Antidamping torques from simultaneous resonances in ferromagnet-topological insulator-ferromagnet heterostructures

Journal of Magnetism and Magnetic Materials 473 (2019) 470-476

AA Baker, AI Figueroa, T Hesjedal, G van der Laan

© 2018 Elsevier B.V. We studied the magnetodynamics of ferromagnetic films coupling across a topological insulator (TI) Bi2Se3 layer using ferromagnetic resonance (FMR). TIs have attracted much attention across the physics community as they hold the potential for dissipationless carrier transport, extremely high spin-orbit torques, and are host to novel quantum effects. To investigate the coupling between the ferromagnetic (FM) layers, vector network analyzer (VNA)-FMR measurements of the resonance linewidth were performed as a function of bias field angle. By bringing the resonances of the two FM layers into close proximity, it was possible to observe antidamping torques that lead to a narrowing of linewidth, a characteristic of spin pumping. The element- and hence layer-specific technique of X-ray detected ferromagnetic resonance (XFMR) was used to circumvent the difficulty of obtaining accurate fits to the two overlapping resonances in close proximity. Our results confirm that the interaction across the TI is a dynamic exchange mediated by spin pumping, as opposed to a self-coupling of the surface state or similar, more unconventional mechanisms.

Multi-band magnetotransport in exfoliated thin films of Cu Bi 2 Se 3

Journal of Physics: Condensed Matter 30 (2018) 155302-155302

JA Alexander-Webber, J Huang, J Beilsten-Edmands, P Čermák, Č Drašar, RJ Nicholas, AI Coldea

Comparative study of the magnetic properties of La3Ni2B ' O-9 for B ' = Nb, Ta or Sb


C-M Chin, PD Battle, SJ Blundell, E Hunter, F Lang, M Hendrickx, RP Sena, J Hadermann

Publisher Correction: Magnetic edge states and coherent manipulation of graphene nanoribbons.

Nature 561 (2018) E31-

M Slota, A Keerthi, WK Myers, E Tretyakov, M Baumgarten, A Ardavan, H Sadeghi, CJ Lambert, A Narita, K Müllen, L Bogani

In Fig. 1 of this Letter, there should have been two nitrogen (N) atoms at the 1,3-positions of all the blue chemical structures (next to the oxygen atoms), rather than one at the 2-position. The figure has been corrected online, and the original incorrect figure is shown as Supplementary Information to the accompanying Amendment.

Direct Observation of Twisted Surface skyrmions in Bulk Crystals.

Physical review letters 120 (2018) 227202-

SL Zhang, G van der Laan, WW Wang, AA Haghighirad, T Hesjedal

Magnetic skyrmions in noncentrosymmetric helimagnets with D_{n} symmetry are Bloch-type magnetization swirls with a helicity angle of ±90°. At the surface of helimagnetic thin films below a critical thickness, a twisted skyrmion state with an arbitrary helicity angle has been proposed; however, its direct experimental observation has remained elusive. Here, we show that circularly polarized resonant elastic x-ray scattering is able to unambiguously measure the helicity angle of surface skyrmions, providing direct experimental evidence that a twisted skyrmion surface state also exists in bulk systems. The exact surface helicity angles of twisted skyrmions for both left- and right-handed chiral bulk Cu_{2}OSeO_{3}, in the single as well as in the multidomain skyrmion lattice state, are determined, revealing their detailed internal structure. Our findings suggest that a skyrmion surface reconstruction is a universal phenomenon, stemming from the breaking of translational symmetry at the interface.

Investigation of a Spin Transition in a LaCoO3 Single Crystal by the Method of X-Ray Magnetic Circular Dichroism at the Cobalt K- and L (2,3)-Edges

PHYSICS OF THE SOLID STATE 60 (2018) 288-291

VV Sikolenko, IO Troyanchuk, DV Karpinsky, A Rogalev, F Wilhelm, R Rosenberg, D Prabhakaran, EA Efimova, VV Efimov, SI Tiutiunnikov, IA Bobrikov

Breaking Symmetry with Light: Ultra-Fast Ferroelectricity and Magnetism from Three-Phonon Coupling

Physical review B: Condensed matter and materials physics American Physical Society (2018)

PG Radaelli

A theory describing how ferroic properties can emerge transiently in the ultra-fast regime by breaking symmetry with light through three-phonon coupling is presented. Particular emphasis is placed on the special case when two exactly degenerate mid-infra-red or THz phonons are resonantly pumped, since this situation can give rise to an exactly rectified ferroic response with damping envelopes of ~ 1 ps or less. Light-induced ferroelectricity and ferromagnetism are discussed in this context, and a number of candidate materials that could display these phenomena are proposed. The same analysis is also applied to the interpretation of previous femto-magnetism experiments, performed in different frequency ranges (visible and near-infrared), but sharing similar symmetry characteristics.

Ab initio calculation of spin fluctuation spectra using time dependent density functional perturbation theory, planewaves, and pseudopotentials

Physical review B: Condensed matter and materials physics American Physical Society (2018)

F Giustino, K Cao, P Radaelli

How to probe the spin contribution to momentum relaxation in topological insulators (vol 8, 2017)


M-S Nam, BH Willams, Y Chen, S Contera, S Yao, M Lu, Y-F Chen, GA Timco, CA Muryn, REP Winpenny, A Ardavan

Author Correction: How to probe the spin contribution to momentum relaxation in topological insulators.

Nat Commun 9 (2018) 729-

M-S Nam, BH Williams, Y Chen, S Contera, S Yao, M Lu, Y-F Chen, GA Timco, CA Muryn, REP Winpenny, A Ardavan

The original version of this Article contained an error in the spelling of the author Benjamin H. Williams, which was incorrectly given as Benjamin H. Willams. This has now been corrected in both the PDF and HTML versions of the Article.

Magnetic edge states and coherent manipulation of graphene nanoribbons.

Nature 557 (2018) 691-695

M Slota, A Keerthi, WK Myers, E Tretyakov, M Baumgarten, A Ardavan, H Sadeghi, CJ Lambert, A Narita, K Müllen, L Bogani

Graphene, a single-layer network of carbon atoms, has outstanding electrical and mechanical properties 1 . Graphene ribbons with nanometre-scale widths2,3 (nanoribbons) should exhibit half-metallicity 4 and quantum confinement. Magnetic edges in graphene nanoribbons5,6 have been studied extensively from a theoretical standpoint because their coherent manipulation would be a milestone for spintronic 7 and quantum computing devices 8 . However, experimental investigations have been hampered because nanoribbon edges cannot be produced with atomic precision and the graphene terminations that have been proposed are chemically unstable 9 . Here we address both of these problems, by using molecular graphene nanoribbons functionalized with stable spin-bearing radical groups. We observe the predicted delocalized magnetic edge states and test theoretical models of the spin dynamics and spin-environment interactions. Comparison with a non-graphitized reference material enables us to clearly identify the characteristic behaviour of the radical-functionalized graphene nanoribbons. We quantify the parameters of spin-orbit coupling, define the interaction patterns and determine the spin decoherence channels. Even without any optimization, the spin coherence time is in the range of microseconds at room temperature, and we perform quantum inversion operations between edge and radical spins. Our approach provides a way of testing the theory of magnetism in graphene nanoribbons experimentally. The coherence times that we observe open up encouraging prospects for the use of magnetic nanoribbons in quantum spintronic devices.

Reciprocal space tomography of 3D skyrmion lattice order in a chiral magnet.

Proceedings of the National Academy of Sciences of the United States of America 115 (2018) 6386-6391

S Zhang, G van der Laan, J Müller, L Heinen, M Garst, A Bauer, H Berger, C Pfleiderer, T Hesjedal

It is commonly assumed that surfaces modify the properties of stable materials within the top few atomic layers of a bulk specimen only. Exploiting the polarization dependence of resonant elastic X-ray scattering to go beyond conventional diffraction and imaging techniques, we have determined the depth dependence of the full 3D spin structure of skyrmions-that is, topologically nontrivial whirls of the magnetization-below the surface of a bulk sample of Cu2OSeO3 We found that the skyrmions change exponentially from pure Néel- to pure Bloch-twisting over a distance of several hundred nanometers between the surface and the bulk, respectively. Though qualitatively consistent with theory, the strength of the Néel-twisting at the surface and the length scale of the variation observed experimentally exceed material-specific modeling substantially. In view of the exceptionally complete quantitative theoretical account of the magnetic rigidities and associated static and dynamic properties of skyrmions in Cu2OSeO3 and related materials, we conclude that subtle changes of the materials properties must exist at distances up to several hundred atomic layers into the bulk, which originate in the presence of the surface. This has far-reaching implications for the creation of skyrmions in surface-dominated systems and identifies, more generally, surface-induced gradual variations deep within a bulk material and their impact on tailored functionalities as an unchartered scientific territory.

Doped Sr2FeIrO6-Phase Separation and a Jeff ≠ 0 State for Ir5.

Inorganic chemistry 57 (2018) 10303-10311

JE Page, CV Topping, A Scrimshire, PA Bingham, SJ Blundell, MA Hayward

High-resolution synchrotron X-ray and neutron powder diffraction data demonstrate that, in contrast to recent reports, Sr2FeIrO6 adopts an I1̅ symmetry double perovskite structure with an a-b-c- tilting distortion. This distorted structure does not tolerate cation substitution, with low levels of A-site (Ca, Ba, La) or Fe-site (Ga) substitution leading to separation into two phases: a stoichiometric I1̅ phase and a cation-substituted, P21/ n symmetry, a-a-c+ distorted double perovskite phase. Magnetization, neutron diffraction, and 57Fe Mössbauer data show that, in common with Sr2FeIrO6, the cation substituted Sr2- xA xFe1- yGa yIrO6 phases undergo transitions to type-II antiferromagnetically ordered states at TN ∼ 120 K. However, in contrast to stoichiometric Sr2FeIrO6, cation substituted samples exhibit a further magnetic transition at TA ∼ 220 K, which corresponds to the ordering of Jeff ≠ 0 Ir5+ centers in the cation-substituted, P21/ n symmetry, double perovskite phases.

Imposing long-range ferromagnetic order in rare-earth-doped magnetic topological-insulator heterostructures


LB Duffy, A Frisk, DM Burn, N-J Steinke, J Herrero-Martin, A Ernst, G van der Laan, T Hesjedal

Tracking a hysteretic and disorder-broadened phase transition via the electromagnon response in improper ferroelectrics


CDW Mosley, D Prabhakaran, J Lloyd-Hughes

The key ingredients of the electronic structure of FeSe

Annual Reviews of Condensed Matter Physics, Vol. 9, 125-146, 2018 (2018)

AI Coldea, MD Watson

FeSe is a fascinating superconducting material at the frontier of research in condensed matter physics. Here we provide an overview on the current understanding of the electronic structure of FeSe, focusing in particular on its low energy electronic structure as determined from angular resolved photoemission spectroscopy, quantum oscillations and magnetotransport measurements of single crystal samples. We discuss the unique place of FeSe amongst iron-based superconductors, being a multi-band system exhibiting strong orbitally-dependent electronic correlations and unusually small Fermi surfaces, prone to different electronic instabilities. We pay particular attention to the evolution of the electronic structure which accompanies the tetragonal-orthorhombic structural distortion of the lattice around 90 K, which stabilizes a unique nematic electronic state. Finally, we discuss how the multi-band multi-orbital nematic electronic structure has an impact on the understanding of the superconductivity, and show that the tunability of the nematic state with chemical and physical pressure will help to disentangle the role of different competing interactions relevant for enhancing superconductivity.

Quantum magnetism in molecular spin ladders probed with muonspin spectroscopy


T Lancaster, F Xiao, BM Huddart, RC Williams, FL Pratt, SJ Blundell, SJ Clark, R Scheuermann, T Goko, S Ward, JL Manson, C Ruegg, KW Kramer

Manipulation of skyrmion motion by magnetic field gradients.

Nature communications 9 (2018) 2115-

SL Zhang, WW Wang, DM Burn, H Peng, H Berger, A Bauer, C Pfleiderer, G van der Laan, T Hesjedal

Magnetic skyrmions are particle-like, topologically protected magnetisation entities that are promising candidates as information carriers in racetrack memory. The transport of skyrmions in a shift-register-like fashion is crucial for their embodiment in practical devices. Here, we demonstrate that chiral skyrmions in Cu2OSeO3 can be effectively manipulated under the influence of a magnetic field gradient. In a radial field gradient, skyrmions were found to rotate collectively, following a given velocity-radius relationship. As a result of this relationship, and in competition with the elastic properties of the skyrmion lattice, the rotating ensemble disintegrates into a shell-like structure of discrete circular racetracks. Upon reversing the field direction, the rotation sense reverses. Field gradients therefore offer an effective handle for the fine control of skyrmion motion, which is inherently driven by magnon currents. In this scheme, no local electric currents are needed, thus presenting a different approach to shift-register-type operations based on spin transfer torque.

Crossover from lattice to plasmonic polarons of a spin-polarised electron gas in ferromagnetic EuO.

Nature communications 9 (2018) 2305-

JM Riley, F Caruso, C Verdi, LB Duffy, MD Watson, L Bawden, K Volckaert, G van der Laan, T Hesjedal, M Hoesch, F Giustino, PDC King

Strong many-body interactions in solids yield a host of fascinating and potentially useful physical properties. Here, from angle-resolved photoemission experiments and ab initio many-body calculations, we demonstrate how a strong coupling of conduction electrons with collective plasmon excitations of their own Fermi sea leads to the formation of plasmonic polarons in the doped ferromagnetic semiconductor EuO. We observe how these exhibit a significant tunability with charge carrier doping, leading to a polaronic liquid that is qualitatively distinct from its more conventional lattice-dominated analogue. Our study thus suggests powerful opportunities for tailoring quantum many-body interactions in solids via dilute charge carrier doping.

Magnetic phases of skyrmion-hosting GaV4S8-ySey (y=0, 2, 4, 8) probed with muon spectroscopy

PHYSICAL REVIEW B 98 (2018) ARTN 054428

KJA Franke, BM Huddart, TJ Hicken, F Xiao, SJ Blundell, FL Pratt, M Crisanti, JAT Barker, SJ Clark, A Stefancic, MC Hatnean, G Balakrishnan, T Lancaster