Publications


Large tangential electric fields in plasmas close to temperature screening

Plasma Physics and Controlled Fusion 60 (2018)

JL Velasco, I Calvo, JM García-Regana, FI Parra, S Satake, JA Alonso

© 2018 Laboratorio Nacional de Fusion, CIEMAT. Low collisionality stellarator plasmas usually display a large negative radial electric field that has been expected to cause accumulation of impurities due to their high charge number. In this paper, two combined effects that can potentially modify this scenario are discussed. First, it is shown that, in low collisionality plasmas, the kinetic contribution of the electrons to the radial electric field can make it negative but small, bringing the plasma close to impurity temperature screening (i.e., to a situation in which the ion temperature gradient is the main drive of impurity transport and causes outward flux); in plasmas of very low collisionality, such as those of the large helical device displaying impurity hole (Ida et al (The LHD Experimental Group) 2009 Phys. Plasmas 16 056111; Yoshinuma et al (The LHD Experimental Group) 2009 Nucl. Fusion 49 062002), screening may actually occur. Second, the component of the electric field that is tangent to the flux surface (in other words, the variation of the electrostatic potential on the flux surface), although smaller than the radial component, has recently been suggested to be an additional relevant drive for radial impurity transport. Here, it is explained that, especially when the radial electric field is small, the tangential magnetic drift has to be kept in order to correctly compute the tangential electric field, that can be larger than previously expected. This can have a strong impact on impurity transport, as we illustrate by means of simulations using the newly developed code kinetic orbit-averaging-solver for stellarators, although it is not enough to explain by itself the behavior of the fluxes in situations like the impurity hole.


Neutrino Interferometry for High-Precision Tests of Lorentz Symmetry with IceCube

Nature Physics Nature Publishing Group (2018)

I Collaboration, MG Aartsen, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, IA Samarai, D Altmann, K Andeen, T Anderson, I Ansseau, G Anton, C Argüelles, J Auffenberg, S Axani, H Bagherpour, X Bai, JP Barron, SW Barwick, V Baum, R Bay, JJ Beatty, JB Tjus, K-H Becker, S BenZvi, D Berley, E Bernardini, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, C Bohm, M Börner, F Bos, D Bose, S Böser, O Botner, E Bourbeau, J Bourbeau, F Bradascio, J Braun, L Brayeur, M Brenzke, H-P Bretz, S Bron, J Brostean-Kaiser, A Burgman, T Carver, J Casey, M Casier, E Cheung, D Chirkin, A Christov, K Clark, L Classen, S Coenders, GH Collin, JM Conrad, DF Cowen, R Cross, M Day, JPAMD André, CD Clercq, JJ DeLaunay, H Dembinski, SD Ridder, P Desiati, KDD Vries, GD Wasseige, MD With, T DeYoung, JC Díaz-Vélez, VD Lorenzo, H Dujmovic, JP Dumm, M Dunkman, E Dvorak, B Eberhardt, T Ehrhardt, B Eichmann, P Eller, PA Evenson, S Fahey, AR Fazely, J Felde, K Filimonov, C Finley, S Flis, A Franckowiak, E Friedman, T Fuchs, TK Gaisser, J Gallagher, L Gerhardt, K Ghorbani, W Giang, T Glauch, T Glüsenkamp, A Goldschmidt, JG Gonzalez, D Grant, Z Griffith, C Haack, A Hallgren, F Halzen, K Hanson, D Hebecker, D Heereman, K Helbing, R Hellauer, S Hickford, J Hignight, GC Hill, KD Hoffman, R Hoffmann, B Hokanson-Fasig, K Hoshina, F Huang, M Huber, K Hultqvist, M Hünnefeld, S In, A Ishihara, E Jacobi, GS Japaridze, M Jeong, K Jero, BJP Jones, P Kalaczynski, W Kang, A Kappes, T Karg, A Karle, T Katori, U Katz, M Kauer, A Keivani, JL Kelley, A Kheirandish, J Kim, M Kim, T Kintscher, J Kiryluk, T Kittler, SR Klein, G Kohnen, R Koirala, H Kolanoski, L Köpke, C Kopper, S Kopper, JP Koschinsky, DJ Koskinen, M Kowalski, K Krings, M Kroll, G Krückl, J Kunnen, S Kunwar, N Kurahashi, T Kuwabara, A Kyriacou, M Labare, JL Lanfranchi, MJ Larson, F Lauber, M Lesiak-Bzdak, M Leuermann, QR Liu, L Lu, J Lünemann, W Luszczak, J Madsen, G Maggi, KBM Mahn, S Mancina, S Mandalia, R Maruyama, K Mase, R Maunu, F McNally, K Meagher, M Medici, M Meier, T Menne, G Merino, T Meures, S Miarecki, J Micallef, G Momenté, T Montaruli, RW Moore, M Moulai, R Nahnhauer, P Nakarmi, U Naumann, G Neer, H Niederhausen, SC Nowicki, DR Nygren, AO Pollmann, A Olivas, A O'Murchadha, T Palczewski, H Pandya, DV Pankova, P Peiffer, JA Pepper, CPDL Heros, D Pieloth, E Pinat, M Plum, PB Price, GT Przybylski, C Raab, L Rädel, M Rameez, K Rawlins, IC Rea, R Reimann, B Relethford, M Relich, E Resconi, W Rhode, M Richman, S Robertson, M Rongen, C Rott, T Ruhe, D Ryckbosch, D Rysewyk, T Sälzer, SES Herrera, A Sandrock, J Sandroos, M Santander, S Sarkar, S Sarkar, K Satalecka, P Schlunder, T Schmidt, A Schneider, S Schoenen, S Schöneberg, L Schumacher, D Seckel, S Seunarine, J Soedingrekso, D Soldin, M Song, GM Spiczak, C Spiering, J Stachurska, M Stamatikos, T Stanev, A Stasik, J Stettner, A Steuer, T Stezelberger, RG Stokstad, A Stößl, NL Strotjohann, T Stuttard, GW Sullivan, M Sutherland, I Taboada, J Tatar, F Tenholt, S Ter-Antonyan, A Terliuk, G Tešić, S Tilav, PA Toale, MN Tobin, S Toscano, D Tosi, M Tselengidou, CF Tung, A Turcati, CF Turley, B Ty, E Unger, M Usner, J Vandenbroucke, WV Driessche, NV Eijndhoven, S Vanheule, JV Santen, M Vehring, E Vogel, M Vraeghe, C Walck, A Wallace, M Wallraff, FD Wandler, N Wandkowsky, A Waza, C Weaver, MJ Weiss, C Wendt, J Werthebach, S Westerhoff, BJ Whelan, K Wiebe, CH Wiebusch, L Wille, DR Williams, L Wills, M Wolf, J Wood, TR Wood, E Woolsey, K Woschnagg, DL Xu, XW Xu, Y Xu, JP Yanez, G Yodh, S Yoshida, T Yuan, M Zoll

Lorentz symmetry is a fundamental space-time symmetry underlying the Standard Model of particle physics and gravity. However, unified theories, such as string theory, allow for violation of this symmetry. Thus, the discovery of Lorentz symmetry violation could be the first hint of these theories. Here, we use high-energy atmospheric neutrinos observed at the IceCube Neutrino Observatory to search for anomalous neutrino oscillations as signals of Lorentz violation. The large range of neutrino energies and propagation baselines, together with high statistics, let us perform the most precise test of space-time symmetry in the neutrino sector to date. We find no evidence for Lorentz violation. This allows us to constrain the size of the dimension-four operator in the Standard-Model Extension for Lorentz violation to the $10^{-28}$ level and to set limits on higher dimensional operators of that theory. These are among the most stringent limits on Lorentz violation across all fields of physics.


Search for nonstandard neutrino interactions with IceCube DeepCore

Physical Review D, Particles and fields American Physical Society 97 (2018) ARTN 072009

MG Aartsen, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, I Al Samarai, D Altmann, K Andeen, T Anderson, I Ansseau, G Anton, C Arguelles, J Auffenberg, S Axani, H Bagherpour, X Bai, JP Barron, SW Barwick, V Baum, R Bay, JJ Beatty, JB Tjus, K-H Becker, S BenZvi, D Berley, E Bernardini, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, C Bohm, M Boerner, F Bos, D Bose, S Boeser, O Botner, E Bourbeau, J Bourbeau, F Bradascio, J Braun, L Brayeur, M Brenzke, H-P Bretz, S Bron, J Brostean-Kaiser, A Burgman, T Carver, J Casey, M Casier, E Cheung, D Chirkin, A Christov, K Clark, L Classen, S Coenders, GH Collin, JM Conrad, DF Cowen, R Cross, M Day, JPAM de Andre, C De Clercq, JJ DeLaunay, H Dembinski, S De Ridder, P Desiati, KD de Vries, G de Wasseige, M de With, T DeYoung, JC Diaz-Velez, V di Lorenzo, H Dujmovic, JP Dumm, M Dunkman, E Dvorak, B Eberhardt, T Ehrhardt, B Eichmann, P Eller, PA Evenson, S Fahey, AR Fazely, J Felde, K Filimonov, C Finley, S Flis, A Franckowiak, E Friedman, T Fuchs, TK Gaisser, J Gallagher, L Gerhardt, K Ghorbani, W Giang, T Glauch, T Gluesenkamp, A Goldschmidt, JG Gonzalez, D Grant, Z Griffith, C Haack, A Hallgren, F Halzen, K Hanson, D Hebecker, D Heereman, K Helbing, R Hellauer, S Hickford, J Hignight, GC Hill, KD Hoffman, R Hoffmann, B Hokanson-Fasig, K Hoshina, F Huang, M Huber, K Hultqvist, M Huennefeld, S In, A Ishihara, E Jacobi, GS Japaridze, M Jeong, K Jero, BJP Jones, P Kalaczynski, W Kang, A Kappes, T Karg, A Karle, U Katz, M Kauer, A Keivani, JL Kelley, A Kheirandish, J Kim, M Kim, T Kintscher, C Kirby, J Kiryluk, T Kittler, SR Klein, G Kohnen, R Koirala, H Kolanoski, L Koepke, C Kopper, S Kopper, JP Koschinsky, DJ Koskinen, M Kowalski, K Krings, M Kroll, G Kruckl, J Kunnen, S Kunwar, N Kurahashi, T Kuwabara, A Kyriacou, M Labare, JL Lanfranchi, MJ Larson, F Lauber, D Lennarz, M Lesiak-Bzdak, M Leuermann, QR Liu, L Lu, J Luenemann, W Luszczak, J Madsen, G Maggi, KBM Mahn, S Mancina, R Maruyama, K Mase, R Maunu, F McNally, K Meagher, M Medici, M Meier, T Menne, G Merino, T Meures, S Miarecki, J Micallef, G Momente, T Montaruli, RW Moore, M Moulai, R Nahnhauer, P Nakarmi, U Naumann, G Neer, H Niederhausen, SC Nowicki, DR Nygren, AO Pollmann, A Olivas, A O'Murchadha, T Palczewski, H Pandya, DV Pankova, P Peiffer, JA Pepper, CP de los Heros, D Pieloth, E Pinat, M Plum, PB Price, GT Przybylski, C Raab, L Raedel, M Rameez, K Rawlins, IC Rea, R Reimann, B Relethford, M Relich, E Resconi, W Rhode, M Richman, S Robertson, M Rongen, C Rott, T Ruhe, D Ryckbosch, D Rysewyk, T Saelzer, SES Herrera, A Sandrock, J Sandroos, M Santander, S Sarkar, S Sarkar, K Satalecka, P Schlunder, T Schmidt, A Schneider, S Schoenen, S Schoeneberg, L Schumacher, D Seckel, S Seunarine, J Soedingrekso, D Soldin, M Song, GM Spiczak, C Spiering, J Stachurska, M Stamatikos, T Stanev, A Stasik, J Stettner, A Steuer, T Stezelberger, RG Stokstad, A Stossl, NL Strotjohann, T Stuttard, GW Sullivan, M Sutherland, I Taboada, J Tatar, F Tenholt, S Ter-Antonyan, A Terliuk, G Tesic, S Tilav, PA Toale, MN Tobin, S Toscano, D Tosi, M Tselengidou, CF Tung, A Turcati, CF Turley, B Ty, E Unger, M Usner, J Vandenbroucke, W Van Driessche, N van Eijndhoven, S Vanheule, J van Santen, M Vehring, E Vogel, M Vraeghe, C Walck, A Wallace, M Wallraff, FD Wandler, N Wandkowsky, A Waza, C Weaver, MJ Weiss, C Wendt, J Werthebach, S Westerhoff, BJ Whelan, K Wiebe, CH Wiebusch, L Wille, DR Williams, L Wills, M Wolf, J Wood, TR Wood, E Woolsey, K Woschnagg, DL Xu, XW Xu, Y Xu, JP Yanez, G Yodh, S Yoshida, T Yuan, M Zoll, I Collaboration


Observation of Laser Power Amplification in a Self-Injecting Laser Wakefield Accelerator

Physical Review Letters 120 (2018)

MJV Streeter, S Kneip, MS Bloom, RA Bendoyro, O Chekhlov, AE Dangor, A Döpp, CJ Hooker, J Holloway, J Jiang, NC Lopes, H Nakamura, PA Norreys, CAJ Palmer, PP Rajeev, J Schreiber, DR Symes, M Wing, SPD Mangles, Z Najmudin

© 2018 American Physical Society. We report on the depletion and power amplification of the driving laser pulse in a strongly driven laser wakefield accelerator. Simultaneous measurement of the transmitted pulse energy and temporal shape indicate an increase in peak power from 187±11 TW to a maximum of 318±12 TW after 13 mm of propagation in a plasma density of 0.9×1018 cm-3. The power amplification is correlated with the injection and acceleration of electrons in the nonlinear wakefield. This process is modeled by including a localized redshift and subsequent group delay dispersion at the laser pulse front.


Measurement of Atmospheric Neutrino Oscillations at 6-56 GeV with IceCube DeepCore.

Physical Review Letters 120 (2018) 071801-071801

MG Aartsen, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, I Al Samarai, D Altmann, K Andeen, T Anderson, I Ansseau, G Anton, C Argüelles, J Auffenberg, S Axani, H Bagherpour, X Bai, JP Barron, SW Barwick, V Baum, R Bay, JJ Beatty, J Becker Tjus, K-H Becker, S BenZvi, D Berley, E Bernardini, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, C Bohm, M Börner, F Bos, D Bose, S Böser, O Botner, J Bourbeau, F Bradascio, J Braun, L Brayeur, M Brenzke, H-P Bretz, S Bron, J Brostean-Kaiser, A Burgman, T Carver, J Casey, M Casier, E Cheung, D Chirkin, A Christov, K Clark, L Classen, S Coenders, GH Collin, JM Conrad, DF Cowen, R Cross, M Day, JPAM de André, C De Clercq, JJ DeLaunay, H Dembinski, S De Ridder, P Desiati, KD de Vries, G de Wasseige, M de With, T DeYoung, JC Díaz-Vélez, V di Lorenzo, H Dujmovic, JP Dumm, M Dunkman, B Eberhardt, T Ehrhardt, B Eichmann, P Eller, PA Evenson, S Fahey, AR Fazely, J Felde, K Filimonov, C Finley, S Flis, A Franckowiak, E Friedman, T Fuchs, TK Gaisser, J Gallagher, L Gerhardt, K Ghorbani, W Giang, T Glauch, T Glüsenkamp, A Goldschmidt, JG Gonzalez, D Grant, Z Griffith, C Haack, A Hallgren, F Halzen, K Hanson, D Hebecker, D Heereman, K Helbing, R Hellauer, S Hickford, J Hignight, GC Hill, KD Hoffman, R Hoffmann, B Hokanson-Fasig, K Hoshina, F Huang, M Huber, K Hultqvist, M Hünnefeld, S In, A Ishihara, E Jacobi, GS Japaridze, M Jeong, K Jero, BJP Jones, P Kalaczynski, W Kang, A Kappes, T Karg, A Karle, U Katz, M Kauer, A Keivani, JL Kelley, A Kheirandish, J Kim, M Kim, T Kintscher, J Kiryluk, T Kittler, SR Klein, G Kohnen, R Koirala, H Kolanoski, L Köpke, C Kopper, S Kopper, JP Koschinsky, DJ Koskinen, M Kowalski, K Krings, M Kroll, G Krückl, J Kunnen, S Kunwar, N Kurahashi, T Kuwabara, A Kyriacou, M Labare, JL Lanfranchi, MJ Larson, F Lauber, D Lennarz, M Lesiak-Bzdak, M Leuermann, QR Liu, L Lu, J Lünemann, W Luszczak, J Madsen, G Maggi, KBM Mahn, S Mancina, R Maruyama, K Mase, R Maunu, F McNally, K Meagher, M Medici, M Meier, T Menne, G Merino, T Meures, S Miarecki, J Micallef, G Momenté, T Montaruli, RW Moore, M Moulai, R Nahnhauer, P Nakarmi, U Naumann, G Neer, H Niederhausen, SC Nowicki, DR Nygren, A Obertacke Pollmann, A Olivas, A O'Murchadha, T Palczewski, H Pandya, DV Pankova, P Peiffer, JA Pepper, C Pérez de Los Heros, D Pieloth, E Pinat, M Plum, PB Price, GT Przybylski, C Raab, L Rädel, M Rameez, K Rawlins, IC Rea, R Reimann, B Relethford, M Relich, E Resconi, W Rhode, M Richman, S Robertson, M Rongen, C Rott, T Ruhe, D Ryckbosch, D Rysewyk, T Sälzer, SE Sanchez Herrera, A Sandrock, J Sandroos, S Sarkar, S Sarkar, K Satalecka, P Schlunder, T Schmidt, A Schneider, S Schoenen, S Schöneberg, L Schumacher, D Seckel, S Seunarine, J Soedingrekso, D Soldin, M Song, GM Spiczak, C Spiering, J Stachurska, M Stamatikos, T Stanev, A Stasik, J Stettner, A Steuer, T Stezelberger, RG Stokstad, A Stößl, NL Strotjohann, GW Sullivan, M Sutherland, I Taboada, J Tatar, F Tenholt, S Ter-Antonyan, A Terliuk, G Tešić, S Tilav, PA Toale, MN Tobin, S Toscano, D Tosi, M Tselengidou, CF Tung, A Turcati, CF Turley, B Ty, E Unger, M Usner, J Vandenbroucke, W Van Driessche, N van Eijndhoven, S Vanheule, J van Santen, M Vehring, E Vogel, M Vraeghe, C Walck, A Wallace, M Wallraff, FD Wandler, N Wandkowsky, A Waza, C Weaver, MJ Weiss, C Wendt, J Werthebach, S Westerhoff, BJ Whelan, K Wiebe, CH Wiebusch, L Wille, DR Williams, L Wills, M Wolf, J Wood, TR Wood, E Woolsey, K Woschnagg, DL Xu, XW Xu, Y Xu, JP Yanez, G Yodh, S Yoshida, T Yuan, M Zoll

We present a measurement of the atmospheric neutrino oscillation parameters using three years of data from the IceCube Neutrino Observatory. The DeepCore infill array in the center of IceCube enables the detection and reconstruction of neutrinos produced by the interaction of cosmic rays in Earth's atmosphere at energies as low as ∼5  GeV. That energy threshold permits measurements of muon neutrino disappearance, over a range of baselines up to the diameter of the Earth, probing the same range of L/E_{ν} as long-baseline experiments but with substantially higher-energy neutrinos. This analysis uses neutrinos from the full sky with reconstructed energies from 5.6 to 56 GeV. We measure Δm_{32}^{2}=2.31_{-0.13}^{+0.11}×10^{-3}  eV^{2} and sin^{2}θ_{23}=0.51_{-0.09}^{+0.07}, assuming normal neutrino mass ordering. These results are consistent with, and of similar precision to, those from accelerator- and reactor-based experiments.


Galaxy evolution in the metric of the cosmic web

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 474 (2018) 547-571

K Kraljic, S Arnouts, C Pichon, C Laigle, S de la Torre, D Vibert, C Cadiou, Y Dubois, M Treyer, C Schimd, S Codis, V de Lapparent, J Devriendt, HS Hwang, D Le Borgne, N Malavasi, B Milliard, M Musso, D Pogosyan, M Alpaslan, J Bland-Hawthorn, AH Wright


Polarization of Sunyaev-Zel'dovich signal due to electron pressure anisotropy in galaxy clusters

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 474 (2018) 2389-2400

I Khabibullin, S Komarov, E Churazov, A Schekochihin


The evolution of Kerr discs and late-time tidal disruption event light curves

Monthly Notices of the Royal Astronomical Society 481 (2018) 3348-3356

SA Balbus, A Mummery

© 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. An encounter between a passing star and a massive black hole at the centre of a galaxy, a so-called tidal disruption event or TDE, may leave a debris disc that subsequently accretes on to the hole.We solve for the time evolution of such a TDE disc, using an evolutionary equation valid for both the Newtonian and Kerr regimes. The late-time luminosity emergent from such a disc is of interest as a model diagnostic, as it tends to follow a power law decline. The original simple ballistic fallback model, with equal mass in equal energy intervals, produces a -5/3 power law, while standard viscous disc descriptions yield a somewhat more shallow decline, with an index closer to -1.2. Of four recent, well-observed TDE candidates however, all had fall-off power-law indices smaller than one in magnitude. In this work, we revisit the problem of thin disc evolution, solving this reduced problem in full general relativity. Our solutions produce power-law indices that are in much better accord with observations. The late-time observational data from many TDEs are generally supportive, not only of disc accretion models, but of finite stress persisting down to the innermost stable circular orbit.


ALICE: A non-LTE plasma atomic physics, kinetics and lineshape package

HIGH ENERGY DENSITY PHYSICS 26 (2018) 56-67

EG Hill, G Perez-Callejo, SJ Rose


The TRAPPIST-1 system: orbital evolution, tidal dissipation, formation and habitability

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 476 (2018) 5032-5056

JCB Papaloizou, E Szuszkiewicz, C Terquem


An excess of massive stars in the local 30 Doradus starburst.

Science (New York, N.Y.) 359 (2018) 69-71

FRN Schneider, H Sana, CJ Evans, JM Bestenlehner, N Castro, L Fossati, G Gräfener, N Langer, OH Ramírez-Agudelo, C Sabín-Sanjulián, S Simón-Díaz, F Tramper, PA Crowther, A de Koter, SE de Mink, PL Dufton, M Garcia, M Gieles, V Hénault-Brunet, A Herrero, RG Izzard, V Kalari, DJ Lennon, J Maíz Apellániz, N Markova, F Najarro, P Podsiadlowski, J Puls, WD Taylor, JT van Loon, JS Vink, C Norman

The 30 Doradus star-forming region in the Large Magellanic Cloud is a nearby analog of large star-formation events in the distant universe. We determined the recent formation history and the initial mass function (IMF) of massive stars in 30 Doradus on the basis of spectroscopic observations of 247 stars more massive than 15 solar masses ([Formula: see text]). The main episode of massive star formation began about 8 million years (My) ago, and the star-formation rate seems to have declined in the last 1 My. The IMF is densely sampled up to 200 [Formula: see text] and contains 32 ± 12% more stars above 30 [Formula: see text] than predicted by a standard Salpeter IMF. In the mass range of 15 to 200 [Formula: see text], the IMF power-law exponent is [Formula: see text], shallower than the Salpeter value of 2.35.


A three-phase amplification of the cosmic magnetic field in galaxies

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 479 (2018) 3343-3365

S Martin-Alvarez, J Devriendt, A Slyz, R Teyssier


Channel optimization of high-intensity laser beams in millimeter-scale plasmas.

Physical review. E 97 (2018) 043208-

L Ceurvorst, A Savin, N Ratan, MF Kasim, J Sadler, PA Norreys, H Habara, KA Tanaka, S Zhang, MS Wei, S Ivancic, DH Froula, W Theobald

Channeling experiments were performed at the OMEGA EP facility using relativistic intensity (>10^{18}W/cm^{2}) kilojoule laser pulses through large density scale length (∼390-570 μm) laser-produced plasmas, demonstrating the effects of the pulse's focal location and intensity as well as the plasma's temperature on the resulting channel formation. The results show deeper channeling when focused into hot plasmas and at lower densities, as expected. However, contrary to previous large-scale particle-in-cell studies, the results also indicate deeper penetration by short (10 ps), intense pulses compared to their longer-duration equivalents. This new observation has many implications for future laser-plasma research in the relativistic regime.


Do SN 2002cx-like and SN Ia-CSM Objects Share the Same Origin?

ASTROPHYSICAL JOURNAL 861 (2018) ARTN 127

X Meng, P Podsiadlowski


Advantages to a diverging Raman amplifier

Communications Physics 1 (2018)

JD Sadler, LO Silva, RA Fonseca, K Glize, MF Kasim, A Savin, R Aboushelbaya, MW Mayr, B Spiers, RHW Wang, R Bingham, RMGM Trines, PA Norreys


Optimisation of confinement in a fusion reactor using a nonlinear turbulence model

JOURNAL OF PLASMA PHYSICS 84 (2018) ARTN 905840208

EG Highcock, NR Mandell, M Barnes, W Dorland


Caught in the rhythm I. How satellites settle into a plane around their central galaxy

ASTRONOMY & ASTROPHYSICS 613 (2018) ARTN A4

C Welker, Y Dubois, C Pichon, J Devriendt, NE Chisari


Cosmic-ray acceleration by relativistic shocks: limits and estimates

Monthly Notices of the Royal Astronomical Society 473 (2018) 2364-2371

AR Bell, AT Araudo, JH Matthews, KM Blundell


Setup for meV-resolution inelastic X-ray scattering measurements and X-ray diffraction at the Matter in Extreme Conditions endstation at the Linac Coherent Light Source

Review of Scientific Instruments 89 (2018)

EE McBride, TG White, A Descamps, LB Fletcher, K Appel, FP Condamine, CB Curry, F Dallari, S Funk, E Galtier, M Gauthier, S Goede, JB Kim, HJ Lee, BK Ofori-Okai, M Oliver, A Rigby, C Schoenwaelder, P Sun, T Tschentscher, BBL Witte, U Zastrau, G Gregori, B Nagler, J Hastings, SH Glenzer, G Monaco

© 2018 Author(s). We describe a setup for performing inelastic X-ray scattering and X-ray diffraction measurements at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Light Source. This technique is capable of performing high-, meV-resolution measurements of dynamic ion features in both crystalline and non-crystalline materials. A four-bounce silicon (533) monochromator was used in conjunction with three silicon (533) diced crystal analyzers to provide an energy resolution of ∼50 meV over a range of ∼500 meV in single shot measurements. In addition to the instrument resolution function, we demonstrate the measurement of longitudinal acoustic phonon modes in polycrystalline diamond. Furthermore, this setup may be combined with the high intensity laser drivers available at MEC to create warm dense matter and subsequently measure ion acoustic modes.


Bondi or not Bondi: the impact of resolution on accretion and drag force modelling for supermassive black holes

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 478 (2018) 995-1016

RS Beckmann, A Slyz, J Devriendt

Pages