Publications associated with Intense X-ray-Matter Interactions


Perspective for high energy density studies on X-ray FELs

Proceedings of SPIE - The International Society for Optical Engineering 7451 (2009)

RW Lee, B Nagler, U Zastrau, R Fäustlin, SM Vinko, T Whitcher, R Sobierajski, J Krzywinski, L Juha, AJ Nelson, S Bajt, K Budil, RC Cauble, T Bornath, T Burian, J Chalupsky, H Chapman, J Cihelka, T Döppner, T Dzelzainis, S Düsterer, M Ajardo, E Förster, C Fortmann, SH Glenzer, S Göde, G Gregori, V Hajkova, P Heimann, M Jurek, FY Khattak, AR Khorsand, D Klinger, M Kozlova, T Laarmann, HJ Lee, KH Meiwes-Broer, P Mercere, WJ Murphy, A Przystawik, R Redmer, H Reinholz, D Riley, G Röpke, K Saksl, R Thiele, J Tiggesbäumker, S Toleikis, T Tschentscher, I Uschmann, RW Falcone, R Shepherd, JB Hastings, WE White, JS Wark

We report on the x-ray absorption of Warm Dense Matter experiment at the FLASH Free Electron Laser (FEL) facility at DESY. The FEL beam is used to produce Warm Dense Matter with soft x-ray absorption as the probe of electronic structure. A multilayer-coated parabolic mirror focuses the FEL radiation, to spot sizes as small as 0.3μm in a ∼15fs pulse of containing >1012photons at 13.5 nm wavelength, onto a thin sample. Silicon photodiodes measure the transmitted and reflected beams, while spectroscopy provides detailed measurement of the temperature of the sample. The goal is to measure over a range of intensities approaching 1018W/cm2. Experimental results will be presented along with theoretical calculations. A brief report on future FEL efforts will be given. © 2009 SPIE.


Show full publication list