Publications


Observations of pressure anisotropy effects within semi-collisional magnetized plasma bubbles

Nature Communications Nature 12 (2021) 334

E Tubman, A Joglekar, A Bott, M Borghesi, B Coleman, G Cooper, C Danson, P Durey, J Foster, P Graham, G Gregori, E Gumbrell, M Hill, T Hodge, S Kar, R Kingham, M Read, C Ridgers, J Skidmore, C Spindloe, A Thomas, P Treadwell, S Wilson, L Willingale, N Woolsey

Magnetized plasma interactions are ubiquitous in astrophysical and laboratory plasmas. Various physical effects have been shown to be important within colliding plasma flows influenced by opposing magnetic fields, however, experimental verification of the mechanisms within the interaction region has remained elusive. Here we discuss a laser-plasma experiment whereby experimental results verify that Biermann battery generated magnetic fields are advected by Nernst flows and anisotropic pressure effects dominate these flows in a reconnection region. These fields are mapped using time-resolved proton probing in multiple directions. Various experimental, modelling and analytical techniques demonstrate the importance of anisotropic pressure in semi-collisional, high-β plasmas, causing a reduction in the magnitude of the reconnecting fields when compared to resistive processes. Anisotropic pressure dynamics are crucial in collisionless plasmas, but are often neglected in collisional plasmas. We show pressure anisotropy to be essential in maintaining the interaction layer, redistributing magnetic fields even for semi-collisional, high energy density physics (HEDP) regimes.


IceCube-Gen2: the window to the extreme Universe

IOP Publishing 48 (2021) 060501-060501

MG Aartsen, R Abbasi, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, C Alispach, P Allison, NM Amin, K Andeen, T Anderson, I Ansseau, G Anton, C Argüelles, TC Arlen, J Auffenberg, S Axani, H Bagherpour, X Bai, A Balagopal V, A Barbano, I Bartos, B Bastian, V Basu, V Baum, S Baur, R Bay, JJ Beatty, K-H Becker, JB Tjus, S BenZvi, D Berley, E Bernardini, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, C Bohm, M Bohmer, S Böser, O Botner, J Böttcher, E Bourbeau, J Bourbeau, F Bradascio, J Braun, S Bron, J Brostean-Kaiser, A Burgman, RT Burley, J Buscher, RS Busse, M Bustamante, MA Campana, EG Carnie-Bronca, T Carver, C Chen, P Chen, E Cheung, D Chirkin, S Choi, BA Clark, K Clark, L Classen, A Coleman, GH Collin, A Connolly, JM Conrad, P Coppin, P Correa, DF Cowen, R Cross, P Dave, C Deaconu, C De Clercq, JJ DeLaunay, S De Kockere, H Dembinski, K Deoskar, S De Ridder, A Desai, P Desiati, KD de Vries, G de Wasseige, M de With, T DeYoung, S Dharani, A Diaz, JC Díaz-Vélez, H Dujmovic, M Dunkman, MA DuVernois, E Dvorak, T Ehrhardt, P Eller, R Engel, JJ Evans, PA Evenson, S Fahey, K Farrag, AR Fazely, J Felde, AT Fienberg, K Filimonov, C Finley, L Fischer, D Fox, A Franckowiak, E Friedman, A Fritz, TK Gaisser, J Gallagher, E Ganster, D Garcia-Fernandez, S Garrappa, A Gartner, L Gerhard, R Gernhaeuser, A Ghadimi, C Glaser, T Glauch, T Glüsenkamp, A Goldschmidt, JG Gonzalez, S Goswami, D Grant, T Grégoire, Z Griffith, S Griswold, M Gündüz, C Haack, A Hallgren, R Halliday, L Halve, F Halzen, JC Hanson, K Hanson, J Hardin, J Haugen, A Haungs, S Hauser, D Hebecker, D Heinen, P Heix, K Helbing, R Hellauer, F Henningsen, S Hickford, J Hignight, C Hill, GC Hill, KD Hoffman, B Hoffmann, R Hoffmann, T Hoinka, B Hokanson-Fasig, K Holzapfel, K Hoshina, F Huang, M Huber, T Huber, T Huege, K Hughes, K Hultqvist, M Hünnefeld, R Hussain, S In, N Iovine, A Ishihara, M Jansson, GS Japaridze, M Jeong, BJP Jones, F Jonske, R Joppe, O Kalekin, D Kang, W Kang, X Kang, A Kappes, D Kappesser, T Karg, M Karl, A Karle, T Katori, U Katz, M Kauer, A Keivani, M Kellermann, JL Kelley, A Kheirandish, J Kim, K Kin, T Kintscher, J Kiryluk, T Kittler, M Kleifges, SR Klein, R Koirala, H Kolanoski, L Köpke, C Kopper, S Kopper, DJ Koskinen, P Koundal, M Kovacevich, M Kowalski, CB Krauss, K Krings, G Krückl, N Kulacz, N Kurahashi, CL Gualda, R Lahmann, JL Lanfranchi, MJ Larson, U Latif, F Lauber, JP Lazar, K Leonard, A Leszczyńska, Y Li, QR Liu, E Lohfink, J LoSecco, CJL Mariscal, L Lu, F Lucarelli, A Ludwig, J Lünemann, W Luszczak, Y Lyu, WY Ma, J Madsen, G Maggi, KBM Mahn, Y Makino, P Mallik, S Mancina, S Mandalia, IC Mariş, S Marka, Z Marka, R Maruyama, K Mase, R Maunu, F McNally, K Meagher, A Medina, M Meier, S Meighen-Berger, J Merz, ZS Meyers, J Micallef, D Mockler, G Momenté, T Montaruli, RW Moore, R Morse, M Moulai, P Muth, R Naab, R Nagai, J Nam, U Nauman, J Necker, G Neer, A Nelles, LV Nguyễn, H Niederhausen, MU Nisa, SC Nowicki, DR Nygren, E Oberla, AO Pollmann, M Oehler, A Olivas, E O’Sullivan, Y Pan, H Pandya, DV Pankova, L Papp, N Park, GK Parker, EN Paudel, P Peiffer, C Pérez de los Heros, TC Petersen, S Philippen, D Pieloth, S Pieper, JL Pinfold, A Pizzuto, I Plaisier, M Plum, Y Popovych, A Porcelli, MP Rodriguez, PB Price, GT Przybylski, C Raab, A Raissi, M Rameez, L Rauch, K Rawlins, IC Rea, A Rehman, R Reimann, M Renschler, G Renzi, E Resconi, S Reusch, W Rhode, M Richman, B Riedel, M Riegel, EJ Roberts, S Robertson, G Roellinghoff, M Rongen, C Rott, T Ruhe, D Ryckbosch, DR Cantu, I Safa, SES Herrera, A Sandrock, J Sandroos, P Sandstrom, M Santander, S Sarkar, S Sarkar, K Satalecka, M Scharf, M Schaufel, H Schieler, P Schlunder, T Schmidt, A Schneider, J Schneider, FG Schröder, L Schumacher, S Sclafani, D Seckel, S Seunarine, MH Shaevitz, A Sharma, S Shefali, M Silva, D Smith, B Smithers, R Snihur, J Soedingrekso, D Soldin, S Söldner-Rembold, M Song, D Southall, GM Spiczak, C Spiering, J Stachurska, M Stamatikos, T Stanev, R Stein, J Stettner, A Steuer, T Stezelberger, RG Stokstad, NL Strotjohann, T Stürwald, T Stuttard, GW Sullivan, I Taboada, A Taketa, HKM Tanaka, F Tenholt, S Ter-Antonyan, A Terliuk, S Tilav, K Tollefson, L Tomankova, C Tönnis, J Torres, S Toscano, D Tosi, A Trettin, M Tselengidou, CF Tung, A Turcati, R Turcotte, CF Turley, JP Twagirayezu, B Ty, E Unger, MAU Elorrieta, J Vandenbroucke, D van Eijk, N van Eijndhoven, D Vannerom, J van Santen, D Veberic, S Verpoest, A Vieregg, M Vraeghe, C Walck, TB Watson, C Weaver, A Weindl, L Weinstock, MJ Weiss, J Weldert, C Welling, C Wendt, J Werthebach, N Whitehorn, K Wiebe, CH Wiebusch, DR Williams, SA Wissel, M Wolf, TR Wood, K Woschnagg, G Wrede, S Wren, J Wulff, XW Xu, Y Xu, JP Yanez, S Yoshida, T Yuan, Z Zhang, S Zierke, M Zöcklein


Continuous-in-time approach to flow shear in a linearly implicit local gyrokinetic code

Journal of Plasma Physics Cambridge University Press (CUP) 87 (2021) 905870230

N Christen, M Barnes, FI Parra

<jats:p>A new algorithm for toroidal flow shear in a linearly implicit, local <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\delta f$</jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022377821000453_inline2.png" /> </jats:alternatives> </jats:inline-formula> gyrokinetic code is described. Unlike the current approach followed by a number of codes, it treats flow shear continuously in time. In the linear gyrokinetic equation, time-dependences arising from the presence of flow shear are decomposed in such a way that they can be treated explicitly in time with no stringent constraint on the time step. Flow shear related time dependences in the nonlinear term are taken into account exactly, and time dependences in the quasineutrality equation are interpolated. Test cases validating the continuous-in-time implementation in the code GS2 are presented. Lastly, nonlinear gyrokinetic simulations of a JET discharge illustrate the differences observed in turbulent transport compared with the usual, discrete-in-time approach. The continuous-in-time approach is shown, in some cases, to produce fluxes that converge to a different value than with the discrete approach. The new approach can also lead to substantial computational savings by requiring radially narrower boxes. At fixed box size, the continuous implementation is only modestly slower than the previous, discrete approach.</jats:p>


H.e.s.s. And magic observations of a sudden cessation of a very-high-energy γ -ray flare in PKS 1510-089 in May 2016

Astronomy and Astrophysics 648 (2021)

H Abdalla, R Adam, F Aharonian, F Ait Benkhali, EO Angüner, C Arcaro, C Armand, T Armstrong, H Ashkar, M Backes, V Baghmanyan, V Barbosa Martins, A Barnacka, M Barnard, Y Becherini, D Berge, K Bernlöhr, B Bi, M Böttcher, C Boisson, J Bolmont, S Bonnefoy, M De Bony De Lavergne, J Bregeon, M Breuhaus, F Brun, P Brun, M Bryan, M Büchele, T Bulik, T Bylund, S Caroff, A Carosi, S Casanova, T Chand, S Chandra, A Chen, G Cotter, M Curyło, J Damascene Mbarubucyeye, ID Davids, J Davies, C Deil, J Devin, P Dewilt, L Dirson, A Djannati-Ataï, A Dmytriiev, A Donath, V Doroshenko, J Dyks, K Egberts, F Eichhorn, S Einecke, G Emery, JP Ernenwein, K Feijen, S Fegan, A Fiasson, G Fichet De Clairfontaine, M Filipovic, G Fontaine, S Funk, M Füßling, S Gabici, YA Gallant, G Giavitto, L Giunti, D Glawion, JF Glicenstein, D Gottschall, MH Grondin, J Hahn, M Haupt, G Hermann, JA Hinton, W Hofmann, C Hoischen, TL Holch, M Holler, M Hörbe, D Horns, D Huber, M Jamrozy, D Jankowsky, F Jankowsky, A Jardin-Blicq, V Joshi, I Jung-Richardt, MA Kastendieck, K Katarzyński, U Katz, D Khangulyan, B Khélifi, S Klepser, W Kluzniak, N Komin, R Konno, K Kosack, D Kostunin

The flat spectrum radio quasar (FSRQ) PKS 1510-089 is known for its complex multiwavelength behaviour and it is one of only a few FSRQs detected in very-high-energy (VHE, E> 100 GeV) γ rays. The VHE γ-ray observations with H.E.S.S. and MAGIC in late May and early June 2016 resulted in the detection of an unprecedented flare, which revealed, for the first time, VHE γ-ray intranight variability for this source. While a common variability timescale of 1.5 h has been found, there is a significant deviation near the end of the flare, with a timescale of ∼20 min marking the cessation of the event. The peak flux is nearly two orders of magnitude above the low-level emission. For the first time, a curvature was detected in the VHE γ-ray spectrum of PKS 1510-089, which can be fully explained by the absorption on the part of the extragalactic background light. Optical R-band observations with ATOM revealed a counterpart of the γ-ray flare, even though the detailed flux evolution differs from the VHE γ-ray light curve. Interestingly, a steep flux decrease was observed at the same time as the cessation of the VHE γ-ray flare. In the high-energy (HE, E> 100 MeV) γ-ray band, only a moderate flux increase was observed with Fermi-LAT, while the HE γ-ray spectrum significantly hardens up to a photon index of 1.6. A search for broad-line region (BLR) absorption features in the γ-ray spectrum indicates that the emission region is located outside of the BLR. Radio very-long-baseline interferometry observations reveal a fast-moving knot interacting with a standing jet feature around the time of the flare. As the standing feature is located ∼50 pc from the black hole, the emission region of the flare may have been located at a significant distance from the black hole. If this is indeed a true correlation, the VHE γ rays must have been produced far down in the jet, where turbulent plasma crosses a standing shock.


A Search for Time-dependent Astrophysical Neutrino Emission with IceCube Data from 2012 to 2017

ASTROPHYSICAL JOURNAL 911 (2021) ARTN 67

R Abbasi, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, C Alispach, AA Alves, NM Amin, K Andeen, T Anderson, I Ansseau, G Anton, C Arguelles, S Axani, X Bai, VA Balagopal, A Barbano, SW Barwick, B Bastian, V Basu, V Baum, S Baur, R Bay, JJ Beatty, K-H Becker, JB Tjus, C Bellenghi, S BenZvi, D Berley, E Bernardini, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, S Boser, O Botner, J Bottcher, E Bourbeau, J Bourbeau, F Bradascio, J Braun, S Bron, J Brostean-Kaiser, A Burgman, RS Busse, MA Campana, C Chen, D Chirkin, S Choi, BA Clark, K Clark, L Classen, A Coleman, GH Collin, JM Conrad, P Coppin, P Correa, DF Cowen, R Cross, P Dave, CD Clercq, JJ DeLaunay, H Dembinski, K Deoskar, S De Ridder, A Desai, P Desiati, KD de Vries, G de Wasseige, M de With, T DeYoung, S Dharani, A Diaz, JC Diaz-Velez, H Dujmovic, M Dunkman, MA DuVernois, E Dvorak, T Ehrhardt, P Eller, R Engel, J Evans, PA Evenson, S Fahey, AR Fazely, S Fiedlschuster, AT Fienberg, K Filimonov, C Finley, L Fischer, D Fox, A Franckowiak, E Friedman, A Fritz, P Furst, TK Gaisser, J Gallagher, E Ganster, S Garrappa, L Gerhardt, A Ghadimi, C Glaser, T Glauch, T Glusenkamp, A Goldschmidt, JG Gonzalez, S Goswami, D Grant, T Gregoire, Z Griffith, S Griswold, M Gunduz, C Haack, A Hallgren, R Halliday, L Halve, F Halzen, MH Minh, K Hanson, J Hardin, AA Harnisch, A Haungs, S Hauser, D Hebecker, K Helbing, F Henningsen, EC Hettinger, S Hickford, J Hignight, C Hill, GC Hill, KD Hoffman, R Hoffmann, T Hoinka, B Hokanson-Fasig, K Hoshina, F Huang, M Huber, T Huber, K Hultqvist, M Hunnefeld, R Hussain, S In, N Iovine, A Ishihara, M Jansson, GS Japaridze, M Jeong, BJP Jones, R Joppe, D Kang, W Kang, X Kang, A Kappes, D Kappesser, T Karg, M Karl, A Karle, U Katz, M Kauer, M Kellermann, JL Kelley, A Kheirandish, J Kim, K Kin, T Kintscher, J Kiryluk, SR Klein, R Koirala, H Kolanoski, L Kopke, C Kopper, S Kopper, DJ Koskinen, P Koundal, M Kovacevich, M Kowalski, K Krings, G Kruckl, N Kurahashi, A Kyriacou, CL Gualda, JL Lanfranchi, MJ Larson, F Lauber, JP Lazar, K Leonard, A Leszczynska, Y Li, QR Liu, E Lohfink, CJL Mariscal, L Lu, F Lucarelli, A Ludwig, W Luszczak, Y Lyu, WY Ma, J Madsen, KBM Mahn, Y Makino, P Mallik, S Mancina, IC Maris, R Maruyama, K Mase, F McNally, K Meagher, A Medina, M Meier, S Meighen-Berger, J Merz, J Micallef, D Mockler, G Momente, T Montaruli, RW Moore, R Morse, M Moulai, R Naab, R Nagai, U Naumann, J Necker, LV Nguyen, H Niederhausen, MU Nisa, SC Nowicki, DR Nygren, AO Pollmann, M Oehler, A Olivas, E O'Sullivan, H Pandya, DV Pankova, N Park, GK Parker, EN Paudel, P Peiffer, CP de los Heros, S Philippen, D Pieloth, S Pieper, A Pizzuto, M Plum, Y Popovych, A Porcelli, MP Rodriguez, PB Price, B Pries, GT Przybylski, C Raab, A Raissi, M Rameez, K Rawlins, IC Rea, A Rehman, R Reimann, M Renschler, G Renzi, E Resconi, S Reusch, W Rhode, M Richman, B Riedel, S Robertson, G Roellinghoff, M Rongen, C Rott, T Ruhe, D Ryckbosch, DR Cantu, I Safa, SE Sanchez Herrera, A Sandrock, J Sandroos, M Santander, S Sarkar, S Sarkar, K Satalecka, M Scharf, M Schaufel, H Schieler, P Schlunder, T Schmidt, A Schneider, J Schneider, FG Schroder, L Schumacher, S Sclafani, D Seckel, S Seunarine, S Shefali, M Silva, B Smithers, R Snihur, J Soedingrekso, D Soldin, GM Spiczak, C Spiering, J Stachurska, M Stamatikos, T Stanev, R Stein, J Stettner, A Steuer, T Stezelberger, RG Stokstad, T Stuttard, GW Sullivan, I Taboada, F Tenholt, S Ter-Antonyan, S Tilav, F Tischbein, K Tollefson, L Tomankova, C Tonnis, S Toscano, D Tosi, A Trettin, M Tselengidou, CF Tung, A Turcati, R Turcotte, CF Turley, JP Twagirayezu, B Ty, MAU Elorrieta, J Vandenbroucke, DV Eijk, NV Eijndhoven, D Vannerom, JV Santen, S Verpoest, M Vraeghe, C Walck, A Wallace, TB Watson, C Weaver, A Weindl, MJ Weiss, J Weldert, C Wendt, J Werthebach, M Weyrauch, BJ Whelan, N Whitehorn, K Wiebe, CH Wiebusch, DR Williams, M Wolf, K Woschnagg, G Wrede, J Wulff, XW Xu, Y Xu, JP Yanez, S Yoshida, T Yuan, Z Zhang, I Collaboration


Detection of a particle shower at the Glashow resonance with IceCube.

Nature 591 (2021) 220-224

IceCube Collaboration

The Glashow resonance describes the resonant formation of a W<sup>-</sup> boson during the interaction of a high-energy electron antineutrino with an electron<sup>1</sup>, peaking at an antineutrino energy of 6.3 petaelectronvolts (PeV) in the rest frame of the electron. Whereas this energy scale is out of reach for currently operating and future planned particle accelerators, natural astrophysical phenomena are expected to produce antineutrinos with energies beyond the PeV scale. Here we report the detection by the IceCube neutrino observatory of a cascade of high-energy particles (a particle shower) consistent with being created at the Glashow resonance. A shower with an energy of 6.05 ± 0.72 PeV (determined from Cherenkov radiation in the Antarctic Ice Sheet) was measured. Features consistent with the production of secondary muons in the particle shower indicate the hadronic decay of a resonant W<sup>-</sup> boson, confirm that the source is astrophysical and provide improved directional localization. The evidence of the Glashow resonance suggests the presence of electron antineutrinos in the astrophysical flux, while also providing further validation of the standard model of particle physics. Its unique signature indicates a method of distinguishing neutrinos from antineutrinos, thus providing a way to identify astronomical accelerators that produce neutrinos via hadronuclear or photohadronic interactions, with or without strong magnetic fields. As such, knowledge of both the flavour (that is, electron, muon or tau neutrinos) and charge (neutrino or antineutrino) will facilitate the advancement of neutrino astronomy.


High-resolution inelastic x-ray scattering at the high energy density scientific instrument at the European X-Ray Free-Electron Laser (vol 92, 013101, 2021)

REVIEW OF SCIENTIFIC INSTRUMENTS 92 (2021) ARTN 039901

L Wollenweber, TR Preston, A Descamps, V Cerantola, A Comley, JH Eggert, LB Fletcher, G Geloni, DO Gericke, SH Glenzer, S Goede, J Hastings, OS Humphries, A Jenei, O Karnbach, Z Konopkova, R Loetzsch, B Marx-Glowna, EE McBride, D McGonegle, G Monaco, BK Ofori-Okai, CAJ Palmer, C Plueckthun, R Redmer, C Strohm, I Thorpe, T Tschentscher, I Uschmann, JS Wark, TG White, K Appel, G Gregori, U Zastrau


Beyond halo mass: Quenching galaxy mass assembly at the edge of filaments

Monthly Notices of the Royal Astronomical Society 501 (2021) 4635-4656

H Song, C Laigle, HS Hwang, J Devriendt, Y Dubois, K Kraljic, C Pichon, A Slyz, R Smith

© 2021 2020 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society. We examine how the mass assembly of central galaxies depends on their location in the cosmic web. The Horizon-AGN simulation is analysed at z ∼2 using the DisPerSE code to extract multi-scale cosmic filaments. We find that the dependency of galaxy properties on large-scale environment is mostly inherited from the (large-scale) environmental dependency of their host halo mass. When adopting a residual analysis that removes the host halo mass effect, we detect a direct and non-negligible influence of cosmic filaments. Proximity to filaments enhances the build-up of stellar mass, a result in agreement with previous studies. However, our multi-scale analysis also reveals that, at the edge of filaments, star formation is suppressed. In addition, we find clues for compaction of the stellar distribution at close proximity to filaments. We suggest that gas transfer from the outside to the inside of the haloes (where galaxies reside) becomes less efficient closer to filaments, due to high angular momentum supply at the vorticity-rich edge of filaments. This quenching mechanism may partly explain the larger fraction of passive galaxies in filaments, as inferred from observations at lower redshifts.


Predicting the observability of population III stars with ELT-HARMONI via the helium 1640 Å emission line

Monthly Notices of the Royal Astronomical Society Oxford University Press 501 (2021) 5517-5537

K Grisdale, N Thatte, J Devriendt, M Pereira Santaella, A Slyz, T Kimm, Y Dubois, S Yi

Population III (Pop. III) stars, as of yet, have not been detected, however as we move into the era of extremely large telescopes this is likely to change. One likely tracer for Pop. III stars is the He IIλ1640 emission line, which will be detectable by the HARMONI spectrograph on the European Extremely Large Telescope (ELT) over a broad range of redshifts (2 ≤ z ≤ 14). By post-processing galaxies from the cosmological, AMR-hydrodynamical simulation NEWHORIZON with theoretical spectral energy distributions (SED) for Pop. III stars and radiative transfer (i.e. the Yggdrasil Models and CLOUDY look-up tables, respectively) we are able to compute the flux of He IIλ1640 for individual galaxies. From mock 10 h observations of these galaxies we show that HARMONI will be able to detect Pop. III stars in galaxies up to z ∼ 10 provided Pop. III stars have a top heavy initial mass function (IMF). Furthermore, we find that should Pop. III stars instead have an IMF similar to those of the Pop. I stars, the He IIλ1640 line would only be observable for galaxies with Pop. III stellar masses in excess of 107M⊙⁠, average stellar age <1Myr at z = 4. Finally, we are able to determine the minimal intrinsic flux required for HARMONI to detect Pop. III stars in a galaxy up to z = 10.


Demonstration of geometric effects and resonant scattering in the x-ray spectra of high-energy-density plasmas

Physical Review Letters American Physical Society 126 (2021) 085001

G Pérez callejo, S Rose, J Wark

In a plasma of sufficient size and density, photons emitted within the system have a probability of being re-absorbed and re-emitted multiple times - a phenomenon known in astrophysics as resonant scattering. This effect alters the ratio of optically-thick to optically thin lines, depending on the plasma geometry and viewing angle, and has significant implications for the spectra observed in a number of astrophysical scenarios, but has not previously been studied in a controlled laboratory plasma. We demonstrate the effect in the x-ray spectra emitted by cylindrical plasmas generated by high power laser irradiation, and the results confirm the geometrical interpretation of resonant scattering.


A Test of the Cosmological Principle with Quasars

Letters of the Astrophysical Journal American Astronomical Society 908 (2021) L51-L51

N Secrest, SV Hausegger, M Rameez, R Mohayaee, S Sarkar, J Colin

We study the large-scale anisotropy of the Universe by measuring the dipole in the angular distribution of a flux-limited, all-sky sample of 1.36 million quasars observed by the Wide-field Infrared Survey Explorer (WISE). This sample is derived from the new CatWISE2020 catalog, which contains deep photometric measurements at 3.4 and 4.6 $\mu$m from the cryogenic, post-cryogenic, and reactivation phases of the WISE mission. While the direction of the dipole in the quasar sky is similar to that of the cosmic microwave background (CMB), its amplitude is over twice as large as expected, rejecting the canonical, exclusively kinematic interpretation of the CMB dipole with a p-value of $5\times10^{-7}$ ($4.9\sigma$ for a normal distribution, one-sided), the highest significance achieved to date in such studies. Our results are in conflict with the cosmological principle, a foundational assumption of the concordance $\Lambda$CDM model.


Blast from the past: Constraints on the dark sector from the BEBC WA66 beam dump experiment

SciPost Physics SciPost 10 (2021) 043

G Marocco, S Sarkar

We derive limits on millicharged dark states, as well as particles with electric or magnetic dipole moments, from the number of observed forward electron scattering events at the Big European Bubble Chamber in the 1982 CERN-WA-066 beam dump experiment. The dark states are produced by the 400 GeV proton beam primarily through the decays of mesons produced in the beam dump, and the lack of excess events places bounds extending up to GeV masses. These improve on bounds from all other experiments, in particular CHARM II.


X-ray radiography based on the phase-contrast imaging with using LiF detector

Journal of Physics: Conference Series IOP Publishing 1787 (2021)

S Makarov, T Pikuz, A Buzmakov, A Chernyaev, P Mabey, T Vinci, G Rigon, B Albertazzi, A Casner, V Bouffetier, R Kodama, K Katagiri, N Kamimura, Y Umeda, N Ozaki, E Falize, O Poujade, T Togashi, M Yabashi, Y Inubushi, K Miyanishi, K Sueda, M Manuel, G Gregori, M Koenig

An x-ray radiography technique based upon phase contrast imaging using a lithium fluoride detector has been demonstrated for goals of high energy density physics experiments. Based on the simulation of propagation an x-ray free-electron laser beam through a test-object, the visibility of phase-contrast image depending on an object-detector distance was investigated. Additionally, the metrological capabilities of a lithium fluoride crystal as a detector were demonstrated.


The Horizon Run 5 cosmological hydrodynamical simulation: probing galaxy formation from kilo- to gigaparsec scales

Astrophysical Journal IOP Publishing 908 (2021) 11

J Lee, J Shin, ON Snaith, Y Kim, CG Few, J Devriendt, Y Dubois, LM Cox, SE Hong, O-K Kwon, C Park, C Pichon, J Kim, BK Gibson, C Park

Horizon Run 5 (HR5) is a cosmological hydrodynamical simulation that captures the properties of the universe on a Gpc scale while achieving a resolution of 1 kpc. Inside the simulation box, we zoom in on a high-resolution cuboid region with a volume of 1049 × 119 × 127 cMpc3. The subgrid physics chosen to model galaxy formation includes radiative heating/cooling, UV background, star formation, supernova feedback, chemical evolution tracking the enrichment of oxygen and iron, the growth of supermassive black holes, and feedback from active galactic nuclei in the form of a dual jet-heating mode. For this simulation, we implemented a hybrid MPI-OpenMP version of RAMSES, specifically targeted for modern many-core many-thread parallel architectures. In addition to the traditional simulation snapshots, lightcone data were generated on the fly. For the post-processing, we extended the friends-of-friend algorithm and developed a new galaxy finder PGalF to analyze the outputs of HR5. The simulation successfully reproduces observations, such as the cosmic star formation history and connectivity of galaxy distribution, We identify cosmological structures at a wide range of scales, from filaments with a length of several cMpc, to voids with a radius of ~ 100 cMpc. The simulation also indicates that hydrodynamical effects on small scales impact galaxy clustering up to very large scales near and beyond the baryonic acoustic oscillation scale. Hence, caution should be taken when using that scale as a cosmic standard ruler: one needs to carefully understand the corresponding biases. The simulation is expected to be an invaluable asset for the interpretation of upcoming deep surveys of the universe.


Measurements of the Time-Dependent Cosmic-Ray Sun Shadow with Seven Years of IceCube Data -- Comparison with the Solar Cycle and Magnetic Field Models

Physical Review D: Particles, Fields, Gravitation and Cosmology American Physical Society 103 (2021) 042005

MG Aartsen, R Abbasi, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, C Alispach, NM Amin, K Andeen, T Anderson, I Ansseau, G Anton, C Argüelles, J Auffenberg, S Axani, H Bagherpour, X Bai, AB V, A Barbano, SW Barwick, B Bastian, V Basu, V Baum, S Baur, R Bay, JJ Beatty, K-H Becker, JB Tjus, S BenZvi, D Berley, E Bernardini, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, C Bohm, S Böser, O Botner, J Böttcher, E Bourbeau, J Bourbeau, F Bradascio, J Braun, S Bron, J Brostean-Kaiser, A Burgman, J Buscher, RS Busse, T Carver, C Chen, E Cheung, D Chirkin, S Choi, BA Clark, K Clark, L Classen, A Coleman, GH Collin, JM Conrad, P Coppin, P Correa, DF Cowen, R Cross, P Dave, CD Clercq, JJ DeLaunay, H Dembinski, K Deoskar, SD Ridder, A Desai, P Desiati, KDD Vries, GD Wasseige, MD With, T DeYoung, S Dharani, A Diaz, JC Díaz-Vélez, H Dujmovic, M Dunkman, MA DuVernois, E Dvorak, T Ehrhardt, P Eller, R Engel, PA Evenson, S Fahey, AR Fazely, J Felde, H Fichtner, AT Fienberg, K Filimonov, C Finley, D Fox, A Franckowiak, E Friedman, A Fritz, TK Gaisser, J Gallagher, E Ganster, S Garrappa, L Gerhardt, A Ghadimi, T Glauch, T Glüsenkamp, A Goldschmidt, JG Gonzalez, S Goswami, D Grant, T Grégoire, Z Griffith, S Griswold, M Günder, M Gündüz, C Haack, A Hallgren, R Halliday, L Halve, F Halzen, K Hanson, J Hardin, A Haungs, S Hauser, D Hebecker, D Heereman, P Heix, K Helbing, R Hellauer, F Henningsen, S Hickford, J Hignight, C Hill, GC Hill, KD Hoffman, R Hoffmann, T Hoinka, B Hokanson-Fasig, K Hoshina, F Huang, M Huber, T Huber, K Hultqvist, M Hünnefeld, R Hussain, S In, N Iovine, A Ishihara, M Jansson, GS Japaridze, M Jeong, BJP Jones, F Jonske, R Joppe, D Kang, W Kang, A Kappes, D Kappesser, T Karg, M Karl, A Karle, U Katz, M Kauer, M Kellermann, JL Kelley, A Kheirandish, J Kim, K Kin, T Kintscher, J Kiryluk, T Kittler, J Kleimann, SR Klein, R Koirala, H Kolanoski, L Köpke, C Kopper, S Kopper, DJ Koskinen, P Koundal, M Kowalski, K Krings, G Krückl, N Kulacz, N Kurahashi, A Kyriacou, JL Lanfranchi, MJ Larson, F Lauber, JP Lazar, K Leonard, A Leszczyńska, Y Li, QR Liu, E Lohfink, CJL Mariscal, L Lu, F Lucarelli, A Ludwig, J Lünemann, W Luszczak, Y Lyu, WY Ma, J Madsen, G Maggi, KBM Mahn, Y Makino, P Mallik, S Mancina, IC Mariş, R Maruyama, K Mase, R Maunu, F McNally, K Meagher, M Medici, A Medina, M Meier, S Meighen-Berger, J Merz, T Meures, J Micallef, D Mockler, G Momenté, T Montaruli, RW Moore, R Morse, M Moulai, P Muth, R Nagai, U Naumann, G Neer, LV Nguyen, H Niederhausen, MU Nisa, SC Nowicki, DR Nygren, AO Pollmann, M Oehler, A Olivas, A O'Murchadha, E O'Sullivan, H Pandya, DV Pankova, N Park, GK Parker, EN Paudel, P Peiffer, CPDL Heros, S Philippen, D Pieloth, S Pieper, E Pinat, A Pizzuto, M Plum, Y Popovych, A Porcelli, MP Rodriguez, PB Price, GT Przybylski, C Raab, A Raissi, M Rameez, L Rauch, K Rawlins, IC Rea, A Rehman, R Reimann, B Relethford, M Renschler, G Renzi, E Resconi, W Rhode, M Richman, B Riedel, S Robertson, G Roellinghoff, M Rongen, C Rott, T Ruhe, D Ryckbosch, DR Cantu, I Safa, SES Herrera, A Sandrock, J Sandroos, M Santander, S Sarkar, S Sarkar, K Satalecka, M Scharf, M Schaufel, H Schieler, P Schlunder, T Schmidt, A Schneider, J Schneider, FG Schröder, L Schumacher, S Sclafani, D Seckel, S Seunarine, S Shefali, M Silva, B Smithers, R Snihur, J Soedingrekso, D Soldin, M Song, GM Spiczak, C Spiering, J Stachurska, M Stamatikos, T Stanev, R Stein, J Stettner, A Steuer, T Stezelberger, RG Stokstad, NL Strotjohann, T Stürwald, T Stuttard, GW Sullivan, I Taboada, F Tenholt, S Ter-Antonyan, A Terliuk, S Tilav, K Tollefson, L Tomankova, C Tönnis, S Toscano, D Tosi, A Trettin, M Tselengidou, CF Tung, A Turcati, R Turcotte, CF Turley, B Ty, E Unger, MAU Elorrieta, M Usner, J Vandenbroucke, WV Driessche, DV Eijk, NV Eijndhoven, D Vannerom, JV Santen, S Verpoest, M Vraeghe, C Walck, A Wallace, M Wallraff, TB Watson, C Weaver, A Weindl, MJ Weiss, J Weldert, C Wendt, J Werthebach, BJ Whelan, N Whitehorn, K Wiebe, CH Wiebusch, DR Williams, L Wills, M Wolf, TR Wood, K Woschnagg, G Wrede, J Wulff, XW Xu, Y Xu, JP Yanez, S Yoshida, T Yuan, Z Zhang, M Zöcklein

Observations of the time-dependent cosmic-ray Sun shadow have been proven as a valuable diagnostic for the assessment of solar magnetic field models. In this paper, seven years of IceCube data are compared to solar activity and solar magnetic field models. A quantitative comparison of solar magnetic field models with IceCube data on the event rate level is performed for the first time. Additionally, a first energy-dependent analysis is presented and compared to recent predictions. We use seven years of IceCube data for the Moon and the Sun and compare them to simulations on data rate level. The simulations are performed for the geometrical shadow hypothesis for the Moon and the Sun and for a cosmic-ray propagation model governed by the solar magnetic field for the case of the Sun. We find that a linearly decreasing relationship between Sun shadow strength and solar activity is preferred over a constant relationship at the 6.4sigma level. We test two commonly used models of the coronal magnetic field, both combined with a Parker spiral, by modeling cosmic-ray propagation in the solar magnetic field. Both models predict a weakening of the shadow in times of high solar activity as it is also visible in the data. We find tensions with the data on the order of $3\sigma$ for both models, assuming only statistical uncertainties. The magnetic field model CSSS fits the data slightly better than the PFSS model. This is generally consistent with what is found previously by the Tibet AS-gamma Experiment, a deviation of the data from the two models is, however, not significant at this point. Regarding the energy dependence of the Sun shadow, we find indications that the shadowing effect increases with energy during times of high solar activity, in agreement with theoretical predictions.


Turbulent impurity transport simulations in Wendelstein 7-X plasmas

JOURNAL OF PLASMA PHYSICS 87 (2021) ARTN 855870103

JM Garcia-Regana, M Barnes, I Calvo, FI Parra, JA Alcuson, R Davies, A Gonzalez-Jerez, A Mollen, E Sanchez, JL Velasco, A Zocco


Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre

Journal of Cosmology and Astroparticle Physics IOP Publishing 01 (2021) 057

TCTA Consortium, A Acharyya, R Adam, C Adams, I Agudo, A Aguirre-Santaella, R Alfaro, J Alfaro, C Alispach, R Aloisio, RA Batista, L Amati, G Ambrosi, EO Angüner, LA Antonelli, C Aramo, A Araudo, T Armstrong, F Arqueros, K Asano, Y Ascasíbar, M Ashley, C Balazs, O Ballester, AB Larriva, VB Martins, M Barkov, UBD Almeida, JA Barrio, D Bastieri, J Becerra, G Beck, JB Tjus, W Benbow, M Benito, D Berge, E Bernardini, K Bernlöhr, A Berti, B Bertucci, V Beshley, B Biasuzzi, A Biland, E Bissaldi, J Biteau, O Blanch, J Blazek, F Bocchino, C Boisson, LB Arbeletche, P Bordas, Z Bosnjak, E Bottacini, V Bozhilov, J Bregeon, A Brill, T Bringmann, AM Brown, P Brun, F Brun, P Bruno, A Bulgarelli, M Burton, A Burtovoi, M Buscemi, R Cameron, M Capasso, A Caproni, R Capuzzo-Dolcetta, P Caraveo, R Carosi, A Carosi, S Casanova, E Cascone, F Cassol, F Catalani, D Cauz, M Cerruti, P Chadwick, S Chaty, A Chen, M Chernyakova, G Chiaro, A Chiavassa, M Chikawa, J Chudoba, M Çolak, V Conforti, R Coniglione, F Conte, JL Contreras, J Coronado-Blazquez, A Costa, H Costantini, G Cotter, P Cristofari, A D'Aì, F D'Ammando, LA Damone, MK Daniel, F Dazzi, AD Angelis, VD Caprio, RDCD Anjos, EMDGD Pino, BD Lotto, DD Martino, EDO Wilhelmi, FD Palma, VD Souza, C Delgado, AGD Giler, DD Volpe, D Depaoli, TD Girolamo, FD Pierro, LD Venere, S Diebold, A Dmytriiev, A Domínguez, A Donini, M Doro, J Ebr, C Eckner, TDP Edwards, TRN Ekoume, D Elsässer, C Evoli, D Falceta-Goncalves, E Fedorova, S Fegan, Q Feng, G Ferrand, G Ferrara, E Fiandrini, A Fiasson, M Filipovic, V Fioretti, M Fiori, L Foffano, G Fontaine, O Fornieri, FJ Franco, S Fukami, Y Fukui, D Gaggero, G Galaz, V Gammaldi, E Garcia, M Garczarczyk, D Gascon, A Gent, A Ghalumyan, F Gianotti, M Giarrusso, G Giavitto, N Giglietto, F Giordano, A Giuliani, J Glicenstein, R Gnatyk, P Goldoni, MM González, K Gourgouliatos, J Granot, D Grasso, J Green, A Grillo, O Gueta, S Gunji, A Halim, T Hassan, M Heller, SH Cadena, N Hiroshima, B Hnatyk, W Hofmann, J Holder, D Horan, J Hörandel, P Horvath, T Hovatta, M Hrabovsky, D Hrupec, G Hughes, TB Humensky, M Hütten, M Iarlori, T Inada, S Inoue, F Iocco, M Iori, M Jamrozy, P Janecek, W Jin, L Jouvin, J Jurysek, E Karukes, K Katarzyński, D Kazanas, D Kerszberg, MC Kherlakian, R Kissmann, J Knödlseder, Y Kobayashi, K Kohri, N Komin, H Kubo, J Kushida, G Lamanna, J Lapington, P Laporte, MALD Oliveira, J Lenain, F Leone, G Leto, E Lindfors, T Lohse, S Lombardi, F Longo, A Lopez, M López, R López-Coto, S Loporchio, PL Luque-Escamilla, E Mach, C Maggio, G Maier, M Mallamaci, RMND Almeida, D Mandat, M Manganaro, S Mangano, G Manicò, M Marculewicz, M Mariotti, S Markoff, P Marquez, J Martí, O Martinez, M Martínez, G Martínez, H Martínez-Huerta, G Maurin, D Mazin, JD Mbarubucyeye, DM Miranda, M Meyer, M Miceli, T Miener, M Minev, JM Miranda, R Mirzoyan, T Mizuno, B Mode, R Moderski, L Mohrmann, E Molina, T Montaruli, A Moralejo, D Morcuende-Parrilla, A Morselli, R Mukherjee, C Mundell, A Nagai, T Nakamori, R Nemmen, J Niemiec, D Nieto, M Nikołajuk, D Ninci, K Noda, D Nosek, S Nozaki, Y Ohira, M Ohishi, Y Ohtani, T Oka, A Okumura, RA Ong, M Orienti, R Orito, M Orlandini, S Orlando, E Orlando, M Ostrowski, I Oya, I Pagano, A Pagliaro, M Palatiello, FR Pantaleo, JM Paredes, G Pareschi, N Parmiggiani, B Patricelli, L Pavletić, A Pe'er, M Pecimotika, J Pérez-Romero, M Persic, O Petruk, K Pfrang, G Piano, P Piatteli, E Pietropaolo, R Pillera, B Pilszyk, F Pintore, M Pohl, V Poireau, RR Prado, E Prandini, J Prast, G Principe, H Prokoph, M Prouza, H Przybilski, G Pühlhofer, ML Pumo, F Queiroz, A Quirrenbach, S Rainò, R Rando, S Razzaque, S Recchia, O Reimer, A Reisenegger, Y Renier, W Rhode, D Ribeiro, M Ribó, T Richtler, J Rico, F Rieger, L Rinchiuso, V Rizi, J Rodriguez, GR Fernandez, JCR Ramirez, G Rojas, P Romano, G Romeo, J Rosado, G Rowell, B Rudak, F Russo, I Sadeh, ES Hatlen, S Safi-Harb, FS Greus, G Salina, D Sanchez, M Sánchez-Conde, P Sangiorgi, H Sano, M Santander, EM Santos, R Santos-Lima, A Sanuy, S Sarkar, FG Saturni, U Sawangwit, F Schussler, U Schwanke, E Sciacca, S Scuderi, M Seglar-Arroyo, O Sergijenko, M Servillat, K Seweryn, A Shalchi, P Sharma, RC Shellard, H Siejkowski, J Silk, C Siqueira, V Sliusar, A Słowikowska, A Sokolenko, H Sol, S Spencer, A Stamerra, S Stanič, R Starling, T Stolarczyk, U Straumann, J Strišković, Y Suda, T Suomijarvi, P Świerk, F Tavecchio, L Taylor, LA Tejedor, M Teshima, V Testa, L Tibaldo, CJT Peixoto, F Tokanai, D Tonev, G Tosti, L Tosti, N Tothill, S Truzzi, P Travnicek, V Vagelli, B Vallage, P Vallania, CV Eldik, J Vandenbroucke, GS Varner, V Vassiliev, MV Acosta, M Vecchi, S Ventura, S Vercellone, S Vergani, G Verna, A Viana, CF Vigorito, J Vink, V Vitale, S Vorobiov, I Vovk, T Vuillaume, SJ Wagner, R Walter, J Watson, C Weniger, R White, M White, R Wiemann, A Wierzcholska, M Will, DA Williams, R Wischnewski, S Yanagita, L Yang, T Yoshikoshi, M Zacharias, G Zaharijas, AA Zakaria, L Zampieri, R Zanin, D Zaric, M Zavrtanik, D Zavrtanik, AA Zdziarski, A Zech, H Zechlin, L Zehrer, VI Zhdanov, M Živec

We provide an updated assessment of the power of the Cherenkov Telescope Array (CTA) to search for thermally produced dark matter at the TeV scale, via the associated gamma-ray signal from pair-annihilating dark matter particles in the region around the Galactic centre. We find that CTA will open a new window of discovery potential, significantly extending the range of robustly testable models given a standard cuspy profile of the dark matter density distribution. Importantly, even for a cored profile, the projected sensitivity of CTA will be sufficient to probe various well-motivated models of thermally produced dark matter at the TeV scale. This is due to CTA's unprecedented sensitivity, angular and energy resolutions, and the planned observational strategy. The survey of the inner Galaxy will cover a much larger region than corresponding previous observational campaigns with imaging atmospheric Cherenkov telescopes. CTA will map with unprecedented precision the large-scale diffuse emission in high-energy gamma rays, constituting a background for dark matter searches for which we adopt state-of-the-art models based on current data. Throughout our analysis, we use up-to-date event reconstruction Monte Carlo tools developed by the CTA consortium, and pay special attention to quantifying the level of instrumental systematic uncertainties, as well as background template systematic errors, required to probe thermally produced dark matter at these energies.


Relevance of jet magnetic field structure for blazar axionlike particle searches

Physical Review D American Physical Society 103 (2021) 23008

J Davies, M Meyer, G Cotter

Many theories beyond the Standard Model of particle physics predict the existence of axionlike particles (ALPs) that mix with photons in the presence of a magnetic field. One prominent indirect method of searching for ALPs is to look for irregularities in blazar gamma-ray spectra caused by ALP-photon mixing in astrophysical magnetic fields. This requires the modeling of magnetic fields between Earth and the blazar. So far, only very simple models for the magnetic field in the blazar jet have been used. Here, we investigate the effects of more complicated jet magnetic field configurations on these spectral irregularities by imposing a magnetic field structure model onto the jet model proposed by Potter &amp; Cotter. We simulate gamma-ray spectra of Mrk 501 with ALPs and fit them to ALP-less spectra, scanning the ALP and B-field configuration parameter space, and show that the jet can be an important mixing region, able to probe new ALP parameter space around ma 1-1000 neV and ga 5&#xD7;10-12 GeV-1. However, reasonable (i.e., consistent with observation) changes of the magnetic field structure can have a large effect on the mixing. For jets in highly magnetized clusters, mixing in the cluster can overpower mixing in the jet. This means that the current constraints using mixing in the Perseus cluster are still valid.


Multimessenger Gamma-Ray and Neutrino Coincidence Alerts using HAWC and IceCube sub-threshold Data

The Astrophysical Journal: an international review of astronomy and astronomical physics American Astronomical Society 906 (2021) 63-63

HAA Solares, S Coutu, JJ DeLaunay, DB Fox, T Grégoire, A Keivani, F Krauß, M Mostafá, K Murase, CF Turley, A Albert, R Alfaro, C Alvarez, JRA Camacho, JC Arteaga-Velázquez, KP Arunbabu, DA Rojas, E Belmont-Moreno, C Brisbois, KS Caballero-Mora, A Carramiñana, S Casanova, U Cotti, EDL Fuente, RD Hernandez, BL Dingus, MA DuVernois, M Durocher, JC Díaz-Vélez, C Espinoza, KL Fan, H Fleischhack, N Fraija, A Galván-Gámez, D Garcia, JA García-González, F Garfias, MM González, JA Goodman, JP Harding, B Hona, D Huang, F Hueyotl-Zahuantitla, PH untemeyer, A Iriarte, A Jardin-Blicq, V Joshi, HL Vargas, JT Linnemann, AL Longinotti, G Luis-Raya, J Lundeen, K Malone, O Martinez, I Martinez-Castellanos, J Martínez-Castro, JA Matthews, P Miranda-Romagnoli, E Moreno, L Nellen, M Newbold, MU Nisa, R Noriega-Papaqui, A Peisker, EG Pérez-Pérez, CD Rho, D Rosa-González, H Salazar, FS Greus, A Sandoval, AJ Smith, RW Springer, K Tollefson, I Torres, R Torres-Escobedo, F Ureña-Mena, L Villaseñor, T Weisgarber, E Willox, A Zepeda, H Zhou, CD León, MG Aartsen, R Abbasi, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, C Alispach, NM Amin, K Andeen, T Anderson, I Ansseau, G Anton, CA elles, J Auffenberg, S Axani, H Bagherpour, X Bai, AB V, A Barbano, SW Barwick, B Bastian, V Basu, V Baum, S Baur, R Bay, JJ Beatty, K-H Becker, JB Tjus, S BenZvi, D Berley, E Bernardini, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, C Bohm, SB öser, O Botner, JB öttcher, E Bourbeau, J Bourbeau, F Bradascio, J Braun, S Bron, J Brostean-Kaiser, A Burgman, J Buscher, RS Busse, T Carver, C Chen, E Cheung, D Chirkin, S Choi, BA Clark, K Clark, L Classen, A Coleman, GH Collin, JM Conrad, P Coppin, P Correa, DF Cowen, R Cross, P Dave, CD Clercq, H Dembinski, K Deoskar, SD Ridder, A Desai, P Desiati, KDD Vries, GD Wasseige, MD With, T DeYoung, S Dharani, A Diaz, H Dujmovic, M Dunkman, E Dvorak, T Ehrhardt, P Eller, R Engel, PA Evenson, S Fahey, AR Fazely, J Felde, A Fienberg, K Filimonov, C Finley, A Franckowiak, E Friedman, A Fritz, TK Gaisser, J Gallagher, E Ganster, S Garrappa, L Gerhardt, T Glauch, TG üsenkamp, A Goldschmidt, JG Gonzalez, D Grant, Z Griffith, S Griswold, MG ünder, MGÜ üz, C Haack, A Hallgren, R Halliday, L Halve, F Halzen, K Hanson, J Hardin, A Haungs, S Hauser, D Hebecker, D Heereman, P Heix, K Helbing, R Hellauer, F Henningsen, S Hickford, J Hignight, C Hill, GC Hill, KD Hoffman, R Hoffmann, T Hoinka, B Hokanson-Fasig, K Hoshina, F Huang, M Huber, T Huber, K Hultqvist, MH ünnefeld, R Hussain, S In, N Iovine, A Ishihara, M Jansson, GS Japaridze, M Jeong, BJP Jones, F Jonske, R Joppe, D Kang, W Kang, A Kappes, D Kappesser, T Karg, M Karl, A Karle, U Katz, M Kauer, M Kellermann, JL Kelley, A Kheirandish, J Kim, K Kin, T Kintscher, J Kiryluk, T Kittler, SR Klein, R Koirala, H Kolanoski, LK öpke, C Kopper, S Kopper, DJ Koskinen, P Koundal, M Kowalski, K Krings, G Krückl, N Kulacz, N Kurahashi, A Kyriacou, JL Lanfranchi, MJ Larson, F Lauber, JP Lazar, K Leonard, A Leszczyńska, Y Li, QR Liu, E Lohfink, CJL Mariscal, L Lu, F Lucarelli, A Ludwig, JL ünemann, W Luszczak, Y Lyu, WY Ma, J Madsen, G Maggi, KBM Mahn, Y Makino, P Mallik, S Mancina, IC Mariş, R Maruyama, K Mase, R Maunu, F McNally, K Meagher, M Medici, A Medina, M Meier, S Meighen-Berger, J Merz, T Meures, J Micallef, D Mockler, G Momenté, T Montaruli, RW Moore, R Morse, M Moulai, P Muth, R Nagai, U Naumann, G Neer, LV Nguyen, H Niederhausen, SC Nowicki, DR Nygren, AO Pollmann, M Oehler, A Olivas, A O'Murchadha, E O'Sullivan, H Pandya, DV Pankova, N Park, GK Parker, EN Paudel, P Peiffer, CPDL Heros, S Philippen, D Pieloth, S Pieper, E Pinat, A Pizzuto, M Plum, Y Popovych, A Porcelli, MP Rodriguez, PB Price, GT Przybylski, C Raab, A Raissi, M Rameez, L Rauch, K Rawlins, IC Rea, A Rehman, R Reimann, B Relethford, M Renschler, G Renzi, E Resconi, W Rhode, M Richman, B Riedel, S Robertson, G Roellinghoff, M Rongen, C Rott, T Ruhe, D Ryckbosch, DR Cantu, I Safa, SES Herrera, A Sandrock, J Sandroos, M Santander, S Sarkar, S Sarkar, K Satalecka, M Scharf, M Schaufel, H Schieler, P Schlunder, T Schmidt, A Schneider, J Schneider, FGS öder, L Schumacher, S Sclafani, D Seckel, S Seunarine, S Shefali, M Silva, B Smithers, R Snihur, J Soedingrekso, D Soldin, M Song, GM Spiczak, C Spiering, J Stachurska, M Stamatikos, T Stanev, R Stein, J Stettner, A Steuer, T Stezelberger, RG Stokstad, NL Strotjohann, T Stürwald, T Stuttard, GW Sullivan, I Taboada, F Tenholt, S Ter-Antonyan, A Terliuk, S Tilav, L Tomankova, CT önnis, S Toscano, D Tosi, A Trettin, M Tselengidou, CF Tung, A Turcati, R Turcotte, B Ty, E Unger, MAU Elorrieta, M Usner, J Vandenbroucke, WV Driessche, DV Eijk, NV Eijndhoven, D Vannerom, JV Santen, S Verpoest, M Vraeghe, C Walck, A Wallace, M Wallraff, TB Watson, C Weaver, A Weindl, MJ Weiss, J Weldert, C Wendt, J Werthebach, BJ Whelan, N Whitehorn, K Wiebe, CH Wiebusch, DR Williams, L Wills, M Wolf, TR Wood, K Woschnagg, G Wrede, J Wulff, XW Xu, Y Xu, JP Yanez, S Yoshida, T Yuan, Z Zhang, MZ öcklein

The High Altitude Water Cherenkov (HAWC) and IceCube observatories, through the Astrophysical Multimessenger Observatory Network (AMON) framework, have developed a multimessenger joint search for extragalactic astrophysical sources. This analysis looks for sources that emit both cosmic neutrinos and gamma rays that are produced in photo-hadronic or hadronic interactions. The AMON system is running continuously, receiving sub-threshold data (i.e. data that is not suited on its own to do astrophysical searches) from HAWC and IceCube, and combining them in real-time. We present here the analysis algorithm, as well as results from archival data collected between June 2015 and August 2018, with a total live-time of 3.0 years. During this period we found two coincident events that have a false alarm rate (FAR) of $<1$ coincidence per year, consistent with the background expectations. The real-time implementation of the analysis in the AMON system began on November 20th, 2019, and issues alerts to the community through the Gamma-ray Coordinates Network with a FAR threshold of $<4$ coincidences per year.


Tidally induced stellar oscillations: converting modelled oscillations excited by hot Jupiters into observables

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2021)

A Bunting, C TERQUEM

Pages