# Publications

## Experimental Self-Characterization of Quantum Measurements.

Physical review letters **124** (2020) 040402-

The accurate and reliable description of measurement devices is a central problem in both observing uniquely nonclassical behaviors and realizing quantum technologies from powerful computing to precision metrology. To date quantum tomography is the prevalent tool to characterize quantum detectors. However, such a characterization relies on accurately characterized probe states, rendering reliability of the characterization lost in circular argument. Here we report a self-characterization method of quantum measurements based on reconstructing the response range-the entirety of attainable measurement outcomes, eliminating the reliance on known states. We characterize two representative measurements implemented with photonic setups and obtain fidelities above 99.99% with the conventional tomographic reconstructions. This initiates range-based techniques in characterizing quantum systems and foreshadows novel device-independent protocols of quantum information applications.

## Witnesses of non-classicality for simulated hybrid quantum systems

Journal of Physics Communications IOP Publishing (2020)

The task of testing whether quantum theory applies to all physical systems and all scales requires considering situations where a quantum probe interacts with another system that need not obey quantum theory in full. Important examples include the cases where a quantum mass probes the gravitational field, for which a unique quantum theory of gravity does not yet exist, or a quantum field, such as light, interacts with a macroscopic system, such as a biological molecule, which may or may not obey unitary quantum theory. In this context a class of experiments has recently been proposed, where the non-classicality of a physical system that need not obey quantum theory (the gravitational field) can be tested indirectly by detecting whether or not the system is capable of entangling two quantum probes. Here we illustrate some of the subtleties of the argument, to do with the role of locality of interactions and of non-classicality, and perform proof-of-principle experiments illustrating the logic of the proposals, using a Nuclear Magnetic Resonance quantum computational platform with four qubits.

## Rescaling Interactions for Quantum Control

PHYSICAL REVIEW APPLIED **13** (2020) ARTN 034002

## Modular quantum computation in a trapped ion system.

Nature communications **10** (2019) 4692-

Modern computation relies crucially on modular architectures, breaking a complex algorithm into self-contained subroutines. A client can then call upon a remote server to implement parts of the computation independently via an application programming interface (API). Present APIs relay only classical information. Here we implement a quantum API that enables a client to estimate the absolute value of the trace of a server-provided unitary operation [Formula: see text]. We demonstrate that the algorithm functions correctly irrespective of what unitary [Formula: see text] the server implements or how the server specifically realizes [Formula: see text]. Our experiment involves pioneering techniques to coherently swap qubits encoded within the motional states of a trapped [Formula: see text] ion, controlled on its hyperfine state. This constitutes the first demonstration of modular computation in the quantum regime, providing a step towards scalable, parallelization of quantum computation.

## Operational advantage of basis-independent quantum coherence

EPL **125** (2019) ARTN 50005

## Mott polaritons in cavity-coupled quantum materials

New Journal of Physics IOP Publishing **21** (2019) 073066

We show that strong electron-electron interactions in quantum materials can give rise to electronic transitions that couple strongly to cavity fields, and collective enhancement of these interactions can result in ultrastrong effective coupling strengths. As a paradigmatic example we consider a Fermi-Hubbard model coupled to a single-mode cavity and find that resonant electron-cavity interactions result in the formation of a quasi-continuum of polariton branches. The vacuum Rabi splitting of the two outermost branches is collectively enhanced and scales with USD g_{\text{eff}}\propto\sqrt{2L} USD, where USD L USD is the number of electronic sites, and the maximal achievable value for USD g_{\text{eff}} USD is determined by the volume of the unit cell of the crystal. We find that USD g_{\text{eff}} USD for existing quantum materials can by far exceed the width of the first excited Hubbard band. This effect can be experimentally observed via measurements of the optical conductivity and does not require ultrastrong coupling on the single-electron level. Quantum correlations in the electronic ground state as well as the microscopic nature of the light-matter interaction enhance the collective light-matter interaction compared to an ensemble of independent two-level atoms interacting with a cavity mode.

## Emergence of correlated proton tunnelling in water ice.

Proceedings. Mathematical, Physical, and Engineering Sciences **475** (2019) 20180867-20180867

Several experimental and theoretical studies report instances of concerted or correlated multiple proton tunnelling in solid phases of water. Here, we construct a pseudo-spin model for the quantum motion of protons in a hexameric H2O ring and extend it to open system dynamics that takes environmental effects into account in the form of O-H stretch vibrations. We approach the problem of correlations in tunnelling using quantum information theory in a departure from previous studies. Our formalism enables us to quantify the coherent proton mobility around the hexagonal ring by one of the principal measures of coherence, the l 1 norm of coherence. The nature of the pairwise pseudo-spin correlations underlying the overall mobility is further investigated within this formalism. We show that the classical correlations of the individual quantum tunnelling events in long-time limit is sufficient to capture the behaviour of coherent proton mobility observed in low-temperature experiments. We conclude that long-range intra-ring interactions do not appear to be a necessary condition for correlated proton tunnelling in water ice.

## Phase diffusion and the small-noise approximation in linear amplifiers: Limitations and beyond

QUANTUM **3** (2019)

## Theoretical description and experimental simulation of quantum entanglement near open time-like curves via pseudo-density operators.

Nature communications **10** (2019) 182-182

Closed timelike curves are striking predictions of general relativity allowing for time-travel. They are afflicted by notorious causality issues (e.g. grandfather's paradox). Quantum models where a qubit travels back in time solve these problems, at the cost of violating quantum theory's linearity-leading e.g. to universal quantum cloning. Interestingly, linearity is violated even by open timelike curves (OTCs), where the qubit does not interact with its past copy, but is initially entangled with another qubit. Non-linear dynamics is needed to avoid violating entanglement monogamy. Here we propose an alternative approach to OTCs, allowing for monogamy violations. Specifically, we describe the qubit in the OTC via a pseudo-density operator-a unified descriptor of both temporal and spatial correlations. We also simulate the monogamy violation with polarization-entangled photons, providing a pseudo-density operator quantum tomography. Remarkably, our proposal applies to any space-time correlations violating entanglement monogamy, such as those arising in black holes.

## Engineering statistical transmutation of identical quantum particles

PHYSICAL REVIEW B **99** (2019) ARTN 045430

## Coherent spin manipulation of individual atoms on a surface

Science American Association for the Advancement of Science **366** (2019) 509-512

Achieving time-domain control of quantum states with atomic-scale spatial resolution in nanostructures is a long-term goal in quantum nanoscience and spintronics. Here, we demonstrate coherent spin rotations of individual atoms on a surface at the nanosecond time scale, using an all-electric scheme in a scanning tunneling microscope (STM). By modulating the atomically confined magnetic interaction between the STM tip and surface atoms, we drive quantum Rabi oscillations between spin-up and spin-down states in as little as ~20 nanoseconds. Ramsey fringes and spin echo signals allow us to understand and improve quantum coherence. We further demonstrate coherent operations on engineered atomic dimers. The coherent control of spins arranged with atomic precision provides a solid-state platform for quantum-state engineering and simulation of many-body systems.

## Development and characterization of a flux-pumped lumped element Josephson parametric amplifier

EPJ Web of Conferences EDP Sciences **198** (2019)

Josephson parametric amplification is a tool of paramount importance in circuit-QED especially for the quantum-noise-limited single-shot readout of superconducting qubits. We developed a Josephson parametric amplifier (JPA) based on a lumped-element LC resonator, in which the inductance L is composed by a geometric inductance and an array of 4 superconducting quantum interference devices (SQUIDs). We characterized the main figures of merit of the device, obtaining a −3 dB bandwidth BW = 15 MHz for a gain G = 21 dB and a 1 dB compression point P1dB = −115 dBm. The obtained results are promising for the future use of such JPA as the first stage of amplification for single-shot readout of superconducting qubits.

## Uncertainty equality with quantum memory and its experimental verification

NPJ QUANTUM INFORMATION **5** (2019) ARTN 39

## Causal Limit on Quantum Communication.

Physical review letters **123** (2019) 150502-

The capacity of a channel is known to be equivalent to the highest rate at which it can generate entanglement. Analogous to entanglement, the notion of a causality measure characterizes the temporal aspect of quantum correlations. Despite holding an equally fundamental role in physics, temporal quantum correlations have yet to find their operational significance in quantum communication. Here we uncover a connection between quantum causality and channel capacity. We show the amount of temporal correlations between two ends of the noisy quantum channel, as quantified by a causality measure, implies a general upper bound on its channel capacity. The expression of this new bound is simpler to evaluate than most previously known bounds. We demonstrate the utility of this bound by applying it to a class of shifted depolarizing channels, which results in improvement over previously known bounds for this class of channels.

## Unconventional field-induced spin gap in an S=1/2 Chiral staggered chain

Physical Review Letters American Physical Society **122** (2019) 057207-

We investigate the low-temperature magnetic properties of the molecule-based chiral spin chain ½CuðpymÞðH2OÞ4SiF6 · H2O (pym ¼ pyrimidine). Electron-spin resonance, magnetometry and heat capacity measurements reveal the presence of staggered g tensors, a rich low-temperature excitation spectrum, a staggered susceptibility, and a spin gap that opens on the application of a magnetic field. These phenomena are reminiscent of those previously observed in nonchiral staggered chains, which are explicable within the sine-Gordon quantum-field theory. In the present case, however, although the sineGordon model accounts well for the form of the temperature dependence of the heat capacity, the size of the gap and its measured linear field dependence do not fit with the sine-Gordon theory as it stands. We propose that the differences arise due to additional terms in the Hamiltonian resulting from the chiral structure of ½CuðpymÞðH2OÞ4SiF6 · H2O, particularly a uniform Dzyaloshinskii-Moriya coupling and a fourfold periodic staggered field.

## Is the fermionic exchange phase also acquired locally?

Journal of Physics Communications **3** (2019)

© 2019 The Author(s). Published by IOP Publishing Ltd. We argue that the fermionic exchange phase could be detected by local means. We propose a simple experiment to test our idea. This leads us to speculate that there might be a deeper mechanism behind the notion of particle statistics in quantum physics that goes beyond the conventional argument based on the spin-statistics connections.

## Manipulating quantum materials with quantum light (vol 99, 085116, 2019)

Physical Review B (2019)

© 2019 American Physical Society. The interaction Hamiltonian (Formula Presented) Eq. (14) describing the interaction between the cavity and the electronic system was obtained by expanding the Peierls Hamiltonian in Eq. (A4) up to first order in the small parameter (Formula Presented) All results presented in the paper are consistent with this appro imate interaction Hamiltonian, leading to an effective Hamiltonian that depends quadratically on. However, it turns out that a straightforward improvement of the parameters entering the effective Hamiltonian in Eq. (26) can be obtained by including the second-order term in the Peierls Hamiltonian in Eq. (A4). This term gives rise to modifications of our results that are also of order through a renormalization of the nearest-neighbor hopping amplitude (Formula Presented) The authors would like to thank M. A. Sentef for bringing the importance of the second-order term in Eq. (A4) to our attention.

## Manipulating quantum materials with quantum light

Physical Review B American Physical Society **99** (2019) 085116-

We show that the macroscopic magnetic and electronic properties of strongly correlated electron systems can be manipulated by coupling them to a cavity mode. As a paradigmatic example we consider the Fermi-Hubbard model and find that the electron-cavity coupling enhances the magnetic interaction between the electron spins in the ground-state manifold. At half filling this effect can be observed by a change in the magnetic susceptibility. At less than half filling, the cavity introduces a next-nearest-neighbor hopping and mediates a long-range electron-electron interaction between distant sites. We study the ground-state properties with tensor network methods and find that the cavity coupling can induce a phase characterized by a momentum-space pairing effect for electrons.

## Out of equilibrium thermodynamics of quantum harmonic chains

JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT **2019** (2019) ARTN 104014

## Measuring quantumness: from theory to observability in interferometric setups

EUROPEAN PHYSICAL JOURNAL D **72** (2018) ARTN 219