as information carriers in racetrack memory. The transport of skyrmions in a shift-register-like fashion is crucial for their embodiment in practical devices. Here, we demonstrate that chiral skyrmions in Cu2OSeO3 can be effectively manipulated under the influence of a magnetic field gradient. In a radial field gradient, skyrmions were found to rotate collectively, following a given velocity-radius relationship. As a result of this relationship, and in competition with the elastic properties of the skyrmion lattice, the rotating ensemble disintegrates into a shell-like structure of discrete circular racetracks. Upon reversing the field direction, the rotation sense reverses. Field gradients therefore offer an effective handle for the fine control of skyrmion motion, which is inherently driven by magnon currents. In this scheme, no local electric currents are needed, thus presenting a different approach to shift-register-type operations based on spin transfer torque.

Folded superstructure and degeneracy-enhanced band gap in the weak-coupling charge density wave system 2H-TaSe2

PHYSICAL REVIEW B 97 (2018) ARTN 115118

YW Li, J Jiang, HF Yang, D Prabhakaran, ZK Liu, LX Yang, YL Chen

Comparative study of the magnetic properties of La<inf>3</inf>Ni<inf>2</inf>B′O<inf>9</inf>for B′ = Nb, Taor Sb

Journal of Solid State Chemistry 258 (2018) 825-834

CM Chin, PD Battle, SJ Blundell, E Hunter, F Lang, M Hendrickx, R Paria Sena, J Hadermann

© 2017 Elsevier Inc. Polycrystalline samples of La 3 Ni 2 NbO 9 and La 3 Ni 2 TaO 9 have been characterised by X-ray and neutron diffraction, electron microscopy, magnetometry and muon spin relaxation (µSR); the latter technique was also applied to La 3 Ni 2 SbO 9 . On the length scale of a neutron diffraction experiment, the six-coordinate sites of the monoclinic perovskite structure are occupied in a 1:1 ordered manner by Ni and a random ⅓Ni/⅔B′ mixture. Electron microscopy demonstrated that this 1:1 ordering is maintained over microscopic distances, although diffuse scattering indicative of short-range ordering on the mixed site was observed. No magnetic Bragg scattering was observed in neutron diffraction patterns collected from La 3 Ni 2 B′O 9 (B′ = Nb or Ta) at 5 K although in each case µSR identified the presence of static spins below 30 K. Magnetometry showed that La 3 Ni 2 NbO 9 behaves as a spin glass below 29 K but significant short-range interactions are present in La 3 Ni 2 TaO 9 below 85 K. The contrasting properties of these compounds are discussed in terms of their microstructure.

Topological surface state of α-Sn on InSb(001) as studied by photoemission

Physical review B: Condensed matter and materials physics American Physical Society 97 (2018) 075101

MR Scholz, L Dudy, F Reis, F Adler, J Aulbach, LJ Collins-McIntyre, LB Duffy, HF Yang, YL Chen, T Hesjedal, ZK Liu, M Hoesch, S Muff, JH Dil, J Schaefer, R Claessen