Publications


Real-Space Observation of Skyrmionium in a Ferromagnet-Magnetic Topological Insulator Heterostructure.

Nano letters (2018)

S Zhang, F Kronast, G van der Laan, T Hesjedal

The combination of topological insulators, i.e., bulk insulators with gapless, topologically protected surface states, with magnetic order is a love-hate relationship that can unlock new quantum states and exotic physical phenomena, such as the quantum anomalous Hall effect and axion electrodynamics. Moreover, the unusual coupling between topological insulators and ferromagnets can also result in the formation of topological spin textures in the ferromagnetic layer. Skyrmions are topologically-protected magnetization swirls that are promising candidates for spintronics memory carriers. Here, we report on the observation of skyrmionium in thin ferromagnetic films coupled to a magnetic topological insulator. The occurrence of skyrmionium, which appears as a soliton composed of two skyrmions with opposite winding numbers, is tied to the ferromagnetic state of the topological insulator. Our work presents a new combination of two important classes of topological materials and may open the door to new topologically inspired information-storage concepts in the future.


Author Correction: How to probe the spin contribution to momentum relaxation in topological insulators.

Nature communications 9 (2018) 729-

M-S Nam, BH Williams, Y Chen, S Contera, S Yao, M Lu, Y-F Chen, GA Timco, CA Muryn, REP Winpenny, A Ardavan

The original version of this Article contained an error in the spelling of the author Benjamin H. Williams, which was incorrectly given as Benjamin H. Willams. This has now been corrected in both the PDF and HTML versions of the Article.


How to probe the spin contribution to momentum relaxation in topological insulators.

Nat Commun 9 (0) 56-

M-S Nam, BH Williams, Y Chen, S Contera, S Yao, M Lu, Y-F Chen, GA Timco, CA Muryn, REP Winpenny, A Ardavan

Topological insulators exhibit a metallic surface state in which the directions of the carriers' momentum and spin are locked together. This characteristic property, which lies at the heart of proposed applications of topological insulators, protects carriers in the surface state from back-scattering unless the scattering centres are time-reversal symmetry breaking (i.e. magnetic). Here, we introduce a method of probing the effect of magnetic scattering by decorating the surface of topological insulators with molecules, whose magnetic degrees of freedom can be engineered independently of their electrostatic structure. We show that this approach allows us to separate the effects of magnetic and non-magnetic scattering in the perturbative limit. We thereby confirm that the low-temperature conductivity of SmB6is dominated by a surface state and that the momentum of quasiparticles in this state is particularly sensitive to magnetic scatterers, as expected in a topological insulator.


Topological surface state of α-Sn on InSb(001) as studied by photoemission

Physical review B: Condensed matter and materials physics American Physical Society 97 (2018) 075101

MR Scholz, L Dudy, F Reis, F Adler, J Aulbach, LJ Collins-McIntyre, LB Duffy, HF Yang, YL Chen, T Hesjedal, ZK Liu, M Hoesch, S Muff, JH Dil, J Schaefer, R Claessen


Magneto-orbital ordering in the divalent A-site quadruple perovskite manganites AMn(7)O(12) (A = Sr, Cd, and Pb)

PHYSICAL REVIEW B 96 (2017) ARTN 054448

RD Johnson, DD Khalyavin, P Manuel, PG Radaelli, IS Glazkova, N Terada, AA Belik


Probing the Topological Surface State in Bi2Se3 Thin Films Using Temperature-Dependent Terahertz Spectroscopy

ACS PHOTONICS 4 (2017) 2711-2718

VS Kamboj, A Singh, T Ferrus, HE Beere, LB Dufry, T Hesjedal, CHW Barnes, DA Ritchie


Codoping of Sb2Te3 thin films with V and Cr

PHYSICAL REVIEW MATERIALS 1 (2017) ARTN 064409

LB Duffy, AI Figueroa, G van der Laan, T Hesjedal


Correction to Step-Flow Growth of Bi 2 Te 3 Nanobelts

Crystal Growth & Design 17 (2017) 1438-1438

P Schönherr, T Tilbury, H Wang, AA Haghighirad, V Srot, PA van Aken, T Hesjedal


Temperature-induced phase transition from cycloidal to collinear antiferromagnetism in multiferroic Bi0.9Sm0.1FeO3 driven by f-d induced magnetic anisotropy

PHYSICAL REVIEW B 95 (2017) ARTN 054420

RD Johnson, PA McClarty, DD Khalyavin, P Manuel, P Svedlindh, CS Knee


Electrical Switching of Magnetic Polarity in a Multiferroic BiFeO3 Device at Room Temperature

PHYSICAL REVIEW APPLIED 8 (2017) ARTN 014033

NW Price, RD Johnson, W Saenrang, A Bombardi, FP Chmiel, CB Eom, PG Radaelli


Proposal of a micromagnetic standard problem for ferromagnetic resonance simulations

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 421 (2017) 428-439

A Baker, M Beg, G Ashton, M Albert, D Chernyshenko, W Wang, S Zhang, M-A Bisotti, M Franchin, CL Hu, R Stamps, T Hesjedal, H Fangohr


Quasiparticle Breakdown and Spin Hamiltonian of the Frustrated Quantum Pyrochlore Yb_{2}Ti_{2}O_{7} in a Magnetic Field.

Physical review letters 119 (2017) 057203-

JD Thompson, PA McClarty, D Prabhakaran, I Cabrera, T Guidi, R Coldea

The frustrated pyrochlore magnet Yb_{2}Ti_{2}O_{7} has the remarkable property that it orders magnetically but has no propagating magnons over wide regions of the Brillouin zone. Here we use inelastic neutron scattering to follow how the spectrum evolves in cubic-axis magnetic fields. At high fields we observe, in addition to dispersive magnons, a two-magnon continuum, which grows in intensity upon reducing the field and overlaps with the one-magnon states at intermediate fields leading to strong renormalization of the dispersion relations, and magnon decays. Using heat capacity measurements we find that the low- and high-field regions are smoothly connected with no sharp phase transition, with the spin gap increasing monotonically in field. Through fits to an extensive data set of dispersion relations combined with magnetization measurements, we reevaluate the spin Hamiltonian, finding dominant quantum exchange terms, which we propose are responsible for the anomalously strong fluctuations and quasiparticle breakdown effects observed at low fields.


Crystal growth of pyrochlore rare-earth stannates

JOURNAL OF CRYSTAL GROWTH 468 (2017) 335-339

D Prabhakaran, S Wang, AT Boothroyd


Room-temperature helimagnetism in FeGe thin films.

Scientific reports 7 (2017) 123-

SL Zhang, I Stasinopoulos, T Lancaster, F Xiao, A Bauer, F Rucker, AA Baker, AI Figueroa, Z Salman, FL Pratt, SJ Blundell, T Prokscha, A Suter, J Waizner, M Garst, D Grundler, G van der Laan, C Pfleiderer, T Hesjedal

Chiral magnets are promising materials for the realisation of high-density and low-power spintronic memory devices. For these future applications, a key requirement is the synthesis of appropriate materials in the form of thin films ordering well above room temperature. Driven by the Dzyaloshinskii-Moriya interaction, the cubic compound FeGe exhibits helimagnetism with a relatively high transition temperature of 278 K in bulk crystals. We demonstrate that this temperature can be enhanced significantly in thin films. Using x-ray scattering and ferromagnetic resonance techniques, we provide unambiguous experimental evidence for long-wavelength helimagnetic order at room temperature and magnetic properties similar to the bulk material. We obtain α intr = 0.0036 ± 0.0003 at 310 K for the intrinsic damping parameter. We probe the dynamics of the system by means of muon-spin rotation, indicating that the ground state is reached via a freezing out of slow dynamics. Our work paves the way towards the fabrication of thin films of chiral magnets that host certain spin whirls, so-called skyrmions, at room temperature and potentially offer integrability into modern electronics.


Formation of Hubbard-like bands as a fingerprint of strong electron-electron interactions in FeSe

PHYSICAL REVIEW B 95 (2017) ARTN 081106

MD Watson, S Backes, AA Haghighirad, M Hoesch, TK Kim, AI Coldea, R Valenti


Quantum-critical spin dynamics in a Tomonaga-Luttinger liquid studied with muon-spin relaxation

PHYSICAL REVIEW B 95 (2017) ARTN 020402

JS Moller, T Lancaster, SJ Blundell, FL Pratt, PJ Baker, F Xiao, RC Williams, W Hayes, MM Turnbul, CP Landee


Adiabatic physics of an exchange-coupled spin-dimer system: Magnetocaloric effect, zero-point fluctuations, and possible two-dimensional universal behavior

PHYSICAL REVIEW B 95 (2017) ARTN 024404

J Brambleby, PA Goddard, J Singleton, M Jaime, T Lancaster, L Huang, J Wosnitza, CV Topping, KE Carreiro, HE Tran, ZE Manson, JL Manson


Spin Resonance Clock Transition of the Endohedral Fullerene ^{15}N@C_{60}.

Physical review letters 119 (2017) 140801-

RT Harding, S Zhou, J Zhou, T Lindvall, WK Myers, A Ardavan, GAD Briggs, K Porfyrakis, EA Laird

The endohedral fullerene ^{15}N@C_{60} has narrow electron paramagnetic resonance lines which have been proposed as the basis for a condensed-matter portable atomic clock. We measure the low-frequency spectrum of this molecule, identifying and characterizing a clock transition at which the frequency becomes insensitive to magnetic field. We infer a linewidth at the clock field of 100 kHz. Using experimental data, we are able to place a bound on the clock's projected frequency stability. We discuss ways to improve the frequency stability to be competitive with existing miniature clocks.


Strain and Magnetic Field Induced Spin-Structure Transitions in Multiferroic BiFeO3

ADVANCED MATERIALS 29 (2017) UNSP 1602327

A Agbelele, D Sando, C Toulouse, C Paillard, RD Johnson, R Ruffer, AF Popkov, C Carretero, P Rovillain, J-M Le Breton, B Dkhil, M Cazayous, Y Gallais, M-A Measson, A Sacuto, P Manuel, AK Zvezdin, A Barthelemy, J Juraszek, M Bibes


Topological triplon modes and bound states in a Shastry-Sutherland magnet

NATURE PHYSICS 13 (2017) 736-+

PA McClarty, F Krueger, T Guidi, SF Parker, K Refson, AW Parker, D Prabhakaran, R Coldea

Pages