Publications


Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy beta and nuclear recoils in liquid argon with DEAP-1

ArXiv (0)

P-A Amaudruz, M Batygov, B Beltran, J Bonatt, K Boudjemline, MG Boulay, B Broerman, JF Bueno, A Butcher, B Cai, T Caldwell, M Chen, R Chouinard, BT Cleveland, D Cranshaw, K Dering, F Duncan, N Fatemighomi, R Ford, R Gagnon, P Giampa, F Giuliani, M Gold, VV Golovko, P Gorel, E Grace, K Graham, DR Grant, R Hakobyan, AL Hallin, M Hamstra, P Harvey, C Hearns, J Hofgartner, CJ Jillings, M Kuźniak, I Lawson, FL Zia, O Li, JJ Lidgard, P Liimatainen, WH Lippincott, R Mathew, AB McDonald, T McElroy, K McFarlane, R Mehdiyev, DN McKinsey, J Monroe, A Muir, C Nantais, K Nicolics, J Nikkel, AJ Noble, E O'Dwyer, K Olsen, C Ouellet, P Pasuthip, SJM Peeters, T Pollmann, W Rau, F Retière, M Ronquest, N Seeburn, P Skensved, B Smith, T Sonley, J Tang, E Vázquez-Jáuregui, L Veloce, J Walding, M Ward

The DEAP-1 low-background liquid argon detector was used to measure scintillation pulse shapes of electron and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination (PSD) down to an electron-equivalent energy of 20 keV. In the surface dataset using a triple-coincidence tag we found the fraction of beta events that are misidentified as nuclear recoils to be $<1.4\times 10^{-7}$ (90% C.L.) for energies between 43-86 keVee and for a nuclear recoil acceptance of at least 90%, with 4% systematic uncertainty on the absolute energy scale. The discrimination measurement on surface was limited by nuclear recoils induced by cosmic-ray generated neutrons. This was improved by moving the detector to the SNOLAB underground laboratory, where the reduced background rate allowed the same measurement with only a double-coincidence tag. The combined data set contains $1.23\times10^8$ events. One of those, in the underground data set, is in the nuclear-recoil region of interest. Taking into account the expected background of 0.48 events coming from random pileup, the resulting upper limit on the electronic recoil contamination is $<2.7\times10^{-8}$ (90% C.L.) between 44-89 keVee and for a nuclear recoil acceptance of at least 90%, with 6% systematic uncertainty on the absolute energy scale. We developed a general mathematical framework to describe PSD parameter distributions and used it to build an analytical model of the distributions observed in DEAP-1. Using this model, we project a misidentification fraction of approx. $10^{-10}$ for an electron-equivalent energy threshold of 15 keV for a detector with 8 PE/keVee light yield. This reduction enables a search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of $10^{-46}$ cm$^2$, assuming negligible contribution from nuclear recoil backgrounds.


A Search for Astrophysical Burst Signals at the Sudbury Neutrino Observatory

ArXiv (0)

B Aharmim, SN Ahmed, AE Anthony, N Barros, EW Beier, A Bellerive, B Beltran, M Bergevin, SD Biller, K Boudjemline, MG Boulay, B Cai, YD Chan, D Chauhan, M Chen, BT Cleveland, GA Cox, X Dai, H Deng, JA Detwiler, M DiMarco, MD Diamond, PJ Doe, G Doucas, P-L Drouin, FA Duncan, M Dunford, ED Earle, SR Elliott, HC Evans, GT Ewan, J Farine, H Fergani, F Fleurot, RJ Ford, JA Formaggio, N Gagnon, JTM Goon, K Graham, E Guillian, S Habib, RL Hahn, AL Hallin, ED Hallman, PJ Harvey, R Hazama, WJ Heintzelman, J Heise, RL Helmer, A Hime, C Howard, M Huang, P Jagam, B Jamieson, NA Jelley, M Jerkins, KJ Keeter, JR Klein, LL Kormos, M Kos, C Kraus, CB Krauss, A Krueger, T Kutter, CCM Kyba, R Lange, J Law, IT Lawson, KT Lesko, JR Leslie, I Levine, JC Loach, R MacLellan, S Majerus, HB Mak, J Maneira, R Martin, N McCauley, AB McDonald, SR McGee, ML Miller, B Monreal, J Monroe, BG Nickel, AJ Noble, HM O'Keeffe, NS Oblath, RW Ollerhead, GDO Gann, SM Oser, RA Ott, SJM Peeters, AWP Poon, G Prior, SD Reitzner, K Rielage, BC Robertson, RGH Robertson, MH Schwendener, JA Secrest, SR Seibert, O Simard, JJ Simpson, D Sinclair, P Skensved, TJ Sonley, LC Stonehill, G Tesic, N Tolich, T Tsui, RV Berg, BA VanDevender, CJ Virtue, BL Wall, D Waller, HWC Tseung, DL Wark, PJS Watson, J Wendland, N West, JF Wilkerson, JR Wilson, JM Wouters, A Wright, M Yeh, F Zhang, K Zuber

The Sudbury Neutrino Observatory (SNO) has confirmed the standard solar model and neutrino oscillations through the observation of neutrinos from the solar core. In this paper we present a search for neutrinos associated with sources other than the solar core, such as gamma-ray bursters and solar flares. We present a new method for looking for temporal coincidences between neutrino events and astrophysical bursts of widely varying intensity. No correlations were found between neutrinos detected in SNO and such astrophysical sources.


Measurement of the $ν_e$ and Total $^{8}$B Solar Neutrino Fluxes with the Sudbury Neutrino Observatory Phase-III Data Set

ArXiv (0)

B Aharmim, SN Ahmed, JF Amsbaugh, JM Anaya, AE Anthony, J Banar, N Barros, EW Beier, A Bellerive, B Beltran, M Bergevin, SD Biller, K Boudjemline, MG Boulay, TJ Bowles, MC Browne, TV Bullard, TH Burritt, B Cai, YD Chan, D Chauhan, M Chen, BT Cleveland, GA Cox, CA Currat, X Dai, H Deng, JA Detwiler, M DiMarco, PJ Doe, G Doucas, MR Dragowsky, P-L Drouin, CA Duba, FA Duncan, M Dunford, ED Earle, SR Elliott, HC Evans, GT Ewan, J Farine, H Fergani, F Fleurot, RJ Ford, JA Formaggio, MM Fowler, N Gagnon, JV Germani, A Goldschmidt, JTM Goon, K Graham, E Guillian, S Habib, RL Hahn, AL Hallin, ED Hallman, AA Hamian, GC Harper, PJ Harvey, R Hazama, KM Heeger, WJ Heintzelman, J Heise, RL Helmer, R Henning, A Hime, C Howard, MA Howe, M Huang, P Jagam, B Jamieson, NA Jelley, KJ Keeter, JR Klein, LL Kormos, M Kos, A Krueger, C Kraus, CB Krauss, T Kutter, CCM Kyba, R Lange, J Law, IT Lawson, KT Lesko, JR Leslie, JC Loach, R MacLellan, S Majerus, HB Mak, J Maneira, R Martin, N McCauley, AB McDonald, SR McGee, C Mifflin, GG Miller, ML Miller, B Monreal, J Monroe, B Morissette, AW Myers, BG Nickel, AJ Noble, HM O'Keeffe, NS Oblath, RW Ollerhead, GDO Gann, SM Oser, RA Ott, SJM Peeters, AWP Poon, G Prior, SD Reitzner, K Rielage, BC Robertson, RGH Robertson, E Rollin, MH Schwendener, JA Secrest, SR Seibert, O Simard, JJ Simpson, P Skensved, MWE Smith, TJ Sonley, TD Steiger, LC Stonehill, G Tesic, PM Thornewell, N Tolich, T Tsui, CD Tunnell, TV Wechel, RV Berg, BA VanDevender, CJ Virtue, BL Wall, D Waller, HWC Tseung, J Wendland, N West, JB Wilhelmy, JF Wilkerson, JR Wilson, JM Wouters, A Wright, M Yeh, F Zhang, K Zuber

This paper details the solar neutrino analysis of the 385.17-day Phase-III data set acquired by the Sudbury Neutrino Observatory (SNO). An array of $^3$He proportional counters was installed in the heavy-water target to measure precisely the rate of neutrino-deuteron neutral-current interactions. This technique to determine the total active $^8$B solar neutrino flux was largely independent of the methods employed in previous phases. The total flux of active neutrinos was measured to be $5.54^{+0.33}_{-0.31}(stat.)^{+0.36}_{-0.34}(syst.)\times 10^{6}$ cm$^{-2}$ s$^{-1}$, consistent with previous measurements and standard solar models. A global analysis of solar and reactor neutrino mixing parameters yielded the best-fit values of $\Delta m^2 = 7.59^{+0.19}_{-0.21}\times 10^{-5}{eV}^2$ and $\theta = 34.4^{+1.3}_{-1.2}$ degrees.


Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory

ArXiv (0)

SNO Collaboration, B Aharmim, SN Ahmed, AE Anthony, N Barros, EW Beier, A Bellerive, B Beltran, M Bergevin, SD Biller, K Boudjemline, MG Boulay, B Cai, YD Chan, D Chauhan, M Chen, BT Cleveland, GA Cox, X Dai, H Deng, JA Detwiler, M DiMarco, PJ Doe, G Doucas, P-L Drouin, FA Duncan, M Dunford, ED Earle, SR Elliott, HC Evans, GT Ewan, J Farine, H Fergani, F Fleurot, RJ Ford, JA Formaggio, N Gagnon, JTM Goon, K Graham, E Guillian, S Habib, RL Hahn, AL Hallin, ED Hallman, PJ Harvey, R Hazama, WJ Heintzelman, J Heise, RL Helmer, A Hime, C Howard, M Huang, P Jagam, B Jamieson, NA Jelley, M Jerkins, KJ Keeter, JR Klein, LL Kormos, M Kos, C Kraus, CB Krauss, A Kruger, T Kutter, CCM Kyba, R Lange, J Law, IT Lawson, KT Lesko, JR Leslie, JC Loach, R MacLellan, S Majerus, HB Mak, J Maneira, R Martin, N McCauley, AB McDonald, SR McGee, ML Miller, B Monreal, J Monroe, BG Nickel, AJ Noble, HM O'Keeffe, NS Oblath, RW Ollerhead, GDO Gann, SM Oser, RA Ott, SJM Peeters, AWP Poon, G Prior, SD Reitzner, K Rielage, BC Robertson, RGH Robertson, RC Rosten, MH Schwendener, JA Secrest, SR Seibert, O Simard, JJ Simpson, P Skensved, TJ Sonley, LC Stonehill, G Tešić, N Tolich, T Tsui, RV Berg, BA VanDevender, CJ Virtue, HWC Tseung, DL Wark, PJS Watson, J Wendland, N West, JF Wilkerson, JR Wilson, JM Wouters, A Wright, M Yeh, F Zhang, K Zuber

We report results from a combined analysis of solar neutrino data from all phases of the Sudbury Neutrino Observatory. By exploiting particle identification information obtained from the proportional counters installed during the third phase, this analysis improved background rejection in that phase of the experiment. The combined analysis resulted in a total flux of active neutrino flavors from 8B decays in the Sun of (5.25 \pm 0.16(stat.)+0.11-0.13(syst.))\times10^6 cm^{-2}s^{-1}. A two-flavor neutrino oscillation analysis yielded \Deltam^2_{21} = (5.6^{+1.9}_{-1.4})\times10^{-5} eV^2 and tan^2{\theta}_{12}= 0.427^{+0.033}_{-0.029}. A three-flavor neutrino oscillation analysis combining this result with results of all other solar neutrino experiments and the KamLAND experiment yielded \Deltam^2_{21} = (7.41^{+0.21}_{-0.19})\times10^{-5} eV^2, tan^2{\theta}_{12} = 0.446^{+0.030}_{-0.029}, and sin^2{\theta}_{13} = (2.5^{+1.8}_{-1.5})\times10^{-2}. This implied an upper bound of sin^2{\theta}_{13} < 0.053 at the 95% confidence level (C.L.).


Jet mass and substructure of inclusive jets in sqrt(s) = 7 TeV pp collisions with the ATLAS experiment

(0)

ATLAS_Collaboration

Recent studies have highlighted the potential of jet substructure techniques to identify the hadronic decays of boosted heavy particles. These studies all rely upon the assumption that the internal substructure of jets generated by QCD radiation is well understood. In this article, this assumption is tested on an inclusive sample of jets recorded with the ATLAS detector in 2010, which corresponds to 35 pb^-1 of pp collisions delivered by the LHC at sqrt(s) = 7 TeV. In a subsample of events with single pp collisions, measurementes corrected for detector efficiency and resolution are presented with full systematic uncertainties. Jet invariant mass, kt splitting scales and n-subjettiness variables are presented for anti-kt R = 1.0 jets and Cambridge-Aachen R = 1.2 jets. Jet invariant-mass spectra for Cambridge-Aachen R = 1.2 jets after a splitting and filtering procedure are also presented. Leading-order parton-shower Monte Carlo predictions for these variables are found to be broadly in agreement with data. The dependence of mean jet mass on additional pp interactions is also explored.


Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using sqrt s = 7 TeV pp collisions with the ATLAS detector

The Journal of High Energy Physics 2011 (0)

AJ Barr, more than 10, The ATLAS Collaboration


Manual of BlackMax, a black-hole event generator with rotation, recoil, split branes, and brane tension

ArXiv (0)

D-C Dai, C Issever, E Rizvi, G Starkman, D Stojkovic, J Tseng

This is the users manual of the black-hole event generator BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at proton-proton, proton-antiproton and electron-positron colliders in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity. It includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, non-zero brane tension and black-hole recoil due to Hawking radiation (although not all simultaneously).


Collider aspects of flavour physics at high Q

ArXiv (0)

T Lari, L Pape, W Porod, JA Aguilar-Saavedra, FD Aguila, BC Allanach, J Alwall, Y Andreev, DA Sierra, A Bartl, M Beccaria, S Bejar, L Benucci, S Bityukov, I Borjanovic, G Bozzi, G Burdman, J Carvalho, N Castro, B Clerbaux, FD Campos, AD Gouvea, C Dennis, A Djouadi, OJP Eboli, U Ellwanger, D Fassouliotis, PM Ferreira, R Frederix, B Fuks, J-M Gerard, A Giammanco, S Gopalakrishna, T Goto, B Grzadkowski, J Guasch, T Hahn, S Heinemeyer, A Hektor, M Herquet, B Herrmann, K Hidaka, MK Hirsch, K Hohenwarter-Sodek, W Hollik, GWS Hou, T Hurth, A Ibarra, J Illana, M Kadastik, S Kalinin, C Karafasoulis, MK Unel, T Kernreiter, MM Kirsanov, M Klasen, E Kou, C Kourkoumelis, S Kraml, N Krasnikov, F Krauss, A Kyriakis, V Lemaitre, G Macorini, MB Magro, W Majerotto, F Maltoni, R Mehdiyev, M Misiak, F Moortgat, G Moreau, M Mühlleitner, M Muntel, A Onofre, E Ozcan, F Palla, L Panizzi, L Pape, S Penaranda, R Pittau, G Polesello, A Pukhov, M Raidal, AR Raklev, L Rebane, FM Renard, D Restrepo, Z Roupas, R Santos, S Schumann, G Servant, F Siegert, P Skands, P Slavich, J Sola, M Spira, S Sultansoy, A Toropin, A Tricomi, J Tseng, G Unel, JWF Valle, F Veloso, A Ventura, G Vermisoglou, C Verzegnassi, AVD Moral, G Weiglein, M Yilmaz

This review presents flavour related issues in the production and decays of heavy states at LHC, both from the experimental side and from the theoretical side. We review top quark physics and discuss flavour aspects of several extensions of the Standard Model, such as supersymmetry, little Higgs model or models with extra dimensions. This includes discovery aspects as well as measurement of several properties of these heavy states. We also present public available computational tools related to this topic.


BlackMax: A black-hole event generator with rotation, recoil, split branes and brane tension

ArXiv (0)

D-C Dai, G Starkman, D Stojkovic, C Issever, E Rizvi, J Tseng

We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole graybody factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, non-zero brane tension and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia.


B Physics at the Tevatron: Run II and Beyond

ArXiv (0)

K Anikeev, D Atwood, F Azfar, S Bailey, CW Bauer, W Bell, G Bodwin, E Braaten, G Burdman, JN Butler, K Byrum, N Cason, A Cerri, HWK Cheung, A Dighe, S Donati, RK Ellis, A Falk, G Feild, S Fleming, I Furic, S Gardner, Y Grossman, G Gutierrez, W Hao, BW Harris, J Hewett, G Hiller, R Jesik, M Jones, PA Kasper, A El-Khadra, M Kirk, VV Kiselev, J Kroll, AS Kronfeld, R Kutschke, VE Kuznetsov, E Laenen, J Lee, AK Leibovich, JD Lewis, Z Ligeti, AK Likhoded, HE Logan, M Luke, A Maciel, G Majumder, P Maksimovic, M Martin, S Menary, P Nason, U Nierste, Y Nir, L Nogach, E Norrbin, C Oleari, V Papadimitriou, M Paulini, C Paus, M Petteni, R Poling, M Procario, G Punzi, H Quinn, A Rakitine, G Ridolfi, K Shestermanov, G Signorelli, JP Silva, T Skwarnicki, A Smith, B Speakman, K Stenson, F Stichelbaut, S Stone, K Sumorok, M Tanaka, W Taylor, W Trischuk, J Tseng, RV Kooten, A Vasiliev, M Voloshin, JC Wang, AB Wicklund, F Wurthwein, N Xuan, J Yarba, K Yip, A Zieminski

This report provides a comprehensive overview of the prospects for B physics at the Tevatron. The work was carried out during a series of workshops starting in September 1999. There were four working groups: 1) CP Violation, 2) Rare and Semileptonic Decays, 3) Mixing and Lifetimes, 4) Production, Fragmentation and Spectroscopy. The report also includes introductory chapters on theoretical and experimental tools emphasizing aspects of B physics specific to hadron colliders, as well as overviews of the CDF, D0, and BTeV detectors, and a Summary.


The 2010 Interim Report of the Long-Baseline Neutrino Experiment Collaboration Physics Working Groups

ArXiv (0)

TLBNE Collaboration, T Akiri, D Allspach, M Andrews, K Arisaka, E Arrieta-Diaz, M Artuso, X Bai, B Balantekin, B Baller, W Barletta, G Barr, M Bass, A Beck, B Becker, V Bellini, O Benhar, B Berger, M Bergevin, E Berman, H Berns, A Bernstein, F Beroz, V Bhatnagar, B Bhuyan, R Bionta, M Bishai, A Blake, E Blaufuss, B Bleakley, E Blucher, S Blusk, D Boehnlein, T Bolton, J Brack, R Bradford, R Breedon, C Bromberg, R Brown, N Buchanan, L Camilleri, M Campbell, R Carr, G Carminati, A Chen, H Chen, D Cherdack, C Chi, S Childress, B Choudhary, E Church, D Cline, S Coleman, R Corey, M D'Agostino, G Davies, S Dazeley, JD Jong, B DeMaat, D Demuth, A Dighe, Z Djurcic, J Dolph, G Drake, A Drozhdin, H Duan, H Duyang, S Dye, T Dykhuis, D Edmunds, S Elliott, S Enomoto, C Escobar, J Felde, F Feyzi, B Fleming, J Fowler, W Fox, A Friedland, B Fujikawa, H Gallagher, G Garilli, G Garvey, V Gehman, G Geronimo, R Gill, M Goodman, J Goon, D Gorbunov, R Gran, V Guarino, E Guarnaccia, R Guenette, P Gupta, A Habig, R Hackenberg, A Hahn, R Hahn, T Haines, S Hans, J Harton, S Hays, E Hazen, Q He, A Heavey, K Heeger, R Hellauer, A Himmel, G Horton-Smith, J Howell, P Huber, P Hurh, J Huston, J Hylen, J Insler, D Jaffe, C James, C Johnson, M Johnson, R Johnson, W Johnson, W Johnston, J Johnstone, B Jones, H Jostlein, T Junk, S Junnarkar, R Kadel, T Kafka, D Kaminski, G Karagiorgi, A Karle, J Kaspar, T Katori, B Kayser, E Kearns, S Kettell, F Khanam, J Klein, J Kneller, G Koizumi, J Kopp, S Kopp, W Kropp, V Kudryavtsev, A Kumar, J Kumar, T Kutter, T Lackowski, K Lande, C Lane, K Lang, F Lanni, R Lanza, T Latorre, J Learned, D Lee, K Lee, Y Li, S Linden, J Ling, J Link, L Littenberg, L Loiacono, T Liu, J Losecco, W Louis, P Lucas, C Lunardini, B Lundberg, T Lundin, D Makowiecki, S Malys, S Mandal, A Mann, A Mann, P Mantsch, W Marciano, C Mariani, J Maricic, A Marino, M Marshak, R Maruyama, J Mathews, S Matsuno, C Mauger, E McCluskey, K McDonald, K McFarland, R McKeown, R McTaggart, R Mehdiyev, W Melnitchouk, Y Meng, B Mercurio, M Messier, W Metcalf, R Milincic, W Miller, G Mills, S Mishra, S MoedSher, D Mohapatra, N Mokhov, C Moore, J Morfin, W Morse, A Moss, S Mufson, J Musser, D Naples, J Napolitano, M Newcomer, B Norris, S Ouedraogo, B Page, S Pakvasa, J Paley, V Paolone, V Papadimitriou, Z Parsa, K Partyka, Z Pavlovic, C Pearson, S Perasso, R Petti, R Plunkett, C Polly, S Pordes, R Potenza, A Prakash, O Prokofiev, X Qian, J Raaf, V Radeka, R Raghavan, R Rameika, B Rebel, S Rescia, D Reitzner, M Richardson, K Riesselman, M Robinson, M Rosen, C Rosenfeld, R Rucinski, T Russo, S Sahijpal, S Salon, N Samios, M Sanchez, R Schmitt, D Schmitz, J Schneps, K Scholberg, S Seibert, F Sergiampietri, M Shaevitz, P Shanahan, M Shaposhnikov, R Sharma, N Simos, V Singh, G Sinnis, W Sippach, T Skwarnicki, M Smy, H Sobel, M Soderberg, J Sondericker, W Sondheim, J Spitz, N Spooner, M Stancari, I Stancu, J Stewart, P Stoler, J Stone, S Stone, J Strait, T Straszheim, S Striganov, G Sullivan, R Svoboda, B Szczerbinska, A Szelc, R Talaga, H Tanaka, R Tayloe, D Taylor, J Thomas, L Thompson, M Thomson, C Thorn, X Tian, W Toki, N Tolich, M Tripathi, M Trovato, H Tseung, M Tzanov, J Urheim, S Usman, M Vagins, RV Berg, RVD Water, G Varner, K Vaziri, G Velev, B Viren, T Wachala, C Walter, H Wang, Z Wang, D Warner, D Webber, A Weber, R Wendell, C Wendt, M Wetstein, H White, S White, L Whitehead, W Willis, RJ Wilson, L Winslow, J Ye, M Yeh, B Yu, G Zeller, C Zhang, E Zimmerman, R Zwaska

In early 2010, the Long-Baseline Neutrino Experiment (LBNE) science collaboration initiated a study to investigate the physics potential of the experiment with a broad set of different beam, near- and far-detector configurations. Nine initial topics were identified as scientific areas that motivate construction of a long-baseline neutrino experiment with a very large far detector. We summarize the scientific justification for each topic and the estimated performance for a set of far detector reference configurations. We report also on a study of optimized beam parameters and the physics capability of proposed Near Detector configurations. This document was presented to the collaboration in fall 2010 and updated with minor modifications in early 2011.


Snowmass 2013 Young Physicists Science and Career Survey Report

ArXiv (0)

J Anderson, J Asaadi, B Carls, R Cotta, R Guenette, B Kiburg, A Kobach, H Lippincott, B Littlejohn, J Love, B Penning, MS Santos, T Strauss, A Szelc, E Worcester, F Yu

From April to July 2013 the Snowmass Young Physicists (SYP) administered an online survey collecting the opinions and concerns of the High Energy Physics (HEP) community. The aim of this survey is to provide input into the long term planning meeting known as the Community Summer Study (CSS), or Snowmass on the Mississippi. In total, 1112 respondents took part in the survey including 74 people who had received their training within HEP and have since left for non-academic jobs. This paper presents a summary of the survey results including demographic, career outlook, planned experiments and non-academic career path information collected.


Composite scintillator detector

(0)

A weber, Y Shitov, A Vacheret


Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

ArXiv (0)

DUNE Collaboration, R Acciarri, MA Acero, M Adamowski, C Adams, P Adamson, S Adhikari, Z Ahmad, CH Albright, T Alion, E Amador, J Anderson, K Anderson, C Andreopoulos, M Andrews, R Andrews, I Anghel, JD Anjos, A Ankowski, M Antonello, A ArandaFernandez, A Ariga, T Ariga, D Aristizabal, E Arrieta-Diaz, K Aryal, J Asaadi, D Asner, MS Athar, M Auger, A Aurisano, V Aushev, D Autiero, M Avila, JJ Back, X Bai, B Baibussinov, M Baird, AB Balantekin, B Baller, P Ballett, B Bambah, M Bansal, S Bansal, GJ Barker, WA Barletta, G Barr, N Barros, L Bartoszek, A Bashyal, M Bass, F Bay, J Beacom, BR Behera, G Bellettini, V Bellini, O Beltramello, PA Benetti, A Bercellie, M Bergevin, E Berman, H Berns, R Bernstein, S Bertolucci, B Bhandari, V Bhatnagar, B Bhuyan, J Bian, K Biery, M Bishai, T Blackburn, A Blake, FDM Blaszczyk, E Blaufuss, B Bleakley, E Blucher, V Bocean, F Boffelli, J Boissevain, S Bolognesi, T Bolton, M Bonesini, T Boone, C Booth, S Bordoni, M Borysova, B Bourguille, SB Boyd, D Brailsford, A Brandt, J Bremer, S Brice, C Bromberg, G Brooijmans, G Brown, R Brown, G Brunetti, X Bu, N Buchanan, H Budd, B Bugg, P Calafiura, E Calligarich, E Calvo, L Camilleri, M Campanelli, C Cantini, B Carls, R Carr, M Cascella, C Castromonte, E CatanoMur, F Cavanna, S Centro, A CerveraVillanueva, VB Chandratre, A Chatterjee, S Chattopadhyay, S Chattopadhyay, L Chaussard, S Chembra, H Chen, K Chen, M Chen, D Cherdack, C Chi, S Childress, S Choubey, BC Choudhary, G Christodoulou, C Christofferson, E Church, D Cianci, D Cline, T Coan, A Cocco, J Coelho, P Cole, G Collin, JM Conrad, M Convery, R Corey, L Corwin, J Cranshaw, P Crivelli, D Cronin-Hennessy, A Curioni, J Cushing, DL Adams, D Dale, SR Das, T Davenne, GS Davies, J Davies, J Dawson, K De, A deGouvea, JK deJong, P deJong, P DeLurgio, M Decowski, A Delbart, C Densham, R Dharmapalan, N Dhingra, S DiLuise, M Diamantopoulou, JS Diaz, G DiazBautista, M Diwan, Z Djurcic, J Dolph, G Drake, D Duchesneau, M Duvernois, H Duyang, DA Dwyer, S Dye, S Dytman, B Eberly, R Edgecock, D Edmunds, S Elliott, M Elnimr, S Emery, E Endress, S Eno, A Ereditato, CO Escobar, J Evans, A Falcone, L Falk, A Farbin, C Farnese, Y Farzan, A Fava, L Favilli, J Felde, J Felix, S Fernandes, L Fields, A Finch, M Fitton, B Fleming, T Forest, J Fowler, W Fox, J Fried, A Friedland, S Fuess, B Fujikawa, A Gago, H Gallagher, S Galymov, T Gamble, R Gandhi, D Garcia-Gamez, S Gardiner, G Garvey, VM Gehman, A Gendotti, GD Geronimo, C Ghag, P Ghoshal, D Gibin, I Gil-Botella, R Gill, D Girardelli, A Giri, S Glavin, D Goeldi, S Golapinni, M Gold, RA Gomes, JJ GomezCadenas, MC Goodman, D Gorbunov, S Goswami, N Graf, N Graf, M Graham, E Gramelini, R Gran, C Grant, N Grant, V Greco, H Greenlee, L Greenler, C Greenley, M Groh, S Grullon, T Grundy, K Grzelak, E Guardincerri, V Guarino, E Guarnaccia, GP Guedes, R Guenette, A Guglielmi, AT Habig, RW Hackenburg, A Hackenburg, H Hadavand, R Haenni, A Hahn, MD Haigh, T Haines, T Hamernik, T Handler, S Hans, D Harris, J Hartnell, T Hasegawa, R Hatcher, A Hatzikoutelis, S Hays, E Hazen, M Headley, A Heavey, K Heeger, J Heise, K Hennessy, J Hewes, A Higuera, T Hill, A Himmel, M Hogan, P Holanda, A Holin, W Honey, S Horikawa, G Horton-Smith, B Howard, J Howell, P Hurh, J Huston, J Hylen, R Imlay, J Insler, G Introzzi, D Ioanisyan, A Ioannisian, K Iwamoto, A Izmaylov, C Jackson, DE Jaffe, C James, E James, F Jediny, C Jen, A Jhingan, S Jiménez, JH Jo, M Johnson, R Johnson, J Johnstone, BJ Jones, J Joshi, H Jostlein, CK Jung, T Junk, A Kaboth, R Kadel, T Kafka, L Kalousis, Y Kamyshkov, G Karagiorgi, D Karasavvas, Y Karyotakis, A Kaur, P Kaur, B Kayser, N Kazaryan, E Kearns, P Keener, S Kemboi, E Kemp, SH Kettell, M Khabibullin, M Khandaker, A Khotjantsev, B Kirby, M Kirby, J Klein, T Kobilarcik, S Kohn, G Koizumi, A Kopylov, M Kordosky, L Kormos, U Kose, VA Kostelecky, M Kramer, I Kreslo, R Kriske, W Kropp, Y Kudenko, VA Kudryavtsev, S Kulagin, A Kumar, G Kumar, J Kumar, L Kumar, T Kutter, A Laminack, K Lande, C Lane, K Lang, F Lanni, J Learned, P Lebrun, D Lee, H Lee, K Lee, WM Lee, MA LeiguideOliveira, Q Li, S Li, S Li, X Li, Y Li, Z Li, J Libo, CS Lin, S Lin, J Ling, J Link, Z Liptak, D Lissauer, L Littenberg, B Littlejohn, Q Liu, T Liu, S Lockwitz, N Lockyer, T Loew, M Lokajicek, K Long, MDL Lopes, JP Lopez, J Losecco, W Louis, J Lowery, M Luethi, K Luk, B Lundberg, T Lundin, X Luo, T Lux, J Lykken, AA Machado, JR Macier, S Magill, G Mahler, K Mahn, M Malek, S Malhotra, D Malon, F Mammoliti, S Mancina, SK Mandal, S Mandodi, SL Manly, A Mann, A Marchionni, W Marciano, C Mariani, J Maricic, A Marino, M Marshak, C Marshall, J Marshall, J Marteau, J Martin-Albo, D Martinez, S Matsuno, J Matthews, C Mauger, K Mavrokoridis, D Mayilyan, E Mazzucato, N McCauley, E McCluskey, N McConkey, K McDonald, KS McFarland, AM McGowan, C McGrew, R McKeown, D McNulty, R McTaggart, A Mefodiev, M Mehrian, P Mehta, D Mei, O Mena, S Menary, H Mendez, A Menegolli, G Meng, Y Meng, H Merritt, D Mertins, M Messier, W Metcalf, M Mewes, H Meyer, T Miao, R Milincic, W Miller, G Mills, O Mineev, O Miranda, CS Mishra, SR Mishra, B Mitrica, D Mladenov, I Mocioiu, R Mohanta, N Mokhov, C Montanari, D Montanari, J Moon, M Mooney, C Moore, J Morfin, B Morgan, C Morris, W Morse, Z Moss, C Mossey, CA Moura, J Mousseau, L Mualem, M Muether, S Mufson, S Murphy, J Musser, R Musser, Y Nakajima, D Naples, J Navarro, D Navas, J Nelson, M Nessi, M Newcomer, Y Ng, R Nichol, TC Nicholls, K Nikolics, E Niner, B Norris, F Noto, P Novakova, P Novella, J Nowak, MS Nunes, H O'Keeffe, R Oldeman, R Oliveira, T Olson, Y Onishchuk, J Osta, T Ovsjannikova, B Page, S Pakvasa, S Pal, O Palamara, A Palazzo, J Paley, C Palomares, E Pantic, V Paolone, V Papadimitriou, J Park, S Parke, Z Parsa, S Pascoli, R Patterson, S Patton, T Patzak, B Paulos, L Paulucci, Z Pavlovic, G Pawloski, S Peeters, E Pennacchio, A Perch, GN Perdue, L Periale, JD Perkin, H Pessard, G Petrillo, R Petti, A Petukhov, F Pietropaolo, R Plunkett, S Pordes, M Potekhin, R Potenza, B Potukuchi, N Poudyal, O Prokofiev, N Pruthi, P Przewlocki, D Pushka, X Qian, JL Raaf, R Raboanary, V Radeka, A Radovic, G Raffelt, I Rakhno, HT Rakotondramanana, L Rakotondravohitra, YA Ramachers, R Rameika, J Ramsey, A Rappoldi, G Raselli, P Ratoff, B Rebel, C Regenfus, J Reichenbacher, D Reitzner, A Remoto, A Renshaw, S Rescia, M Richardson, K Rielage, K Riesselmann, M Robinson, L Rochester, OB Rodrigues, P Rodrigues, B Roe, M Rosen, RM Roser, M Ross-Lonergan, M Rossella, A Rubbia, C Rubbia, R Rucinski, C RudolphvonRohr, B Russell, D Ruterbories, R Saakyan, N Sahu, P Sala, N Samios, F Sanchez, M Sanchez, B Sands, S Santana, R Santorelli, G Santucci, N Saoulidou, A Scaramelli, H Schellman, P Schlabach, R Schmitt, D Schmitz, J Schneps, K Scholberg, A Schukraft, J Schwehr, E Segreto, S Seibert, JA Sepulveda-Quiroz, F Sergiampietri, L Sexton-Kennedy, D Sgalaberna, M Shaevitz, J Shahi, S Shahsavarani, P Shanahan, SU Shankar, R Sharma, RK Sharma, T Shaw, R Shrock, I Shyrma, N Simos, G Sinev, I Singh, J Singh, J Singh, V Singh, G Sinnis, W Sippach, D Smargianaki, M Smy, E Snider, P Snopok, J Sobczyk, H Sobel, M Soderberg, N Solomey, W Sondheim, M Sorel, A Sousa, K Soustruznik, J Spitz, J Spitz, NJ Spooner, M Stancari, I Stancu, D Stefan, HM Steiner, J Stewart, J Stock, S Stoica, J Stone, J Strait, M Strait, T Strauss, S Striganov, R Sulej, G Sullivan, Y Sun, L Suter, CM Sutera, R Svoboda, B Szczerbinska, A Szelc, S Söldner-Rembold, R Talaga, M Tamsett, S Tariq, E Tatar, R Tayloe, C Taylor, D Taylor, K Terao, M Thiesse, J Thomas, LF Thompson, M Thomson, C Thorn, M Thorpe, X Tian, D Tiedt, SC Timm, A Tonazzo, T Tope, A Topkar, FR Torres, M Torti, M Tortola, F Tortorici, M Toups, C Touramanis, M Tripathi, I Tropin, Y Tsai, KV Tsang, R Tsenov, S Tufanli, C Tull, J Turner, M Tzanov, E Tziaferi, Y Uchida, J Urheim, T Usher, M Vagins, P Vahle, GA Valdiviesso, L Valerio, Z Vallari, J Valle, R VanBerg, R VandeWater, P VanGemmeren, F Varanini, G Varner, G Vasseur, K Vaziri, G Velev, S Ventura, A Verdugo, T Viant, TV Vieira, C Vignoli, C Vilela, B Viren, T Vrba, T Wachala, D Wahl, M Wallbank, N Walsh, B Wang, H Wang, L Wang, T Wang, TK Warburton, D Warner, M Wascko, D Waters, TB Watson, A Weber, M Weber, W Wei, A Weinstein, D Wells, D Wenman, M Wetstein, A White, L Whitehead, D Whittington, M Wilking, J Willhite, P Wilson, RJ Wilson, L Winslow, P Wittich, S Wojcicki, HH Wong, K Wood, E Worcester, M Worcester, S Wu, T Xin, C Yanagisawa, S Yang, T Yang, K Yarritu, J Ye, M Yeh, N Yershov, K Yonehara, B Yu, J Yu, J Zalesak, A Zalewska, B Zamorano, L Zang, A Zani, G Zavala, G Zeller, C Zhang, C Zhang, ED Zimmerman, M Zito, R Zwaska

The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described.


A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam

ArXiv (0)

R Acciarri, C Adams, R An, C Andreopoulos, AM Ankowski, M Antonello, J Asaadi, W Badgett, L Bagby, B Baibussinov, B Baller, G Barr, N Barros, M Bass, V Bellini, P Benetti, S Bertolucci, K Biery, H Bilokon, M Bishai, A Bitadze, A Blake, F Boffelli, T Bolton, M Bonesini, J Bremer, SJ Brice, C Bromberg, L Bugel, E Calligarich, L Camilleri, D Caratelli, B Carls, F Cavanna, S Centro, H Chen, C Chi, E Church, D Cianci, AG Cocco, GH Collin, JM Conrad, M Convery, GD Geronimo, A Dermenev, R Dharmapalan, S Dixon, Z Djurcic, S Dytmam, B Eberly, A Ereditato, J Esquivel, J Evans, A Falcone, C Farnese, A Fava, A Ferrari, BT Fleming, WM Foreman, J Freestone, T Gamble, G Garvey, V Genty, M Geynisman, D Gibin, S Gninenko, D Göldi, S Gollapinni, N Golubev, M Graham, E Gramellini, H Greenlee, R Grosso, R Guenette, A Guglielmi, A Hackenburg, R Hänni, O Hen, J Hewes, J Ho, G Horton-Smith, J Howell, A Ivashkin, C James, CM Jen, RA Johnson, BJP Jones, J Joshi, H Jostlein, D Kaleko, LN Kalousis, G Karagiorgi, W Ketchum, B Kirby, M Kirby, M Kirsanov, J Kisiel, J Klein, J Klinger, T Kobilarcik, U Kose, I Kreslo, VA Kudryavtsev, Y Li, B Littlejohn, D Lissauer, P Livesly, S Lockwitz, WC Louis, M Lüthi, B Lundberg, F Mammoliti, G Mannocchi, A Marchionni, C Mariani, J Marshall, K Mavrokoridis, N McCauley, N McConkey, K McDonald, V Meddage, A Menegolli, G Meng, I Mercer, T Miao, T Miceli, GB Mills, D Mladenov, C Montanari, D Montanari, J Moon, M Mooney, C Moore, Z Moss, MH Moulai, S Mufson, R Murrells, D Naples, M Nessi, M Nicoletto, P Nienaber, B Norris, F Noto, J Nowak, S Pal, O Palamara, V Paolone, V Papavassiliou, S Pate, J Pater, Z Pavlovic, J Perkin, P Picchi, F Pietropaolo, P Płoński, S Pordes, R Potenza, G Pulliam, X Qian, L Qiuguang, JL Raaf, V Radeka, R Rameika, A Rappoldi, GL Raselli, PN Ratoff, B Rebel, M Richardson, L Rochester, M Rossella, C Rubbia, CRV Rohr, B Russell, P Sala, A Scaramelli, DW Schmitz, A Schukraft, W Seligman, MH Shaevitz, B Sippach, E Snider, J Sobczyk, M Soderberg, S Söldner-Rembold, M Spanu, J Spitz, N Spooner, D Stefan, JS John, T Strauss, R Sulej, CM Sutera, AM Szelc, N Tagg, CE Taylor, K Terao, M Thiesse, L Thompson, M Thomson, C Thorn, M Torti, F Tortorici, M Toups, C Touramanis, Y Tsai, T Usher, RVD Water, F Varanini, S Ventura, C Vignoli, T Wachala, M Weber, D Whittington, P Wilson, S Wolbers, T Wongjirad, K Woodruff, M Xu, T Yang, B Yu, A Zani, GP Zeller, J Zennamo, C Zhang

A Short-Baseline Neutrino (SBN) physics program of three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab is presented. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. Using data sets of 6.6e20 protons on target (P.O.T.) in the LAr1-ND and ICARUS T600 detectors plus 13.2e20 P.O.T. in the MicroBooNE detector, we estimate that a search for muon neutrino to electron neutrino appearance can be performed with ~5 sigma sensitivity for the LSND allowed (99% C.L.) parameter region. In this proposal for the SBN Program, we describe the physics analysis, the conceptual design of the LAr1-ND detector, the design and refurbishment of the T600 detector, the necessary infrastructure required to execute the program, and a possible reconfiguration of the BNB target and horn system to improve its performance for oscillation searches.


Cloud computing and the Square Kilometer Array

(0)

JC Tseng, Newman R


Long Baseline Neutrino Oscillation Review

THE GIGI PUBLISHERS (0)

A Weber

This article will summarise the status of current and future long baseline neutrino oscillation experiments.


Testing of Hamamatsu R5900-00-M64 Multi-Pixel PMTs for MINOS

arXiv (0)

MA Barker, AD Santo, P Dervan, K Lang, PS Miyagawa, R Saakyan, S Smith, D Michael, J Thomas, A Weber

The MINOS long baseline neutrino oscillation experiment is comprised of three calorimeters, a Near Detector at FNAL, a Far Detector at the Soudan mine in northern Minnesota, and a Calibration Detector in a test beam at CERN. The light produced in the interactions of neutrinos in the Near Detector at FNAL will be routed by optical fibres onto the pixels of Hamamatsu R5900-00-M64 multi-anode photomultiplier tubes. This article reports the measurements performed on 15 of these tubes to evaluate them for their use in MINOS.


LAr1-ND: Testing Neutrino Anomalies with Multiple LArTPC Detectors at Fermilab

ArXiv (0)

C Adams, C Andreopoulos, J Asaadi, B Baller, M Bishai, L Camilleri, F Cavanna, H Chen, E Church, D Cianci, G Collin, J Conrad, A Ereditato, B Fleming, WM Foreman, G Garvey, R Guenette, C Ignarra, B Jones, G Karagiorgi, W Ketchum, I Kreslo, D Lissauer, WC Louis, K Mavrokoridis, N McCauley, GB Mills, O Palamara, Z Pavlovic, X Qian, L Qiuguang, R Rameika, DW Schmitz, M Shaevitz, M Soderberg, J Spitz, AM Szelc, CE Taylor, K Terao, M Thomson, C Thorn, M Toups, C Touramanis, T Strauss, RGVD Water, CRV Rohr, M Weber, B Yu, G Zeller, J Zennamo

This white paper describes LAr1-ND and the compelling physics it brings first in Phase 1 and next towards the full LAr1 program. In addition, LAr1-ND serves as a key step in the development toward large-scale LArTPC detectors. Its development goals will encompass testing existing and possibly innovative designs for LBNE while at the same time providing a training ground for teams working towards LBNE combining timely neutrino physics with experience in detector development.


Adapting SAM for CDF

ArXiv (0)

D Bonham, G Garzoglio, R Herber, J Kowalkowski, D Litvintsev, L Lueking, M Paterno, D Petravick, L Piccoli, R Pordes, N Stanfield, I Terekhov, J Trumbo, J Tseng, S Veseli, M Votava, V White, T Huffman, S Stonjek, K Waltkins, P Crosby, D Waters, RS Denis

The CDF and D0 experiments probe the high-energy frontier and as they do so have accumulated hundreds of Terabytes of data on the way to petabytes of data over the next two years. The experiments have made a commitment to use the developing Grid based on the SAM system to handle these data. The D0 SAM has been extended for use in CDF as common patterns of design emerged to meet the similar requirements of these experiments. The process by which the merger was achieved is explained with particular emphasis on lessons learned concerning the database design patterns plus realization of the use cases.

Pages