Review of Particle Physics

Progress of Theoretical and Experimental Physics Oxford University Press (OUP) 2020 (2020)

PA Zyla, RM Barnett, J Beringer, O Dahl, DA Dwyer, DE Groom, C-J Lin, KS Lugovsky, E Pianori, DJ Robinson, CG Wohl, W-M Yao, K Agashe, G Aielli, BC Allanach, C Amsler, M Antonelli, EC Aschenauer, DM Asner, H Baer, S Banerjee, L Baudis, CW Bauer, JJ Beatty, VI Belousov, S Bethke, A Bettini, O Biebel, KM Black, E Blucher, O Buchmuller, V Burkert, MA Bychkov, RN Cahn, M Carena, A Ceccucci, A Cerri, D Chakraborty, RS Chivukula, G Cowan, G D'Ambrosio, T Damour, D de Florian, A de Gouvêa, T DeGrand, P de Jong, G Dissertori, BA Dobrescu, M D'Onofrio, M Doser, M Drees, HK Dreiner, P Eerola, U Egede, S Eidelman, J Ellis, J Erler, VV Ezhela, W Fetscher, BD Fields, B Foster, A Freitas, H Gallagher, L Garren, H-J Gerber, G Gerbier, T Gershon, Y Gershtein, T Gherghetta, AA Godizov, MC Gonzalez-Garcia, M Goodman, C Grab, AV Gritsan, C Grojean, M Grünewald, A Gurtu, T Gutsche, HE Haber, C Hanhart, S Hashimoto, Y Hayato, A Hebecker, S Heinemeyer, B Heltsley, JJ Hernández-Rey, K Hikasa, J Hisano, A Höcker, J Holder, A Holtkamp, J Huston, T Hyodo, KF Johnson, M Kado, M Karliner, UF Katz, M Kenzie, VA Khoze, SR Klein, E Klempt, RV Kowalewski, F Krauss, M Kreps, B Krusche, Y Kwon, O Lahav, J Laiho, LP Lellouch, J Lesgourgues, AR Liddle, Z Ligeti, C Lippmann, TM Liss, L Littenberg, C Lourengo, SB Lugovsky, A Lusiani, Y Makida, F Maltoni, T Mannel, AV Manohar, WJ Marciano, A Masoni, J Matthews, U-G Meißner, M Mikhasenko, DJ Miller, D Milstead, RE Mitchell, K Mönig, P Molaro, F Moortgat, M Moskovic, K Nakamura, M Narain, P Nason, S Navas, M Neubert, P Nevski, Y Nir, KA Olive, C Patrignani, JA Peacock, ST Petcov, VA Petrov, A Pich, A Piepke, A Pomarol, S Profumo, A Quadt, K Rabbertz, J Rademacker, G Raffelt, H Ramani, M Ramsey-Musolf, BN Ratcliff, P Richardson, A Ringwald, S Roesler, S Rolli, A Romaniouk, LJ Rosenberg, JL Rosner, G Rybka, M Ryskin, RA Ryutin, Y Sakai, GP Salam, S Sarkar, F Sauli, O Schneider, K Scholberg, AJ Schwartz, J Schwiening, D Scott, V Sharma, SR Sharpe, T Shutt, M Silari, T Sjöstrand, P Skands, T Skwarnicki, GF Smoot, A Soffer, MS Sozzi, S Spanier, C Spiering, A Stahl, SL Stone, Y Sumino, T Sumiyoshi, MJ Syphers, F Takahashi, M Tanabashi, J Tanaka, M Taševský, K Terashi, J Terning, U Thoma, RS Thorne, L Tiator, M Titov, NP Tkachenko, DR Tovey, K Trabelsi, P Urquijo, G Valencia, R Van de Water, N Varelas, G Venanzoni, L Verde, MG Vincter, P Vogel, W Vogelsang, A Vogt, V Vorobyev, SP Wakely, W Walkowiak, CW Walter, D Wands, MO Wascko, DH Weinberg, EJ Weinberg, M White, LR Wiencke, S Willocq, CL Woody, RL Workman, M Yokoyama, R Yoshida, G Zanderighi, GP Zeller, OV Zenin, R-Y Zhu, S-L Zhu, F Zimmermann, J Anderson, T Basaglia, VS Lugovsky, P Schaffner, W Zheng

<jats:title>Abstract</jats:title> <jats:p>The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,324 new measurements from 878 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on High Energy Soft QCD and Diffraction and one on the Determination of CKM Angles from B Hadrons.</jats:p> <jats:p>The Review is divided into two volumes. Volume 1 includes the Summary Tables and 98 review articles. Volume 2 consists of the Particle Listings and contains also 22 reviews that address specific aspects of the data presented in the Listings.</jats:p> <jats:p>The complete Review (both volumes) is published online on the website of the Particle Data Group ( and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print and as a web version optimized for use on phones as well as an Android app.</jats:p>

Axion detection through resonant photon-photon collisions

Physical Review D American Physical Society (APS) 101 (2020) 95018

K Beyer, G Marocco, R Bingham, G Gregori

In-situ calibration of the single-photoelectron charge response of the IceCube photomultiplier tubes

Journal of Instrumentation IOP Publishing (2020)

TI Collaboration

We describe an improved in-situ calibration of the single-photoelectron charge distributions for each of the in-ice Hamamatsu Photonics R7081-02[MOD] photomultiplier tubes in the IceCube Neutrino Observatory. The characterization of the individual PMT charge distributions is important for PMT calibration, data and Monte Carlo simulation agreement, and understanding the effect of hardware differences within the detector. We discuss the single photoelectron identification procedure and how we extract the single-photoelectron charge distribution using a deconvolution of the multiple-photoelectron charge distribution.

Transport of high-energy charged particles through spatially-intermittent turbulent magnetic fields

Astrophysical Journal American Astronomical Society 892 (2020) 114

LE Chen, AFA Bott, P Tzeferacos, A Rigby, A Bell, R Bingham, C Graziani, J Katz, R Petrasso, G Gregori, F Miniati

Identifying the sources of the highest energy cosmic rays requires understanding how they are deflected by the stochastic, spatially intermittent intergalactic magnetic field. Here we report measurements of energetic charged-particle propagation through a laser-produced magnetized plasma with these properties. We characterize the diffusive transport of the particles experimentally. The results show that the transport is diffusive and that, for the regime of interest for the highest-energy cosmic rays, the diffusion coefficient is unaffected by the spatial intermittency of the magnetic field.

Measuring the oscillator strength of intercombination lines of helium-like V ions in a laser-produced-plasma

Journal of Quantitative Spectroscopy and Radiative Transfer Elsevier BV (2020) 107326

G Pérez-Callejo, L Jarrott, D Liedahl, M Schneider, J Wark, S Rose

Trapped orbits and solar-neighbourhood kinematics


J Binney

Angle-action variables for orbits trapped at a Lindblad resonance


J Binney

A Search for Neutrino Point-Source Populations in 7 Years of IceCube Data with Neutrino-count Statistics

The Astrophysical Journal: an international review of astronomy and astronomical physics American Astronomical Society (2020)

B Eberhardt, T Ehrhardt, P Eller, R Engel, A Fritz, TK Gaisser, J Gallagher, E Ganster, S Garrappa, L Gerhardt, K Ghorbani, T Glauch, T Glüsenkamp, A Goldschmidt, JG Gonzalez, D Grant, S Griswold, F Huang, M Huber, T Huber, K Hultqvist, GS Japaridze, M Jeong, K Jero, BJP Jones

The presence of a population of point sources in a dataset modifies the underlying neutrino-count statistics from the Poisson distribution. This deviation can be exactly quantified using the non-Poissonian template fitting technique, and in this work we present the first application this approach to the IceCube high-energy neutrino dataset. Using this method, we search in 7 years of IceCube data for point-source populations correlated with the disk of the Milky Way, the Fermi bubbles, the Schlegel, Finkbeiner, and Davis dust map, or with the isotropic extragalactic sky. No evidence for such a population is found in the data using this technique, and in the absence of a signal we establish constraints on population models with source count distribution functions that can be described by a power-law with a single break. The derived limits can be interpreted in the context of many possible source classes. In order to enhance the flexibility of the results, we publish the full posterior from our analysis, which can be used to establish limits on specific population models that would contribute to the observed IceCube neutrino flux.

Corrections to weighted opacities and energy exchange rate in 3-T radiation-hydrodynamics

High Energy Density Physics Elsevier BV 35 (2020) 100734

KW McLean, SJ Rose

Computational Techniques for the Analysis of Small Signals in High-Statistics Neutrino Oscillation Experiments

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment Elsevier (2020)

D Altmann, K Andeen, T Anderson, R Cross, P Dave, M Day, JPAMD André, GD Wasseige, Z Griffith, C Haack, A Hallgren, F Halzen, K Hanson, N Iovine, A Ishihara, D Kang, A Kappes, D Kappesser, T Karg, J Kiryluk, T Kittler, Klein, R Koirala, H Kolanoski, DJ Koskinen

The current and upcoming generation of Very Large Volume Neutrino Telescopes - collecting unprecedented quantities of neutrino events - can be used to explore subtle effects in oscillation physics, such as (but not restricted to) the neutrino mass ordering. The sensitivity of an experiment to these effects can be estimated from Monte Carlo simulations. With the very high number of events that will be collected, there is a trade-off between the computational expense of running such simulations and the inherent statistical uncertainty in the determined values. In such a scenario, it becomes impractical to produce and use adequately-sized sets of simulated events to use with traditional methods, such as Monte Carlo weighting. In this work we present a staged approach to the generation of binned event distributions in order to overcome these challenges. By combining multiple integration and smoothing techniques which address limited statistics from simulation it arrives at reliable analysis results using modest computational resources.

Acute heart failure: More questions than answers.

Progress in cardiovascular diseases (2020)

D Tomasoni, CM Lombardi, M Sbolli, G Cotter, M Metra

Acute heart failure (AHF) is a life-threatening condition with a dramatic burden in terms of symptoms, morbidity and mortality. It is a specific syndrome requiring urgent, life-saving treatment. Multiple specific pathophysiologic mechanisms may be involved, including congestion, inflammation, and neurohormonal activation. This process eventually leads to symptoms, end-organ damage, and adverse outcomes. Clinical presentation varies, but it almost universally includes worsening of congestion associated with different degrees of hypoperfusion. Due to substantial early symptoms burden and high morbidity and mortality, patients with AHF require intensive monitoring and intravenous treatment. However, beyond variable improvement in congestion, none of the available intravenous therapies for AHF was shown to improve longer term outcomes. Although oral treatment with guideline-directed therapies for stable patients with HF and reduced ejection fraction (HFrEF) before discharge may fully prevent subsequent episodes, proof that this strategy may benefit patients is lacking. First, most patients with AHF have preserved EF (HFpEF) where no therapies have been shown to be effective. Second, all therapies developed for patients with HFrEF were tested for efficacy on outcomes in patients who were stable without recent AHF. Hence, the implementation of these chronic therapies during an AHF episode is untested. Third, the problem to better treat AHF patients in their early phase remains crucial with treatment strategies largely untested, yet. Further studies targeting AHF specific mechanisms, such as inflammation and end-organ damage, and finding effective intravenous drugs remain therefore warranted.

Improved cardiac and venous pressures during hospital stay in patients with acute heart failure: an echocardiography and biomarkers study.

ESC heart failure 7 (2020) 996-1006

E Akiyama, R Cinotti, K Čerlinskaitė, LNL Van Aelst, M Arrigo, R Placido, T Chouihed, N Girerd, F Zannad, P Rossignol, M Badoz, J-M Launay, E Gayat, A Cohen-Solal, CSP Lam, J Testani, W Mullens, G Cotter, M-F Seronde, A Mebazaa

AIMS:Changes in echocardiographic parameters and biomarkers of cardiac and venous pressures or estimated plasma volume during hospitalization associated with decongestive treatments in acute heart failure (AHF) patients with either preserved left ventricular ejection fraction (LVEF) (HFPEF) or reduced LVEF (HFREF) are poorly assessed. METHODS AND RESULTS:From the metabolic road to diastolic heart failure: diastolic heart failure (MEDIA-DHF) study, 111 patients were included in this substudy: 77 AHF (43 HFPEF and 34 HFREF) and 34 non-cardiac dyspnea patients. Echocardiographic measurements and blood samples were obtained within 4 h of presentation at the emergency department and before hospital discharge. In AHF patients, echocardiographic indices of cardiac and venous pressures, including inferior vena cava diameter [from 22 (16-24) mm to 13 (11-18) mm, P = 0.009], its respiratory variability [from 32 (8-44) % to 43 (29-70) %, P = 0.04], medial E/e' [from 21.1 (15.8-29.6) to 16.6 (11.7-24.3), P = 0.004], and E wave deceleration time [from 129 (105-156) ms to 166 (128-203) ms, P = 0.003], improved during hospitalization, similarly in HFPEF and HFREF patients. By contrast, no changes were seen in non-cardiac dyspnea patients. In AHF patients, all plasma biomarkers of cardiac and venous pressures, namely B-type natriuretic peptide [from 935 (514-2037) pg/mL to 308 (183-609) pg/mL, P < 0.001], mid-regional pro-atrial natriuretic peptide [from 449 (274-653) pmol/L to 366 (242-549) pmol/L, P < 0.001], and soluble CD-146 levels [from 528 (406-654) ng/mL to 450 (374-529) ng/mL, P = 0.003], significantly decreased during hospitalization, similarly in HFPEF and HFREF patients. Echocardiographic parameters of cardiac chamber dimensions [left ventricular end-diastolic volume: from 120 (76-140) mL to 118 (95-176) mL, P = 0.23] and cardiac index [from 2.1 (1.6-2.6) mL/min/m2 to 1.9 (1.4-2.4) mL/min/m2 , P = 0.55] were unchanged in AHF patients, except tricuspid annular plane systolic excursion (TAPSE) that improved during hospitalization [from 16 (15-19) mm to 19 (17-21) mm, P = 0.04]. Estimated plasma volume increased in both AHF [from 4.8 (4.2-5.6) to 5.1 (4.4-5.8), P = 0.03] and non-cardiac dyspnea patients (P = 0.01). Serum creatinine [from 1.18 (0.90-1.53) to 1.19 (0.86-1.70) mg/dL, P = 0.89] and creatinine-based estimated glomerular filtration rate [from 59 (40-75) mL/min/1.73m2 to 56 (38-73) mL/min/1.73m2 , P = 0.09] were similar, while plasma cystatin C [from 1.50 (1.20-2.27) mg/L to 1.78 (1.33-2.59) mg/L, P < 0.001] and neutrophil gelatinase associated lipocalin (NGAL) [from 127 (95-260) ng/mL to 167 (104-263) ng/mL, P = 0.004] increased during hospitalization in AHF. CONCLUSIONS:Echocardiographic parameters and plasma biomarkers of cardiac and venous pressures improved during AHF hospitalization in both acute HFPEF and HFREF patients, while cardiac chamber dimensions, cardiac output, and estimated plasma volume showed minimal changes.

Clinical value of pre-discharge bio-adrenomedullin as a marker of residual congestion and high risk of heart failure hospital readmission.

European journal of heart failure 22 (2020) 683-691

P Pandhi, JM Ter Maaten, JE Emmens, J Struck, A Bergmann, JG Cleland, MM Givertz, M Metra, CM O'Connor, JR Teerlink, P Ponikowski, G Cotter, B Davison, DJ van Veldhuisen, AA Voors

AIMS:Recently, bio-adrenomedullin (bio-ADM) was proposed as a congestion marker in heart failure (HF). In the present study, we aimed to study whether bio-ADM levels at discharge from a hospital admission for worsening HF could provide additional information on (residual) congestion status, diuretic dose titration and clinical outcomes. METHODS AND RESULTS:Plasma bio-ADM was measured in 1236 acute HF patients in the PROTECT trial at day 7 or discharge. Median discharge bio-ADM was 33.7 [21.5-61.5] pg/mL. Patients with higher discharge bio-ADM levels were hospitalised longer, had higher brain natriuretic peptide levels, and poorer diuretic response (all P < 0.001). Bio-ADM was the strongest predictor of discharge residual congestion (clinical congestion score > 3) (odds ratio 4.35, 95% confidence interval 3.37-5.62; P < 0.001). Oedema at discharge was one of the strongest predictors of discharge bio-ADM (β = 0.218; P < 0.001). Higher discharge loop diuretic doses were associated with a poorer diuretic response during hospitalisation (β = 0.187; P < 0.001) and higher bio-ADM levels (β = 0.084; P = 0.020). High discharge bio-ADM levels combined with higher use of loop diuretics were independently associated with a greater risk of 60-day HF rehospitalisation (hazard ratio 4.02, 95% confidence interval 2.23-7.26; P < 0.001). CONCLUSION:In hospitalised HF patients, elevated pre-discharge bio-ADM levels were associated with higher discharge loop diuretic doses and reflected residual congestion. Patients with combined higher bio-ADM levels and higher loop diuretic use at discharge had an increased risk of rehospitalisation. Assessment of discharge bio-ADM levels may be a readily applicable marker to identify patients with residual congestion at higher risk of early hospital readmission.

X-ray-line coincidence photopumping in a potassium-chlorine mixed plasma

Physical Review A American Physical Society 101 (2020) 53431

LMR Hobbs, D Burridge, MP Hill, DJ Hoarty, CRD Brown, R Charles, G Cooper, SF James, LA Wilson, W Babbage, PW Hatfield, P Beiersdorfer, J Nilsen, H Scott, S Rose

Exploiting the multiple long pulse capability and suite of x-ray diagnostics of the Orion laser, we have set out to explore line coincidence photopuming—the enhancement in population of an atomic level brought on by resonant absorption of x rays from a different emitting ion. Unlike previous work, the two ions are in the same plasma and so the experiment is an x-ray analog of the well-known Bowen resonance fluorescence mechanism that operates in astrophysical situations in the optical region. Our measurements have shown enhanced fluorescence in a chlorine plasma, attributable to line coincident photopumping from co-mixed potassium ions. To detect this relatively low signal-to-noise phenomenon, the data from multiple shots are combined, and the statistical method of bootstrapping is used to assign a confidence value to the measured enhancement, resulting in an estimate of the enhancement of 39 ± 16 18% compared to the null case, where no pumping occurs. The experimental results have been compared to coupled radiation-transport and radiation hydrodynamics simulations using the cretin code together with the nym radiation hydrodynamics model and agreement has been found, with the simulations also predicting modest enhancement.

Bright x-ray radiation from plasma bubbles in an evolving laser wakefield accelerator

Physical Review Accelerators and Beams 23 (2020)

MS Bloom, MJV Streeter, S Kneip, RA Bendoyro, O Cheklov, JM Cole, A Döpp, CJ Hooker, J Holloway, J Jiang, NC Lopes, H Nakamura, PA Norreys, PP Rajeev, DR Symes, J Schreiber, JC Wood, M Wing, Z Najmudin, SPD Mangles

© 2020 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the ""Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. We show that the properties of the electron beam and bright x rays produced by a laser wakefield accelerator can be predicted if the distance over which the laser self-focuses and compresses prior to self-injection is taken into account. A model based on oscillations of the beam inside a plasma bubble shows that performance is optimized when the plasma length is matched to the laser depletion length. With a 200 TW laser pulse, this results in an x-ray beam with a median photon energy of 20 keV, >6×108 photons above 1 keV per shot, and a peak brightness of 3×1022 photons s-1 mrad-2 mm-2 (0.1% BW)-1.

Probing the Magnetic Field in the GW170817 Outflow Using HESS Observations


H Abdalla, R Adam, F Aharonian, FA Benkhali, EO Anguner, M Arakawa, C Arcaro, C Armand, T Armstrong, H Ashkar, M Backes, V Baghmanyan, V Barbosa-Martins, A Barnacka, M Barnard, Y Becherini, D Berge, K Bernloehr, R Blackwell, M Bottcher, C Boisson, J Bolmont, S Bonnefoy, J Bregeon, M Breuhaus, F Brun, P Brun, M Bryan, M Buechele, T Bulik, T Bylund, S Caroff, A Carosi, S Casanova, M Cerruti, T Chand, S Chandra, A Chen, G Cotter, M Curylo, ID Davids, J Davies, C Deil, J Devin, P deWilt, L Dirson, A Djannati-Ata, A Dmytriiev, A Donath, V Doroshenko, J Dyks, K Egberts, F Eichhorn, G Emery, J-P Ernenwein, S Eschbach, K Feijen, S Fegan, A Fiasson, G Fontaine, S Funk, M Fuessling, S Gabici, YA Gallant, G Giavitto, L Giunti, D Glawion, JF Glicenstein, D Gottschall, M-H Grondin, J Hahn, M Haupt, G Heinzelmann, G Hermann, JA Hinton, W Hofmann, C Hoischen, TL Holch, M Holler, M Horbe, D Horns, D Huber, H Iwasaki, M Jamrozy, D Jankowsky, F Jankowsky, A Jardin-Blicq, V Joshi, I Jung-Richardt, MA Kastendieck, K Katarzynski, M Katsuragawa, U Katz, D Khangulyan, B Khelifi, S Klepser, W Kluzniak, N Komin, R Konno, K Kosack, D Kostunin, M Kreter, G Lamanna, A Lemiere, M Lemoine-Goumard, J-P Lenain, E Leser, C Levy, T Lohse, I Lypova, J Mackey, J Majumdar, D Malyshev, V Marandon, P Marchegiani, A Marcowith, A Mares, G Marti-Devesa, R Marx, G Mauring, PJ Meintjes, R Moderski, M Mohamed, L Mohrmann, C Moore, P Morriss, E Moulin, J Muller, T Murach, S Nakashima, K Nakashima, M de Naurois, H Ndiyavala, F Niederwanger, J Niemiec, L Oakes, P O'Brien, HG Odaka, S Ohm, EDO Wilhelmi, M Ostrowski, M Panter, RD Parsons, B Peyaud, Q Piel, S Pita, V Poireau, AP Noel, DA Prokhorov, H Prokoph, G Puehlhofer, M Punch, A Quirrenbach, S Raab, R Rauth, A Reimer, O Reimer, Q Remy, M Renaud, F Rieger, L Rinchiuso, C Romoli, G Rowell, B Rudak, E Ruiz-Velasco, V Sahalcian, S Sailer, S Saito, DA Sanchez, A Santangelo, M Sasaki, M Scalici, R Schlickeiser, F Schuessler, A Schulz, HM Schutte, U Schwanke, S Schwemmer, M Seglar-Arroyo, M Senniappan, AS Seyffert, N Shafi, K Shiningayamwe, R Simoni, A Sinha, H Sol, A Specovius, S Spencer, M Spir-Jacob, L Stawarz, R Steenkamp, C Stegmann, C Steppa, T Takahashi, T Tavernier, AM Taylor, R Terrier, D Tiziani, M Tluczykont, L Tomankova, C Trichard, M Tsirou, N Tsuji, R Tuffs, Y Uchiyama, DJ van der Walt, C van Eldik, C van Rensburg, B van Soelen, G Vasileiadis, J Veh, C Venter, P Vincent, J Vink, HJ Voelk, T Vuillaume, Z Wadiasingh, SJ Wagner, J Watson, F Werner, R White, A Wierzcholska, R Yang, H Yoneda, M Zacharias, R Zanin, AA Zdziarski, A Zech, J Zorn, N Zywucka, X Rodrigues, HESS Collaboration

Demonstration of femtosecond broadband X-rays from laser wakefield acceleration as a source for pump-probe X-ray absorption studies

High Energy Density Physics Elsevier BV 35 (2020) 100729

K Krushelnick, RA Baggott, TZ Zhao, JM Cole, E Hill, SJ Rose, A Maksimchuk, J Nees, AGR Thomas, SPD Mangles, V Yanovsky, JC Wood, R Watt, AE Hussein, K Behm

IceCube Search for Neutrinos Coincident with Compact Binary Mergers from LIGO-Virgo's First Gravitational-Wave Transient Catalog

The Astrophysical Journal: an international review of astronomy and astronomical physics American Astronomical Society (2020)

MG Aartsen, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, C Alispach, K Andeen, T Anderson, I Ansseau, G Anton, C Argüelles, J Auffenberg, S Axani, H Bagherpour, X Bai, AB V, A Barbano, I Bartos, SW Barwick, B Bastian, V Baum, S Baur, R Bay, JJ Beatty, K-H Becker, JB Tjus, S BenZvi, D Berley, E Bernardini, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, C Bohm, S Böser, O Botner, J Böttcher, E Bourbeau, J Bourbeau, F Bradascio, J Braun, S Bron, J Brostean-Kaiser, A Burgman, J Buscher, RS Busse, T Carver, C Chen, E Cheung, D Chirkin, S Choi, BA Clark, K Clark, L Classen, A Coleman, GH Collin, JM Conrad, P Coppin, KR Corley, P Correa, S Countryman, DF Cowen, R Cross, P Dave, CD Clercq, JJ DeLaunay, H Dembinski, K Deoskar, SD Ridder, P Desiati, KDD Vries, GD Wasseige, MD With, T DeYoung, S Dharani, A Diaz, JC Díaz-Vélez, H Dujmovic, M Dunkman, E Dvorak, B Eberhardt, T Ehrhardt, P Eller, R Engel, PA Evenson, S Fahey, AR Fazely, J Felde, K Filimonov, C Finley, D Fox, A Franckowiak, E Friedman, A Fritz, TK Gaisser, J Gallagher, E Ganster, S Garrappa, L Gerhardt, K Ghorbani, T Glauch, T Glüsenkamp, A Goldschmidt, JG Gonzalez, D Grant, T Grégoire, Z Griffith, S Griswold, M Günder, M Gündüz, C Haack, A Hallgren, R Halliday, L Halve, F Halzen, K Hanson, A Haungs, S Hauser, D Hebecker, D Heereman, P Heix, K Helbing, R Hellauer, F Henningsen, S Hickford, J Hignight, GC Hill, KD Hoffman, R Hoffmann, T Hoinka, B Hokanson-Fasig, K Hoshina, F Huang, M Huber, T Huber, K Hultqvist, M Hünnefeld, R Hussain, S In, N Iovine, A Ishihara, M Jansson, GS Japaridze, M Jeong, K Jero, BJP Jones, F Jonske, R Joppe, D Kang, W Kang, A Kappes, D Kappesser, T Karg, M Karl, A Karle, U Katz, M Kauer, A Keivani, M Kellermann, JL Kelley, A Kheirandish, J Kim, T Kintscher, J Kiryluk, T Kittler, SR Klein, R Koirala, H Kolanoski, L Köpke, C Kopper, S Kopper, DJ Koskinen, P Koundal, M Kowalski, K Krings, G Krückl, N Kulacz, N Kurahashi, A Kyriacou, JL Lanfranchi, MJ Larson, F Lauber, JP Lazar, K Leonard, A Leszczynska, Y Li, QR Liu, E Lohfink, CJL Mariscal, L Lu, F Lucarelli, A Ludwig, J Lünemann, W Luszczak, Y Lyu, WY Ma, J Madsen, G Maggi, KBM Mahn, Y Makino, P Mallik, K Mallot, S Mancina, IC Mariş, S Marka, Z Marka, R Maruyama, K Mase, R Maunu, F McNally, K Meagher, M Medici, A Medina, M Meier, S Meighen-Berger, G Merino, J Merz, T Meures, J Micallef, D Mockler, G Momenté, T Montaruli, RW Moore, R Morse, M Moulai, P Muth, R Nagai, U Naumann, G Neer, LV Nguyen, H Niederhausen, MU Nisa, SC Nowicki, DR Nygren, AO Pollmann, M Oehler, A Olivas, A O'Murchadha, E O'Sullivan, T Palczewski, H Pandya, DV Pankova, N Park, P Peiffer, CPDL Heros, S Philippen, D Pieloth, S Pieper, E Pinat, A Pizzuto, M Plum, Y Popovych, A Porcelli, PB Price, GT Przybylski, C Raab, A Raissi, M Rameez, L Rauch, K Rawlins, IC Rea, A Rehman, R Reimann, B Relethford, M Renschler, G Renzi, E Resconi, W Rhode, M Richman, S Robertson, M Rongen, C Rott, T Ruhe, D Ryckbosch, DR Cantu, I Safa, SES Herrera, A Sandrock, J Sandroos, M Santander, S Sarkar, S Sarkar, K Satalecka, M Scharf, M Schaufel, H Schieler, P Schlunder, T Schmidt, A Schneider, J Schneider, FG Schröder, L Schumacher, S Sclafani, D Seckel, S Seunarine, S Shefali, M Silva, R Snihur, J Soedingrekso, D Soldin, M Song, GM Spiczak, C Spiering, J Stachurska, M Stamatikos, T Stanev, R Stein, J Stettner, A Steuer, T Stezelberger, RG Stokstad, A Stössl, NL Strotjohann, T Stürwald, T Stuttard, GW Sullivan, I Taboada, F Tenholt, S Ter-Antonyan, A Terliuk, S Tilav, K Tollefson, L Tomankova, C Tönnis, S Toscano, D Tosi, A Trettin, M Tselengidou, CF Tung, A Turcati, R Turcotte, CF Turley, B Ty, E Unger, MAU Elorrieta, M Usner, J Vandenbroucke, WV Driessche, DV Eijk, NV Eijndhoven, JV Santen, S Verpoest, D Veske, M Vraeghe, C Walck, A Wallace, M Wallraff, N Wandkowsky, TB Watson, C Weaver, A Weindl, MJ Weiss, J Weldert, C Wendt, J Werthebach, BJ Whelan, N Whitehorn, K Wiebe, CH Wiebusch, L Wille, DR Williams, L Wills, M Wolf, J Wood, TR Wood, K Woschnagg, G Wrede, J Wulff, DL Xu, XW Xu, Y Xu, JP Yanez, G Yodh, S Yoshida, T Yuan, M Zöcklein

Using the IceCube Neutrino Observatory, we search for high-energy neutrino emission coincident with compact binary mergers observed by the LIGO and Virgo gravitational wave (GW) detectors during their first and second observing runs. We present results from two searches targeting emission coincident with the sky localization of each gravitational wave event within a 1000 second time window centered around the reported merger time. One search uses a model-independent unbinned maximum likelihood analysis, which uses neutrino data from IceCube to search for point-like neutrino sources consistent with the sky localization of GW events. The other uses the Low-Latency Algorithm for Multi-messenger Astrophysics, which incorporates astrophysical priors through a Bayesian framework and includes LIGO-Virgo detector characteristics to determine the association between the GW source and the neutrinos. No significant neutrino coincidence is seen by either search during the first two observing runs of the LIGO-Virgo detectors. We set upper limits on the time-integrated neutrino emission within the 1000 second window for each of the 11 GW events. These limits range from 0.02-0.7 $\mathrm{GeV~cm^{-2}}$. We also set limits on the total isotropic equivalent energy, $E_{\mathrm{iso}}$, emitted in high-energy neutrinos by each GW event. These limits range from 1.7 $\times$ 10$^{51}$ - 1.8 $\times$ 10$^{55}$ erg. We conclude with an outlook for LIGO-Virgo observing run O3, during which both analyses are running in real time.

Prospects for high gain inertial fusion energy: an introduction to the first special edition

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Royal Society, The (2020)

P Norreys, K Lancaster, C Ridgers, M Koepke, G Tynan

Measuring the orbital angular momentum of high-power laser pulses

Physics of Plasmas AIP Publishing 27 (2020) 053107

R Aboushelbaya, K Glize, A Savin, M Mayr, B Spiers, R Wang, N Bourgeois, C Spindloe, R Bingham, P Norreys

In this article, we showcase the experimental results of methods to produce and characterize orbital angular momentum (OAM) carrying high-power lasers. The OAM pulses were produced on the ASTRA laser of the Central Laser Facility using a continuous spiral phase plate. Three different characterization methods were then used to measure the OAM content of the beam. The methods that were used were a cylindrical lens diagnostic, an interferometric diagnostic, and a projective diagnostic. We further discuss the relative advantages and disadvantages of each method in the context of high-power laser experiments.