Magnetic skyrmion interactions in the micromagnetic framework

arxiv (0)

GVD Laan, R Brearton, T Hesjedal

Magnetic skyrmions are localized swirls of magnetization with a non-trivial topological winding number. This winding increases their robustness to superparamagnetism and gives rise to a myriad of novel dynamical properties, making them attractive as next-generation information carriers. Recently the equation of motion for a skyrmion was derived using the approach pioneered by Thiele, allowing for macroscopic skyrmion systems to be modeled efficiently. This powerful technique suffers from the prerequisite that one must have a priori knowledge of the functional form of the interaction between a skyrmion and all other magnetic structures in its environment. Here we attempt to alleviate this problem by providing a simple analytic expression which can generate arbitrary repulsive interaction potentials from the micromagnetic Hamiltonian. We also discuss a toy model of the radial profile of a skyrmion which is accurate for a wide range of material parameters.

Three-dimensional micromagnetic domain structure of MnAs films on GaAs(001): Experimental imaging and simulations


R Engel-Herbert, T Hesjedal, DM Schaadt

The micromagnetic domain structure of MnAs films on GaAs(001) has been systematically investigated by micromagnetic imaging and simulations. The magnetic force microscopy (MFM) contrast resulting from the stray field of the simulated three-dimensional domain patterns was calculated and found to be in excellent agreement with MFM experiments. By combining three-dimensional stray-field imaging by MFM with surface sensitive probing and micromagnetic simulations, we were able to derive a consistent picture of the micromagnetic structure of MnAs. For example, the origin of the comblike contrast observed through MFM was identified as a metastable domain configuration exhibiting a cross-tie wall.